+ All Categories
Home > Documents > Building .docx

Building .docx

Date post: 07-Jul-2018
Category:
Upload: manjeet-singh
View: 231 times
Download: 0 times
Share this document with a friend

of 134

Transcript
  • 8/18/2019 Building .docx

    1/134

    APROJECT

    ON

    Estimation & Costing of aEstimation & Costing of aResidential BuildingResidential BuildingSubmitted For Partial Fulfillment of Award of

    BACHELOR OF TECHNOLOGYn

    Ci!il En"ineerin"#$%&'(

    Submitted B)S*anti Swaroo+ &%,-.%%%$%

    A/*wani Sin"* &%,-%%%%.0d1 S*aif &%,-.%%%&$

    Saurab* S*arma &%,-.%%%&.

    Submitted to0r1 Atul Prab*at

    Pro2e3t GuideCi!il En"ineerin"

    Ar)a!art n/titute of Te3*nolo") 4 0ana"ementAffiliated to

    G1B1 TECHN CAL 5N 6ERS TY7 L5C8NO9

  • 8/18/2019 Building .docx

    2/134

    ACKNOWLEDGEMENT

    I owe a great many thanks to a great many people who helped ansupported me during the preparation of project. My deepest to lecturer“Mr. Atul Prabhat ” the guide of the project for guiding and correcting various documents of mine with attention and caHe has taken pain to go through the project and make necessary correctias and when needed. I express my deepest thanks also to the professor “Mr. Price Srivastava”H.O.D of “ ivil Department! for extending his support.I would also thank my university and my faculty mem"ers without whothis project would have "een a distant reality. I also extend my heart fethanks to my family and well wishers.

    By:- S*anti Swaroo+ &%,-.%%%$%A/*wani Sin"* &%,-%%%%.

    0d1 S*aif &%,-.%%%&$Saurab* S*arma &%,-.%%%&.

  • 8/18/2019 Building .docx

    3/134

    DECLARAT ON

    We Sha!ti S"ar##$ %&'()&&&*&+ #shwani $ingh %&'(&&&&)* Md. $hai

    %&'()&&&%+* , $aura"h $harma %&'()&&&%)hereb, -eclare that the

    -issertati#! e!title- “Esti ati#! / C#sti!0 #1 a Multist#rie- 2#s$italEsti ati#! / C#sti!0 #1 a Multist#rie- 2#s$ital

    3uil-i!03uil-i!0 ! sub itte- t# the 4PT4 i! $artial 1ul1ill e!t 1#r the a"ar- #1

    the De0ree #1 -# H/O0 O1 2 H3O/O45 I3 I6I/ 234I3220I34

    a!- that the -issertati#! has !#t $revi#usl, 1#r e- the basis 1#r the

    a"ar- #1 a!, #ther -e0ree+ Di$l# a+ Ass#ciate shi$+ 5ell#"shi$ #r #ther

    title.

    7lace8

    Date8 $ignature of the candidates.

  • 8/18/2019 Building .docx

    4/134

    TA3LE O5 CONTENTS

  • 8/18/2019 Building .docx

    5/134

    $72 I1I # IO3

    %6 Earth "#r7 i! e8cavati#! #1 1#u!-ati#! #1 "alls a!- c#lu !s 9E8cavati#! 91oundation trenches should "e digging out to the exact width of foundation concrete and the sides

    vertical 2xcavated earth should not "e placed within % m of the edge of the trench.

    5i!ish #1 Tre!ch 9he "ottom of foundation trench should "e perfectly leveled "oth longitudinally and side dress

    perfectly. oncrete may "e laid to the exact width as per design. he "ed of the trench should "e lig

    watered and well rammed.

    5i!-s 9#ny treasure and valua"les found during the excavation is the property of the government.

    Water i! 5#u!-ati#! 99ater* if any accumulates in the trench should "e pumped out without any extra payment and neces

    precautions should "e taken to prevent surface water to enter into the trench.

    Tre!ch 5illi!0 9#fter the concrete has "een laid* masonry has "een constructed the remaining portion of the trenc

    should "e filled up with earth and watered and rammed well. he earth filling should "e free from ru"

    and refuse matters. $urplus 2arth not re:uired* shall "e removed and site should "e leveled and dresse

    Measure e!t 9he measurement of 2xcavation should "e taken in m' as for rectangular trench "ottom width of concrete

    multiplied "y the vertical depth of foundation from ground level and multiplied "y length of the tren

    even sloping side for convenience.

    *6 %:(:%& Lea! C.C. 3l#c7 i! 5#u!-ati#! ;

  • 8/18/2019 Building .docx

    6/134

    Mi8i!092a!- Mi8i!0 9It should "e done on masonry platform. 1irstly* I "ag cement and ( "ox sand mixes throughly and sp

    over %& "ox "rick "allast and then mix with mortar.

    Machi!e Mi8i!0 9-allast* sand and cement put into the cement concrete mixer in the ratio of %8(8%&. he machine

    then "e resolved to mix materials dry and then gradually added water.

    Slu $ 90egular slump test should "e carried out to control the addition of water and to maintain the re:uir

    consistency.

    5#r "#r7 91orm work should "e provided as re:uired as per the standard specifications "efore laying concrete

    keep the concrete in position.

    La,i!0 9oncrete should "e laid gently in layers* compacted "y pinning with roads and tamping with woo

    tampers or "y vi"rators until a dense concrete is o"tained.

    Curi!0 9#fter a"out + hours laying when concrete has "egun to harden* it should "e kept "y covering wet gu

    "ags or wet sand for += hours. uring may "e done "y covering concrete with special type of water p paper to prevent water evaporation.

