+ All Categories
Home > Documents > Buhrman_KITP_Spintronics.pdf

Buhrman_KITP_Spintronics.pdf

Date post: 03-Apr-2018
Category:
Upload: gokaran-shukla
View: 214 times
Download: 0 times
Share this document with a friend

of 38

Transcript
  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    1/38

    Spin Torque and Magnetic Tunnel

    JunctionsEd Myers, Frank Albert, Ilya Krivorotov, Sergey Kiselev, Nathan

    Emley, Patrick Braganca, Greg Fuchs, Andrei Garcia,

    Ozhan Ozatay, Eric Ryan, J ack Sankey, J ohn Read, Phillip Mather, Dan Ralph J ordan Katine and Daniele Mauri (HGST)

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    2/38

    Outline

    Spin torque switching in spin valves

    Switching speedsAsymmetry of switching currents (spin torque and spin accumulation)Reducing switching current levels

    Non-uniform spin torque systemsSwitching by concentrated spin current injectionVortex spin torque oscillator

    Spin torque in magnetic tunnel junctionProbing spin torque as function of tunnel junction bias

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    3/38

    Realizing Spin Transfer Effects

    Nanopillar GMRSPIN VALVE

    Py (2 nm)

    Py (12 nm)Cu (6 nm)

    Cu

    Cu

    free layer

    fixed layer

    Conventional ferromagnet spin transfer devices require lateral dimensions 250 nm to avoid significant self-field effects from required current levels

    Low impedance ~ 0.01 -m2GMR (R/R) ~ 10 -20%

    High impedance ~ 1 - 100 -m2GMR (R/R) ~ < 50-90+%(varies with barrier thickness)

    Critical current densities quite similar in good spin valves and MTJ sHigh polarization of MTJ s may give a ~ 2x advantage

    Nanopillar MAGNETIC TUNNEL JUNCTION

    Py (2 nm)

    Py (12 nm) AlOx (~0.7 nm

    Cu

    Cu

    free layer

    fixed layer

    Practical issues for spin-torque switching : speed, switching currents, impedance

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    4/38

    5.1

    5.3

    5.5

    0 600 1200

    Magnetic Field [G]

    d V / d I [ O h m

    ]

    5.1

    5.3

    5.5

    -1 -0.5 0 0.5 1

    Current [mA]

    d V / d I [ O h m

    ]

    T = 4.2 KNanopillar Spin-Valve

    Py (2 nm)

    Py (12 nm)Cu (6 nm)

    Cu

    Cu

    free layer

    fixed layer

    Spin Transfer Driven Magnetic Reversal

    ~120 nm

    ~40 nm

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    5/38

    ChallengesIn standard nanopillar devices, initial direction of spin torque is determined by arandom thermal fluctuation from equilibrium.This leads to a random phase of the

    precessional dynamics.

    Time-resolved measurementsrequire devices with a non-zeroangle between the free and thefixed layers.

    ( ) sin~2

    =

    I mm I m st

    fixed layer

    M

    free layer

    m

    st

    free layer

    m

    fixed layer

    M

    st

    1)sin(

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    6/38

    Sampling Oscilloscope

    Step Generator

    dc

    +25 dB

    Measurements of Spin-Transfer Dynamics

    Py (4 nm)

    Py (4 nm)Cu (8 nm)

    Cu

    Cu

    free layer

    fixed layerIrMn (8 nm)

    ~ 130 nm

    ~ 60 nmHEB

    HEB = exchange bias field

    I. N. Krivorotov et al.Science 307 , 228 (2005).

    Exchange biasing of the fixed Py layer at 45 to the easy axis results in a non-zeroinitial angle between magnetic moments of the fixed and free layers. Thisestablishes a well-defined phase for precessional dynamics of the magnet.

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    7/38

    5.9

    5.95

    6

    6.05

    6.1

    -400 -200 0 200 400 600

    Filed (G)

    d V / d I ( O h m

    )

    Happlied

    Mfixed

    Mfree

    0

    - data

    - Stoner-Wolfarth fit

    Equilibrium Configuration of Magnetization

    0 ~ 35

    ( )( )2/cos1

    2/cos12

    2

    0

    +

    += R R R

    = 0.5; H eb = 1.5 kG

    Sample 2

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    8/38

    High Speed Spin Torque Switching

    switching time 1 =

    0 ~ initial angle betweenmagnetizations

    -set by thermalfluctuations ormagnetic pinning

    Ic0 is T= 0 critical current

    co

    0

    II

    2ln

    1 J .Sun, Phys Rev B. 62 , 570 (2000)

    Faster reversal requires larger Iswitch

    Spin polarized current mustdeliver sufficient spin angularmomentum to nanomagnet toreverse magnetic moment.

    Hence ( I I c0)x = constant

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    9/38

    How fast is spin-transfer-driven switching?

    SamplingOscilloscope

    Step Generator

    dc

    +25 dB

    Switching t ime < 1 ns at high pulse amplitude

    Measure time dependent response of nanopillar resistance to step pulse.

    I. N. Krivorotov et al.Science 307 , 228 (2005).

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    10/38

    I co+ = e M s Vol [H + H an + 2 M s ] / hg(0) 2 e M s2 Vol / h g(0)

    I co- = e M s Vol [H - H an - 2 M s ] / hg( ) 2 e M s2 Vol / h g( )

    J co+

    2

    e M s2

    t / h g(0); J co+

    2

    e M s2

    t / h g( )t = nanomagnet thickness, =Gilbert damping parameter, M s = magnetization

    H an = shape anisotropy field

    Critical Current for Spin Torque Switching

    H an

    4 Ms

    out of plane

    demagnetizationfield top view

    To reduce J co - reduce t, M s and/or but must maintain nanomagnet stability

    This requires U K = M s H an Vol /2 > 50 k BT - ten year bit stability

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    11/38

    IcMs2 (Vol)U0 HanMs(Vol)

    Han ~ Ms(t/t0)

    U0

    MRAM requirement:Bit lifetime ~ 10 years U0 = 1 eV at RTWith heating to 100 C U0 = 1.3 eV

    ~120 nm

    ~40 nm

    Minimize Ms and sample volumeUse shape anisotropy to maximize H k

    thick and elongated

    Decreasing Switching Currents

    4.5 nm Py : U 0,P-AP =0.85 eV, I c0+ = .42 mAU 0,AP-P =0.73 eV, I c0- = .39 mA

    Ic0 = zero-temp critical current. Need I co < 100 ANeed to decrease damping and improve micromagnetics

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    12/38

    Spin torque switching currents of low M s free layers

    Pulse-response measurementsPulse Generator

    dc

    +25 dB

    Apply current pulse to device.

    Determine if pulse has switcheddevice.

    Increase pulse duration untilprobability of switching goes tounity.

    Increase current pulse amplitudeand repeat.

    0.0 0.5 1.0 1.5 2.0 2.5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    S w

    i t c h i n g

    P r o

    b a b i l i t y

    Pulse Amplitude (mA)

    100 ns30 ns10 ns3 ns1 ns

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    13/38

    Comparison with Single Domain LLG Simulations

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    S w

    i t c h i n g

    P r o

    b a b i l i t y

    0.5 1.0 1.5 2.0 2.5

    simulationsdata

    Pulse Amplitude (mA)

    1 ns3 ns100 ns

    0.0 0.2 0.4 0.6 0.8 1.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    p-apap-p

    I

    5 0 %

    ( m A )

    -1 (ns -1 )

    Fitting to LLG simulation yields empirical spin-torque function and damping

    N.B. Similar AP-P and P-AP switching currents in these devicesBraganca et al. APL 05

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    14/38

    Spin Transfer Torque Function

    effect of device geometry on g( ) spin accumulation affects?

    0 /2

    0.050.1

    0.150.2

    0.250.3

    g

    g ( ) Slonczewski 1996

    g ( ) Cornell (exp.)