    '6 5irst Class 3ric7 W#r7 i! %:> Ce e!t Sa!- M#rtar i! 5#u!-ati#! u$t# $li!th:3ric7s 9#ll "ricks should "e of first class of standard specification made from good "rick earth. 9ell "urnt an

    deep cherry red colour "ricks should "e regular in shape? edges should "e regular in shape* edges sh

    "e sharp and give clear ringing sound when struck with each other. hese are free from cracks and

    a"sor" water more than +&@ of their own weight when emerged in water for += hours. -ricks shoulda minimum rushing strength of %&( kgAcm+.

    Ce e!t M#rtar 9

  • 8/18/2019 Building .docx

    7/134

    1or cement mortar* cement should "e fresh 7ortland cement of standard specification. $and shoul

    sharp clear and free from organic matter. 1or rich mortar* coarse medium sand? for weak mortar*

    sand may "e used* 7roportion of cement mortar is %8>.

    S#a7i!0 #1 3ric7 9-rick should "e fully soaked in clean water "y su"merging in a tank for %+ hours immediately "efore

    La,i!0 9-ricks should "e well "onded and laid in 2nglish "ond* unless otherwise specified. 2very course sho

    "e truly in plum" vertical. Boints of consecutive course should not come over one;another "ut ver

    joints in alternative course should come over one another. -roken "ricks should not "e used. Mor

    joints should not exceed > mm in thickness.

    Curi!0 9he "rick should "e kept wet for a period of %& days after laying.

    Pr#tecti#! 9he "rick work should "e protected from the effects of sun* rain * frost etc during the construction.

    Sca11#l-i!0 9 3ecessary and suita"le scaffolding should "e provided to facilitate the construction of "rick wall.

    Measure e!t 9-rick work should "e measured in m' . he rate should "e for the complete work including $caffolding

    and all tools and plants.

    ?6 La,i!0 #1 *( thic7 D.P.C. "ith %:*:? ce e!t c#!crete "ith *@ -a $ $r##1i!0

    $#"-er:9 Damp proof course consist of cement* moorum and stone "allast of %8+8= proportion wi

    water proofing compound C% g A "agE of cement.It should "e applied at the plinth level in hori

  • 8/18/2019 Building .docx

    8/134

    1illing should "e measured in m' .

    >6 5irst class bric7 "#r7 i! %:> ce e!t sa!- #rtar i! su$er structure :9 -rick should "e first class standard specification made from good "rick earth.-rick should "e soaked in fresh water which is free from acid or any other salt at least %+ h

    "efore starting the masonry work.ement mortar which are used for construction of superstructure are in the ratio of %8> w

    means cement white sand and moorum are in ratio of re:uired one.-rick should "e well "onded and laid in 2nglish "ond well should truly in plum"* vertical join

    are alternate layer come over each "ut not in consecutive layer. 3ecessary and suita"le scaffolding should "e provided to facilitate the construction of "rick wa

    he "rick wall should must "e kept wet for a period of at least %& days.

    )6 R.C.C. "#r7 "ith M9*& 0ra-e #1 c#!crete i! slab+ bea s a!- li!tels ;r##1 1l##r+ etc.6

    e8clu-i!0 rei!1#rce e!t 9Materials

    #ggregate should "e of invert material and should "e clean dense hard* dura"le and used a"sor"

    and capa"le of developing good "ond with mortar.i. $tone "allast shall "e hard of "roken stone of granite or similar stone free from dust* d

    and other foreign material. he stone "allast should "e of +& mm s:. mesh and wegraded. $uch that the void do not exceed =+@.

    ii. $and should "e of standard specification cement should fresh porta"le cement of standspecification and shall have the re:uired tensile and compressive strength.

    iii. ement shall "e 7ortland cement of standard specification and shall have the re:uitensile and compressive$trength and fineness.

    iv. 9ater shall clean and free from alkaline and matters and suita"le for drinking purpose.

    Ce!tri!0 a!- Shutteri!0 9entring and shuttering should "e made tim"er or steel plate close and tight to preve

    leakage of mortar.# coal of oil washing should "e applied over shuttering to prevent to adherence o

    concrete.entering and shuttering should "e removed slowly so that no part distur" and damage.entring shuttering should "e removed measured in s:. m and the surface area in conta

    with congregate should "e measured.

    Pr#$#rti#! #1 C.C. 9ement concrete should "e %8%.(8' proportion "y volume for sla"* "eam and lintel

  • 8/18/2019 Building .docx

    9/134

    Slu $ test 9$lump test should "e carried out to control the addition of water and to maintain the re:uire consistenIn this test concrete is compacted in a vessel of shape of the frustum of the cone and pen at "oth the e

    he mould is filled with freshly mixed concrete in four layers each layer is tamped with +( stokes otamping rod. he "ottom layer should "e tamped throughout its depth. #fter the top layer has "een rodthe concrete struck off level with a trowel. he mould is then removed from the concrete "y raising it slowly and carefully in the vertical direction. he slmeasured in recorded in terms of mm of the specimen during the test.# slump of ).( cm to %& cm may "e allowed for "inding work of good developing "ond with mortar the coarse aggregate should "e free from the dust and other foreign material.

    Mi8i!0 9Mixing should "e done "y two methods either "y "and mixing or machine mixing on th

    masonry platform.

    1irstly cement and sand should "e mixed in given proportion on plat from and thenmixed with stone "allast without water at least three time and then after clean water

    gradually added in the mixed.