    I c, P - AP ~ g ( 0 ) ; I c, AP - A ~ g ( )

    ( ) ( )mImmmHmm eff +

    =

    )sin()(

    2

    m

    g edt

    d dt

    d B

    g ( ) Xiao, et al.

    See also: Manschot et al ., APL.2004

    Barnas et al. PRB 2005

    )cos(1)sin(

    )(

    B A

    g +=

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    15/38

    >> sf > sf

    Effect of Electrode Structure on Spin Torque

    Net electron flow

    0.050.1

    0.150.2

    0.250.3

    gold cap g

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    16/38

    F e

    M n

    >> sf > sf

    Effect of Electrode Structure on Spin Torque

    Net electron flow

    0.050.1

    0.150.2

    0.250.3

    gold cap

    Fe-Mn cap

    g

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    17/38

    Pulsed Current Experiments

    Pt Capped Devices

    1 2 3 4 50.0

    0.2

    0.40.6

    0.8

    1.0

    1 ns pulse data3 ns pulse data10 ns pulse data100 ns pulse datasimulations

    S w

    i t c h i n g

    P r o b a b

    i l i t y

    Pulse Amplitude (mA)

    A =0.18 =0.037

    Standard Configuration

    1 2 3 4 5

    1 ns pulse data3 ns pulse data10 ns pulse data100 ns pulse datasimulations

    Pulse Amplitude (mA)

    A =0.52 =0.047

    Inverted Configuration

    AP-P switching

    Spin pumping enhancement ininverted samples Better spinsinking in extended Cu lead

    LLG fit deviation from data at largecurrents microwave oscillations

    )cos(1)sin(

    )(

    B A

    g +

    =Torque angular dependence

    A Torque amplitude from spin currentand spin accumulation

    LLG simulations

    +=

    11

    B AP P switch

    P AP switch

    I

    I

    =,

    ,

    e-

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    18/38

    0.08-0.130.11-0.230.32-0.330.02-0.19B

    0.0470.033-0.0370.033-0.0370.025-0.030

    0.45-0.520.18-0.210.12-0.160.25-0.30A

    Pt inv.Pt capFe-MncapAu cap

    Pt normal Pt inverted

    A=0.18B=0.23

    A=0.52B=0.13

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    19/38

    30nm hole

    150x250nm pillar

    Pt30nm

    Cu

    Py20nm

    Cu 8nm

    Py 5nm

    Cu

    Spin-Transfer-Switching by Spatially Non-Uniform Currents

    Al 2O 3 3nm

    SiO 2 SiO 215-30nm aperture sizes

    150nm

    A 3nm Al 2O 3 insulating barrier with anano-orifice is inserted into a Cu/Pyspin-valve nanopillar Goal:

    Result:

    150x250 nm pillar

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    20/38

    Hc~37.5Oe R~253m

    150m

    J ~ 1.2x10 7 A/cm2AP-PIc- = 4 mA

    P-APIc+ = 7.8 mA

    100 x 200 nm 2uniform current

    Jpillar ~ 4x10 5 A/cm2 Jhole~1.6x10 7 A/cm2

    AP-PIc- = 50

    P-APIc+ = 180 A

    150 x 250 nm 2with 30 nm

    aperture

    T=4.2K

    R = 3

    R = 12

    The nano-aperture devicerequires much less current toinduce switching than ananopillar with uni formcurrent flow.

    Current-induced switchingmay not result in fu ll reversalof the nanomagnet

    11.65

    11.7

    11.75

    11.8

    11.85

    11.9

    11.95

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

    I(mA)

    d V / d I (

    )

    11.6511.7

    11.7511.8

    11.8511.9

    11.9512

    -600 -400 -200 0H(Oe)

    R ( )

    150m

    T=4.2K

    Spin-Transfer-Switching by Spatially Non-Uniform Currents

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    21/38

    - 1 10 - 7- 5 10 - 8

    0

    5 10 - 81 10 - 7

    - 5 10- 8

    0

    5 10 - 8

    0

    2 10 64 10 6

    6 10 6

    0- 7

    - 5 10 - 80

    5 10 - 8

    -

    3D OOMMF Simulations

    The effect of spin torque was modeled using LLG equation with the Slonczweskiterm for each cell. The simulations were performed taking into account theOersted field created by electron flow through a wire.

    OOMMF is apublic

    software

    developed byM.J .Donahueand D.G.

    Porter fromNIST

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    22/38

    t=1.13ns t=1.6ns

    t=2.3ns

    t=3.3ns

    t=2.06ns

    t=2.5ns

    t=3.96ns t=5.9ns

    0.5 mA

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    23/38

    Spin Transfer with Magnetic Tunnel Junctions

    0.1 1 10 100 100010000

    Bad TMR,

    Pinholes

    Good TMR, too highresistance to do spintransfer.

    RA ( m2)

    O k f o r

    s p

    i n t r a n s f e r

    Pt 30 nm

    Cu 5 nm

    CoFeB 2 nmAlO x 7-8

    CoFeB 8 nm

    Cu 80 nm

    Ta 10 nm 147 nm

    56 nm

    147 nm

    56 nm

    Challenge: Tunnel barriers with

    high TMR that can withstand thecurrents necessary for switching,particularly for fast switching

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    24/38

    Early Demonstrations with AlOx

    Minor LoopH = 387 Oe

    T= 77K

    There is a small TMR measured with DCresistance at switching currents.

    Wear-out of barriers a concern due to highcritical currents/voltages

    T = 77 K

    Switching currents

    Huai et. al., APL 84 , 3118 (2004)

    Fuchs et. al., APL 85 , 1205 (2004)

    20 CoFeB

    80 CoFeB

    6.5 Al + Oxygen

    CoFeB=Co88.2Fe9.8B2

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    25/38

    Anti-alignedfixed layers

    Alignedfixed layers

    Spins from each fixed layer are in the samedirection more spin torque

    Spins from each fixed layer are in oppositedirections almost no spin torque

    5 nm CoFe6 nm Cu

    4 nm Py~0.8 nm AlO x8 nm CoFe20 nm Ta

    Increasing spin torque in MTJs with three

    magnetic layers

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    26/38

    P

    APAP/P

    AP/P

    APAP

    PP T=77K Anti-aligned fixed layers Aligned fixed layers

    Ic,o+ = 0.290.01 mA

    Ic,o- = -0.280.01 mAJ c,o /t = (2.90.4) x10 6 A/(cm2-nm), reduced by40% compared to a Py free layer with onefixed layer: 5x10 6 A/(cm2-nm)

    (shape and size

    not optimized)

    G. D. Fuchs et al., Appl. Phys. Lett. 86 , 152509 (2005).

    Ohmic heating reduces H c,minimal spin torque

    Strong spin torque

    Spin Transfer Switching in 3-layer MTJs

    Note the similarity of I cs

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    27/38

    Questions regarding spin torque in MTJs

    Why does TMR decrease withincreasing bias?

    How does bias affect spin-transfer torque?

    What is the nature of spinpolarized transport in MgObased MTJs at f inite bias?

    Models that describe TMR( V) must also beconsistent with spin torque, Nst /I(I) and I(V)

    -0.3V 0 0.3V

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    28/38

    How to measure torque vs. current

    A thermally stable free layer can only provide a measure of

    the spin-torque at theswitching bias

    A thermally unstable free layer can provide a measure of spin-torque continuously as afunction of bias by applying H and

    I so as to have opposing effects

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    29/38

    Sample structure

    Lacour et al, APL 85 , 4681, (2004)

    Bottom pinned SAF nearly cancelsthe dipole field and has a verylarge exchange field (~2 kOe)