    La,i!0 9-efore laying the concrete* the shuttering should "e clean free from dust and oth

    foreign material. he concrete should "e deposited in is fine position care should "e tak

    at that time "etween mixing and placing of concrete should not exceeded +& minutes.oncrete should "e compacted "efore the initial setting$tage.Over vi"ration should "e avoided "ecause its separate the coarse aggregate from th

    concrete and segregation take place.oncrete should "e laid continuously if laying is suspended for rest of the following d

    the end shall "e sloped at angle of '& end.

    Curi!0 9#fter a"out + hrs laying when concrete has "egun to harden it shall "e kept damp "y covering net "ag

    sand += hr and then cured "y flooding with water making mud walls ).( cm high.

    5i!ishi!0 9

    he exposed surface should "e plastered with %8' cement sand mortar a"out >mm thick layer and plshould "e applied immediately after the removal of shuttering.

    Measure e!t 9

  • 8/18/2019 Building .docx

    10/134

    Measurement should "e taken in cum for the finished work as deduction should "e made for volumsteel. reinforcement should "e measured in a separate item in :uintel.

    B6 Mil- steel 1ra es 1#r -##rs a!- "i!-#"s #1 '( 8 '( 8 ( a!0le secti#! 9

    steel should "e mild steel of the "est :uality of standard specification and cross section

    area of '( mm x '( mm x ( mm.steel work should "e neat and exact to dimension all joint should "e neat and strong.

    Wel-i!0 9

    -efore welding the joint should "e prepared well and throughly cleaned.2dges of thicker section should "e "eveled.

    he work place should "e firmly held prefre"le in suita"le fixture.

    5ra e 9

    1rame should "e properly framed and joined "y welded joint all the frame work shou "e placed* neatly and truly finished to the exact dimension.

    he frame should "e painted "y two coat.

    Measure e!t 9

    It should "e measured in :uintel and may "e "y mem"ers. he cost of frame shall "e

    taken in per :uintel.

  • 8/18/2019 Building .docx

    11/134

    1or vertical loads there are different methods of analysis. # "uilding frame is three dimensional vert

    frames all two mutually perpendicular hori

  • 8/18/2019 Building .docx

    12/134

    In the ultimate load method* the working loads are increased "y suita"le factor to o"tain utlimate lohese actors are called load factors. In this strain distri"ution across the depth is l linear;right up

    failure* and the tensile strength of concrete is ignored in section su"jected to "ending.9hile in limit state method the o"jective of design is to achieve an accepta"le pro"a"ility that a structu

    will not "ecome unservicea"le in its life time for the use for which it had "een lo intended* i.e. It wilreach a limit state. In the limit state design method* these parameters are determined l "asedo"servation taken over a period of time. hese parameters will thus "e influenced "y chance or rand

    effect* not just at a single instant "ut throughout the entire period of time or the se:uence of time th "eing considered. structural mem"ers designed in the "asis of permissi"le stresses using a factor of saregardless of different working conditions and load com"ination has different safety margins. here

    two main limit states 8

    '6 Li it state #1 c#lla$se 8 o satisfy this limit state* the strength must "e ade:uate to carry the load#ccounts must "e taken of sta"ility.

    *6 Li it state #1 serviceabilit, 8 o satisfy this limit state deflection* racking and vi"ration must n "e excessive.

    S$eci1icati#! a!- -esi0! criteri#! l#a-s

    Dea- L#a- :

    he dead load of the "uilding shall comprise the weight of all walls* partitions* floors and roofs inclweight of all other permanent constructions.

    Live L#a- :

    %. /ive load on all floors '.( 3Am++. /ive load on roofs %.( 3Am+

  • 8/18/2019 Building .docx

    13/134

    Seis ic L#a- :

    In the case of structures* designed for hori

  • 8/18/2019 Building .docx

    14/134

    5OR EART2 4AKE RES ST RCC DES GN LOAD COM3 NAT ONS

    /O#D OM-I3# IO3 %&% %.(CD/ //E

    /O#D OM-I3# IO3 %&+ %.+C2KL D/ &.(//E

    /O#D OM-I3# IO3 %&' %.+C;2KL D/ &.(//E

    /O#D OM-I3# IO3 %&= %.+C2KL D/ &.(//E

    /O#D OM-I3# IO3 %&( %.+C;2KL D/ &.(//E

    /O#D OM-I3# IO3 %&> %.( C2KL D/E

    /O#D OM-I3# IO3 %&) %.(C;2KL D/E

    /O#D OM-I3# IO3 %& l.(C2KN D/E

    /O#D OM-I3# IO3 %& %.(C;2KN D/E

    /O#D OM-I3# IO3 %%& %C%.(2KL &. D/E

    /O#D OM-I3# IO3 %%% %C;%.(2KL O. D/E

    /O#D OM-I3# IO3 %%+ %C%.(2KN &. D/E

    /O#D OM-I3# IO3 %%' % C;%.(2KN &. D/E

    5OR 5OOT DES GN LOAD COM3 NAT ONS

    /O#D OM- +&% D/ //

  • 8/18/2019 Building .docx

    15/134

    /O#D OM- +&+ 2KL D/ //

    /O#D OM- +&' ;2KL D/ //

    /O#D OM- +&= 2KN D/ ///O#D OM- +&( ;2KN D/ //

    /O#D OM- +&> 2KL D/

    /O#D OM- +&) ;2KL D/

    /O#D OM- +& 2KN D/

    /O#D OM- +& 2KN D/

    SAL ENT 5EAT4RES:

    1ollowing are the some salient features of the$tructure8

    TFPE O5 STR4CT4RE 8 MF/ 5$ O025 0I4ID BOI3 10#M2

    $ 0F F02

    TFPE O5 34 LD NG 8 C 4 +E HO$7I #/ -FI/IDI34

    EART2 4AKE ONE 8 III0D

    LOCAT ON 8 /F 3O9

    LAFO4T 8 #$ $HO93 I3 D0#9I34

    NO. O5 STOREF 8 'C4 +E

    5LOOR TO 5LOOR 2E G2T: '.( M2 20

    EHTRENAL WALL T2 CKNESS: +(& MM .

    NTERNAL WALL T2 CKNESS 8 %(&MMDEPT2 O5 SLA3 8 %(&MM

    S E O5 3EAM ;EHTERNAL6: C+(&P=&&E mm

    S E O5 3EAM ; NTERNAL6: C+(&P=(&E mm

    SECT ON O5 COL4MN: +(&P=(& MM

  • 8/18/2019 Building .docx

    16/134

    LOAD NG DATA:

    L IE LOAD 8 QI$ )(;II;% )R

    • ROOMS 8 '.( 3AM+

    DEAD LOAD

    • SEL5 WE G2T O5 SLA3 .

    SEL5 WE G2T O5 3EAM

    • TERRACE WATER PROO5 NG: %.( 3AM+ .

    • 5LOOR 5 N S2 NG LOAD: &.( 3AM+

    •MATER AL 8 M+& #3D 1e =%(

    ANALFS S / DES GN P2 LOSOP2F

    • SE SM C ANALFS S 3F 8 2KFI6#/23 $ # I M2 HOD .

    • MOMENT ANALFS S 3F 8 $F-$ I F 2 10#M2 M2 HOD

    • LATERAL LOAD ANALFS S 3F: 7O0 #/ M2 HOD• CONCRETE DES GN 3F 8 /IMI $ # 2 D2$I43 M2 HOD

    • D4CT L TF DES GN AS PER I$8%' +&;% '

  • 8/18/2019 Building .docx

    17/134

    Desi0! #1 Slab

    Design of floor sla"8

    entre line plan of "uilding and identification of same type of sla"8

    $l

    $l

    S

    ;

    $+ $+

    *

    S

    $' $'

    $+ $+

    $l $l

    #ssume sla" depth %(&mm

    /Iveloads on all floors '.( k3Am+Design "y /imit$tate methKdFsing M;+& grade concrete. #nd 1e;= I (. High yield strength deformed CH5$DE "ar all floor sla" and roof sla"* dia mmφ

    Desi0! 1#r slab 5Sl:

  • 8/18/2019 Building .docx

    18/134

    1$;I

    $ix%.=' %&).(

    %%&mm.

    otal depth CDE effective depth clear cover%%& +& %'&mm

    #dopt total depthCDE %'&mm

    #ssume adopt total depth CDE %(&mm

    2ffective depth %(&;+& %'&mm2ffective span clear span depth of sla"

  • 8/18/2019 Building .docx

    19/134

    > C.%(;.&+&E >. %'m2ffectivespan C>.%'x=.I'Em/y A/x >.%'A=.%' %.= T+ Chence two way sla"E

    L#a- C#!si-erati#! :

    onsidering %m width of sla". %EDead load density of concrete x d x "

    +( x .%( x l '.)( k3Am$uperimposed load '.( k3Am1Ioor finish I k3Am

    otal /oad dead load super imposed load '.)( '.( % .+( 3lm

    +E factored load %.( x .+( %+.')( 3lm1rom I$;=(>;+&&& Cta"le ;+>E2nd condition 88; two adjacent edges of sla" are discontinuous.

    M# e!t c#e11icie!t:

    1or ;ve "ending moment at continuous edge Ux Uy &.&)( &.&=)

    1or ve "ending moment at mid span &.&(> &.&'( ..

    M# e!t calcu ati#!:

    1or shorter span;ve "ending moment at continuous edge

    Mx C;veE Ux 9 /L+

    &.&)( x %+.')( x =.%'V+ %(. ' 3;m.

  • 8/18/2019 Building .docx

    20/134

    ve "ending moment at mid spanMxC E Ux9/x+

    &.&(> x %+.')( x =.%'V+%%. + 3;m

    5#r l#!0er s$a!:

    ;ve "ending moment at continuous edgeMy C;veE ay 9 /L+

    &.&(> x %+.') x=.%'V+. + 3;m

    ve "ending moment at mid span

    My C veE ay 9 /L+&.&'( x %+.')( x =.%'+

    ).' 3;m.hecking the depth of sla" for max -.M.

    M &.%' Wck - d+%(. ' x %&V> +&x %&&&x d+

    d √ C%(. ' x %&V> EA&.%' x +&x %&&&

    )(.)'mm T %'&mmHence adopt effective length C dE %'&mm Overall depth CDE l(&mm

    Calculati#! #1 rei!1#rce e!t:

    CIE8 #rea of steel along the shorter span C#$tE in cont. edge# $tC;veE &.( WckAWy Q %;X%;=.> MuAWck " d+R x " x d

    &.( x +&A =%( Q%; X%; =.> x %(. ' x %&V>A+& x %&&& x %'&V+R x %&&& x % '(). ) mm+7rovide mm and shorter span at mid span$pacing CxE C(&.+& x %&&& EA '(). )

    %=&.+) mm7rovide mm dia "ar Y %'&mm cAc

  • 8/18/2019 Building .docx

    21/134

    C+E8 #rea of steel along the shorter spanC#$tE in middle strip# $tC;veE &.( x Wck A Wy Q % ; X =.>x mu AWck x " x d+R L " x d