    Devices are patterned with a 2:1aspect ratio

    Have a range of thermal activationbarriers

    CoFe = Co 86Fe14Py = Ni91.5Fe8.5

    CoFe 1 nm/Py 1.8 nmMgO 0.8 nmCoFe 1.9 nmRu 0.7 nmCoFe 2.2 nm

    PtMn 15.4 nm

    100 nm

    Katine and Mauri - HGST

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    30/38

    Experimental approach

    =

    ococ

    dip

    B

    ao AP P I

    I I H

    H H

    T k E

    Exp,

    2

    ,/

    )(11

    mLifetime in thermal

    activation regime

    (I)=Scaling factor to parameterize N st /I variation with I - Spin Transfer Efficiency

    E. B. Myers, et al , PRL 89 , 196801 (2002).Z. Li and S. Zhang, PRB 68 , 024404 (2003).I. N. Krivorotov, et al , PRL 93 166603 (2004).

    Positions of equal meanlifetimes if the efficiencyis constant with bias

    Positions of equal meanlifetimes if efficiency decreaseswith increasing bias

    Increasing Current ( I)

    M a g n e

    t i c

    F i e l d ( H )

    0

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    31/38

    H(I) data - Linear Response

    TMR decreases by over 40%

    Hd

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    32/38

    H(I) data - Linear Response

    TMR decreases by over 40%

    Break in data crystalline anisotropy effect

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    33/38

    Spin Transfer EfficiencyData are consistent with less than a 10% decrease in spin torqueefficiency out to the switching bias point (~ 0.3 V)

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    34/38

    Tunnel Conductance Through MgOs-like

    pd-likeNo s-like channels!

    s-like decays inthe electrode No s-like channels!

    W. H. Butler, X. G. Zhang, T. C. Schulthess, PRB 63 , 054416 (2001).

    J . Mathon and A. Umerski, PRB 63 , 220403 (2001).

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    35/38

    MgO DOS Data

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    Fe / 2nm MgO[eb]Fe / 2nm MgO[rf]CoFeB / 2nm MgO[rf] 375C 1 hr

    D O S ( A

    . U . )

    Negative Tip Bias (V)

    Negative Tip Bias (V)

    D O S ( A

    . U . )

    Fe / 20 MgO[eb]Fe / 20 MgO[rf]CoFeB / 20 MgO[rf] 375 oC 1hr

    5.5 eV

    2 eV

    STM tunneling spectroscopy evidence for O vacancy defects in MgO barrier layers

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    36/38

    Tunnel Conductance through MgO

    Simmons model fit:=1.35 0.05=0.82 0.02* pm

    *apm

    Magnetic state dependent effective mass (decay length):

    Elastic scattering by barrier defectsreduces the TMR

    P

    AP

    (I)~const implies that:

    conductance for each spin channel varies withbias at a rate proportional to the zero biasDOS.

    electron scattering rate from defects is notstrongly spin dependent!

    W. H. Butler, X. G. Zhang, T. C. Schulthess, PRB 63 , 054416 (2001). J . Mathon and A. Umerski, PRB 63 , 220403 (2001).

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    37/38

    Symmetry of Critical Currents

    ])(1[2

    )()( 2

    CosV P

    V P g

    +=

    Polarization term

    Asymmetry term ispresent to convert

    Slonczewskis criticalvoltage (V c ) into acritical current (J c ).

    A better approximation:

    ++

    ==

    CosV TMR

    V TMR

    V P g

    )(2)(

    12

    )0()(

    P 2

    calculated from TMR(V)

    Polarization term is aconstant function of V,

    consistent with our study

    Diao et al. , APL 87, 232502, (2005)

  • 7/28/2019 Buhrman_KITP_Spintronics.pdf

    38/38

    Conclusions ST in MTJ s

    Spin-transfer torque per unit current is independent of bias within10% up to 0.35 V (good news for spin-torque driven MRAM)

    Measurement brings new information to help understand therelationship between bias and spin-polarized tunnelingResults are inconsistent with:

    Free-electron, split-band tunneling modelsMagnon emission models that reduce polarization factors

    Results are consistent with calculations due to Butler et al and Mathonet al for transport through ultra-thin MgO tunnel barriers allowing for

    defects in non-ideal tunnel barriers.

    Fuchs et al ., cond-mat/0510786