    &.( x +&A=%( x Q % ;X%;=.> x %%. + x %&V>A+& x %&&& x %'&V+R x %&&& +>+. +>' mm+

    7rovide mm dia along shorter span at cont. edge.$pacing CxE C (&.+& x %&&&EA+>' % &. ) mm

    7rovide mm dia Y % & mm clc

    Rei!1#rce e!t al#!0 l#!0er s$a! i! i--le stri$ :

    #rea of steel along the longer span C#$tE in cont. edge# $tC;veE C&.(x+&EA=%(Q %; X%;C=.> x . + x %&V>EA+&x %&&& x %'&V+R

    +% .%% mm+ ++& mm

    7rovide mm along longer span at conI. edge $pacing C(&.+ x %&&&EA++& 7rovide mm dia Y ++& cAc#rea of$teel along along the longer span# $t C veE &.( x +& EA=%( Q % ; ..B=.> x ).' x %&AS > %+& x %&&& x %'&Z+ R x

    %>%.> %>+mm+7rovided mm dia longer span at mid span$pacing CxE C(&.+ x %&&&E A%>+ '& . )> '%& mm7rovide mmdia "ar +(& mm cAc

    Chec7 1#r -e1lecti#! :

    /Ad provided =%'& A%(& +).('@ of reinforcement %&&& x #$t A " x d

    % &&& x '(). ) A C%&&& x %'&E &.+)@

    1s &.( x Wy x #rea of steel re:uired A area of steel provided&.( x =%( x '(). ) A'>>.& +'(.+ 3Amm+

    Modification factor CmE %.( Cfrom graph page no. ' I$ ;=(>;+&&&E

  • 8/18/2019 Building .docx

    22/134

    /Ad Max +> x %.( ' [ /Ad provided Co.k.E

    Chec7 1#r shear:

    Max. $hear force at support CvE wulxA+%+.')(P=.%'A+ +(.(( 3 3ominal $hear$tress c vA -Pd

    +(.((P%&V'A%&&&P%'& &.% > 3Amm+@ of$teel %&& #$tA - P d

    %&&P'().&)A%&&&P %'&&.+)(@

    Hence $hear strength CtcE &.') 3Amm+ Cas per I$ =(>; +&&&* a"le % E

    $hear strength for sla" CtGcE P tc %.'P&.')

    &.= 3Amm+Hence* tGc [ tc. Hence O .

    Desi0! 1#r slab 5S*

    $la" $i.& P =.& mDepth of sla"-asic span depth ratio for continuous sla" +>#ssuming &.'@ steel * Modification factor %.(

    =m

  • 8/18/2019 Building .docx

    23/134

    > mherefore* effective depth re:uired 2nd $panA -asic span ratioP M.1.

    =&&&A+>.% P %.=' %&).( mm

    #ssume effective depth re:uired %'& mmotal depth CDE effective depth clear cover

    D '& +& %(& mm#ctual effective depth Cd E %'& mm

    2ffective span is C>.%'& P=. %'&Em /y A/x >.%'A=.%'

    %.= T + CHence* two way sla".EL#a- C#!si-erati#!

    onsidering % m width of sla"- %&&&mm % mDead /oad Density of concrete PDP-

    +(P&.%(&P % '.)( 3Am$uperimposed load C/./.E '.( 3Am CI$; )(E1loor finish % 3Am

    otal load D/ $I/ 11/ '.)( '.( % .+( 3Am

    1actor /oad 9u %.(P .+(%+.')( 3Am

    2nd ondition8; One short edge of sla" is discontinuous \ 1rom I$ =(>;+&&& C a"le +>E]Moment oefficient Ux Uy1or ;ve "ending moment at continuous edge &.&() &.&==1or ve "ending moment at continuous edge &.&') &.&+

  • 8/18/2019 Building .docx

    24/134

    M# e!t Calculati#!

    5#r Sh#rt s$a!

    3egative -.M. at continuous edgeMx C;E Ux/x+

    &.&()P%+.')(P=.%'V+ %+.&' 3;m7ositive -M at mid spanMx C E Uxw/ x+

    &.&==P%+.')(P =.%'+ .+ ) 3;m5#r L#!0er S$a!

    3egative -.M. at continuous edge

    Mx C;E Uxw/ x+ &.&')P%+.')(P=.%'V+ ). % 3;m

    7ositive -M at mid spanMxC E Uxw/ x+

    &.&+ P %+.')(P =.%'V+ (.+)> 3;mhecking the depth of sla" maximum -.M.

    M &.%' P Wck P-Pd+

    d √Cl+.&'Pl&V> A .%' P+&P%&&&E.d >>.&+ T %'&mmHence adopt effective depth d %'& mmoverall depth CDE %(&mmCalculati#! #1 rei!1#rce e!t:

    #rea of steel along the shorter span C#$tE in middle strip#st &.(PWckAWy P \l; XCl;=.>P Mu A Wck -Pd+E] P-Pd

    C.(P+&A=%(E P \I; XC%;=.>P .+ )P %&V>A+&P %&&&P %'&+E] P % &&&P %'

    +&=.>=> mm+ provided mm dia along shorter span at mid spanspacing CxE (&.+&P % &&&A+&=.>=> +=(.'&mm provided mm dia Y+=&mm cAcarea of steel along the shorter span #$t in continuous edge.

  • 8/18/2019 Building .docx

    25/134

    # $t &.( WckAWyP\l; XCl;=.>P MuAWck P-Pd+E]P-Pd &.( P+&A=%( \l; XC %;=.>P %+.&' P %&V>A+&P % &&&P %'&+E]P%&&& P%'&

    # $t C;veE +>). mm+

    provided mm dia along short span at continous edgespacing CxE (&.+&P %&&&A+>). % ).' provided mm dia Y % & mm cAcRei!1#rce e!t al#!0 l#!0er s$a! i! i--le stri$:9

    area of steel along longer span C#$tE in middle strip# $tC E &.(PWckA Wy P-Pd\l; XCl;=.>PMuA WckP-Pd+E]

    &.(P+&A=%( \%; XC%;C=.>P(.+)>P %&V>A+&P %&&&P %'&+E] P % &&&P %'& %%=.(> mm+

    provided mmφ along longer span at mid spanspacing CxE (&.+&P %&&&A%%=.(> =' .+ mm provided mmdiaY'&&mm cAcarea of steel along the longer span C#$tE in continuous edge# $t C;E &.(PWckAWyP-Pd\ %; XCl;=.>PMuAWckP-Pd+E]

    (P+&A=%(P %&&&P %'& \%; XC %;=.>P). % P %&V>A+&P %&&&P %'&+E]%)%.%( mm+

    provided mmdia along longer span at continuous edgespacing CxE (&.+&P %&&&A%)%.%( + '.'& provided mmdiaY + &mm cAc

    Chec7 1#r -e1lecti#! :9

    C/ AdE provided =%'&A%(& +).('@ of reinforcement %&&P#st A -Pd

    %&&P+>). A%&&&P %'& &.+&(@1s &.( P WyP area of$teel re:uired Aarea of$teel provided

    ( P=%(P+>). A+ %.& ++ .(= 3Amm+ M.1 %.( Cfrom graphEC/AdE max +> P%.( ' [ C/AdE provided CO EChec7 1#r shear :9

  • 8/18/2019 Building .docx

    26/134

    maximum shear force at support C6E 9u /xA+%+.')(P=.%'A+ +(.((k3

    nominal shear$tress v 6A-Pd+(.((P%&P'A%&&&P%'& &.% > ^ &.+& 3Amm+

    @ of$teel %&&P#$t A-Pd +>). P %&&A%&&&P %'& &.+&@

    Hence shear$trength c &.'+3Amm+ Cas per I$ =(>;+&&& ta"le ;% Eshear$trength for span cZ P c

    %.'P&.'+ &.=%> 3Amm+

    G cG [ v Chence O E

    Desi0! 1#r slab 5S9 '

    1$;'

    $la" six' mG-asic span depth ratio for continous sla" +>#ssume &.'@$teelModification factor %.(&

    herefore effective depth re:uired 2nd span A "asic span depth ratio P M.1 (&&&A+>P%.(& %+ .')^%'& mm

    otal depth CDE effective depth clear cover %'& +& %(&mm#dopt total depth CDE %(&mm#ctual effective depth CdE %(&;+& %'&mm2ffective span C>.%'& x (.%'&Em

  • 8/18/2019 Building .docx

    27/134

    /yA/x >.%'&A(.%'& %.+& T + CHence two way sla"EL#a- c#!si-erati#!:

    onsidering % m width of sla"- %mDead load +(P .%(&P I Cdensity of oncrete x D x-E

    '.)( 3Am$uper imposed load CI./E '.( 3AmCas per %(;=(>;+&&&E1loor finish % 3Am

    otal load dead load super imposed load floor finish '.)( '.( I .+( k3Am

    1actored load %.(P .+( %+.')( 3Am

    1rom %$;=(>;+&&& Cta"le ;p+>E2nd condition8; one shorter edge discontinuousMoment coefficient8 Ux Uy1or C;veE -.M at continuous edge &.&== &.&')&1or C veE -.M at mid span &.&'> &.&+

    M# e!t calculati#!:

    ;ve -M at continuous edgeMxC;E Ux w lx+

    &.&= P%+.')(P(.%'+ %(.>' 3;Mve -M at mid span

    Mx C E Ux 9 /x+ &.&'>P %+.')(P(.%'+ %%.)+ 3;m

    5#r l#!0er s$a!:

    ;ve -M at continuous edgeMyC;E Uy 9 /x+

    &.&')P %+.')(P(.%' %+.&= 3;mve -.M at mid span

  • 8/18/2019 Building .docx

    28/134

    MyC E Uy 9 /x+

    &.&+ P%+.')(P(.%'% .% 3;mhecking the depth of the sla" for max -.M

    M &.%' P Wck - d+

    D XCl(.>'P %&V>A &.%' P+&P %&&&ED )(.+(mm T %'&mm CokED %(&mmChec7 #1 RE N5ORCEMENT:9

    #rea of the$teel along the shorter span C#$tE in middle$trip# $t C E &.(WckAWy \%;CX%;C =.>MuAWckP-Pd+EE] P-Pd

    &.(P+&A=%(P \%;CXC%;C =.>P %%.)+P %&V>A+&P %&&&P %'&+E] P %&&&P %'&

    +>&.>) mm+7rovided mm dia along shorter span at mid span$pacing CxE (&.+&P % &&&A+>&.>)

    % +.( mm7rovided mm dia Y & mm cAc#rea of$teel along the short span C#$tE in continuous edge# $tC;E &.( PWckAWy P-Pd\%;\X%;C=.>P%(.>'P%&V>A+&P%&&&P%'&+]E

    '('.&> mm+

    7rovided mm dia along shorter span at continuous edge$pacing CxE %&&&P(&.+&A'('.&>

    %=+.% mm7rovided mm dia Y%=& mm cAcRei!1#rce e!t al#!0 l#!0er s$a! i! i--le stri$s:9

    #rea of$teel along the longer span C#$tE in middle$trip# $t C E &.( WckAWy P-Pd \l;CXC%;=.>PMu AWck P-Pd+E]

    &.(P+&P%&&&P %'&A=%( \%; XC%;=.>P .%+P %&V>A +&P %&&&P %'&+]] +&&. = mm+

    7rovided mmφ along or span at mid span

    $pacing CxE (&.+&P %&&&A+&&. = += . (mm ^ +(&mm

  • 8/18/2019 Building .docx

    29/134

    7rovided mm dia Y +=&mm cAc#rea of$teel along the longer span C#$t E in continuous edge# $tC;veE &.(PWckAWy P-Pd \%;XC%; =.>MuAWck -Pd+E]

    &.(P+&P%&&&P %'&A=%(C%;XC%;=.>P %+.&=P %&V>A+&P %&&&P %'&+E]+> .%+ mm+

    7rovided mm dia along longer span at continuous edge$pacing CxE (&.+&P I &&&A+> .%+

    % ).+' mm7rovided mm dia Y % &mm cAcChec7 1#r -e1lecti#!:9

    ClAdE provided (%'&A%'& ' .=

    @ of reinforcement %&& #$t A-Pd%&&P'('.&>A%&&&P %'& &.&+) @

    1s &.( Wy P area of$teel re:uired Aarea of$teel provided &.( P=%(P'('.&>A'> .%% +'&. 3Amm+

    M.1 %.> Cfrom graphEClAdE max +>P%.> =%.> [ ClAdE provided CO EChec7 1#r shear:

    Max shear force at support C ;vE 9u/xA+%+.')(P(.%'&A+ '%.%)= 3

    3ominal shear$tress v 6 A- Pd '%.%)=P%&V'A%&&&P%'& &.+= 3Amm+

    @ of$teel %&& #$tA- Pd%&&P+> .%'A%&&&P %'& &.'(@

    Hence shear$trength CtcE &.=+ 3Amm+ Cas per I$;=(>;+&&& ta"le ;% E

    $hear$trength for sla" C cGE P c %.'P&.=+ &.(=> 3Amm+cG [ c Chence safeE

  • 8/18/2019 Building .docx

    30/134

    ROO5 SLA3

    0$l 0$l

    0s+ 0$+

    0$' 0$'

    0$+ 0$+

    0$l 0$l

  • 8/18/2019 Building .docx

    31/134

    Desi0! #1 slabs RS %:9

    entre of line plan of "uilding , identification of same type of sla"/ive load on the roof %.( knAm+

    Design "y limit $tate methodFsing M;+& grade concrete , 1e;=%( high yield$trength deformed CH5$DE "ar for all floor sla"s and roofs sla"* using mm dia "ars$i x %.='E %%& mm#ssume depth %'&mm

    0$ %

  • 8/18/2019 Building .docx

    32/134

    #ssume effective depth CDE 2ffective depth clear cover %'& +& %(& mm#dopt total depth CdE %(& mm#ctual effective depth CdE %'& mm/y A /x >.%'&% =.%'& %.= T + Chence two way sla"EL#a- c#!si-erati#! :

    onsidering I m width of the sla"- %&&&mm % mDead load Density of concrete x D x -+(x&.l(&x I '.)( knAm+

    $uperimposed load C/./.E %.( knAm CI$ ; )(E

    erracing water proofing C . 9. 7E. %.( nA motal load Dead load $uperimposed load .9.7. 1.1'.)( %.( %.( &.( ).+( nAm

    1actor load %.( x ).+( %&. )( knAm

    2nd condition 8 wo adjacent edges of sla" are discontinuous\ 1rom I$ ;=(> ;+&&& C a"le Moment coefficient8

    ; Ux Uy

    for;ve -M at continuous edge &.&)( &.&=)for ve -M at mid span &.&(> &.&'(Moment calculation 8

  • 8/18/2019 Building .docx

    33/134

    5#r sh#rter s$a! 8;ve -.M. at continuous edgeMxC;E Ux. 9 .lx+

    &.&)( x %&. )( x =.%'+

    %'. % kn;m;ve -.M. at mid spanMx C E ax .9 . Ix_G+&*&'( x &. )( x =.%'%S+

    >.(& 3;m &.&(& x %&. )( x =.%'_G+ %&.' kn;m

    5#r l#!0er s$a!:9;ve -.M at continuous edge8MyC;E aywlx+

    &.&=) x %&. )( x =.%'+ .)+ 3;mve -M at mid span8

    My C E ay Pw Plx+

    &.&'( x &. )( x =.%'A+ >.(& 3;m

    Chec7i!0 the -e$th #1 slab 1#r Ma8 3M:

    M &.%' Wck P - P d+

    d XCA'. %xl&>EA&.%' x+&x %&&& )% T %'& O. [hence adopt effective depth CdE %'& mmOverall deptn D %(& mm .Calculati#! #1 rei!1#rce e!t: 9

    #rea of $teel along the shorter span C#$tE C &.( Wck x - x d EAWyQ %;XC% ` =8> MuEAWck -d+

  • 8/18/2019 Building .docx

    34/134

    C&.( x +& x %&&& x %'& EA=%( Q % ; X%;C=.> x %&.' x %&>EA +&x %&&& L %'&+

    +'& mm+

    7rovide mm dia "ar along shorter span C#$tE in continuous edge# $t C;veE &.(σck x - x d EAWyQ %; X%C% ; =.> MuEAσck - d+

    C&.(P+&P %&&&P %'&EA=%( Q%;X%;C=.>x %'. % x %&>A%+&P%&&P%'&+E'%+.&(mm+

    7rovided mm dia along shorter span at cont. edge$pacing CxE (&.+& x %&&&A'%+.&( %>&. ) mm7rovided mm dia %(& mm A

    Rei!1#rce e!t al#!0 l#!0er s$a! i! i--le Stri$ :9

    #rea of $teel along the longer span C#$tE &.(σck x - x d EA4yQ %; X%B C% ; =.> MuEAσck- d +R

    C&.( x +& x %&&& x %'&EA=%( Q % ;X% ; C=.> x >.(& x %&>EA+& x %&&& x %'&+

    %=%.)> mm+

    7rovided mm dia along longer at mid span$pacing CxE (&.+& x %&&&A%=%.)> '(=.%% mm7rovide mmdia Y '&& cAc#rea of $teel along the longer span C#$tE at cont. edge

    # $tC;veE C&.( x +& x %&&& x %'&EA=%( Q %; X% ;C =.> x .)+ x %&>EA +&x %&+ % %.)=mm+

    7rovide mm dia along longer span at cont. edge$pacing CxE (&.+& x %&&&A% %.)= +>%.

    7rovide mm dia Y +(& cAc

    Chec7 1#r -e1lecti#! :9

  • 8/18/2019 Building .docx

    35/134

    /Ad provided =%'&A %(& +).('@ of reinforcement %&& x #$tA- x d%&& x '%+.&( AC %&&& x %'&E &.+= @f s ; &.( xWy x #rea of $teel re:uiredA area of $teel provided

    &.( x =%( x '%+.&(% '=(.%+

    1s +%).> 3 A mm+

    Modification factor %.) Cfrom graph* I$ ;=(> ;+&&&EC/AdEmax +> x %.) ==.+[ C/AdE provided CO. .EHence shear$trength c &.'> nAmm+C as per I$ ;=(> ;+&&&* ta"le % EChec7 1#r shear :9

    Max shear force at support CvE 9u x IxA+%&. )( x =.%'A+ ++.=( kn 3ominal shear $tress v vA - x d++.=( x %&' AC%&&& x %'&E &.% 3Amm+

    @ of reinforcement xc%.'& x &.'> &.=> * Gc [ chence safe_

    Desai0! 1#r slab Rs*

  • 8/18/2019 Building .docx

    36/134

    0 $; +

    $la" sixe > x = +=Depth of the sla"8-asic $pan Depth ratio for continuous sla" +>#ssuming &.'&@$teel* M.f %.='

    herefore effective depth re:uired 2nd spanA-asic $pan depth ratio x M.1=&&&AC+>x%.='E %&).( mm

    #ssume effective depth re:uiredD %'&mm

    otal Depth CDE 2ffective depth lear span%%& +& %(&mm#dopt tatal Depth C&E %(&mm#ctual 2ffective depth CdE %'&mm2ffective span is C>.%'& x =. %'&Em C/yA/xE C>.%'&A'.%'&E %.=

    %.(T+ CHence two way sla"E

    L#a- C#!si-erati#! :9

  • 8/18/2019 Building .docx

    37/134

    onsidering I m width of sla"- %&&&mm %mDead load Density of concrete x - x D+( x&.%(& x %

    '.)( k3Am$uperimposed load CI/E %.( k3Am C#s per I$ )(E

    .w.p %.( k3Amotal load Dead load $uper imposed /oad .w.p 1.1

    '.)( %.( %.( &.( ).+( k3Am1actor /oad %.( x ).+( %&. )( k3Am1rom I$ =(>;+&&& C a"le +>E

    2nd ondition one short edge of sla" is discontinuous

    Momentum oefficient Ux Uy1or `ve -M at continuousedge

    &.&() &.&')

    1or ve -M at mid span &.&== &.&+

    M# e!t calculati#!:

    5#r Sh#rte! S$a!:;ve M at continues edgeMxC;E Ux 9/ L+

    &.&() x %&. )( x =.%'+ %&.() k3mtve -M at mid spanMCxE Uxw/x +

    &.&== x %&. )( L =.%'+ &%> k3m

    5#r L#!0er S$a! :

  • 8/18/2019 Building .docx

    38/134

    ;ve "ending moment at continuous edgeMy C;yeE Uy w / x+

    &.&') x %&. )( x =.%'+ >. > kn;mve -.M. at mid span

    My C E Uy9/ L+

    &.&+ x %&. )( x =.%'+ (.% kn;mhecking the depth of sla" for max -.M.

    M &.%' Lσckx - L d+

    D XC%&.() x %&>EA&.%' x +& x %&&& >%. >+d >+ T %'& CO. .E safecalculation for reinforcement8

    shorter span8#rea of $teel along the shorter span C#$tE in middle $trip# $ &.( σck x - x d EAσyQ %;X%\% ; =.> MuEAWck - d+

    C&.( x +&x %&&& x %'&EA=%( Q% ;X%; C=.> x MuEA +& x %&&& L %'&+

    %) .&( mm+

    7rovide mm dia along shorter span at mid span$pacing CxE (&.+& x %&&&A %) .&( + &.'( mm

    7rovided mm dia Y +)( cl c#rea of $teel along the shorter span C#$tE &.(σck x - x d EAσyQ %;X% \l ; =.> MuEAσck -d +

    C&.( x +& x %&&& x %'& EA=%( \ %;X% ; \=.> x %&.() x %&>EA+& x %&&& x %'&+

    +'=.&( mm+

    7rovided mm dia along shorter span at continuous edge$pacing CxE C(&.+& x %&&& EA+'=.&( +%=.= +%( mm7rovided mm dia Y +&& mm cAc

    Rei!1#rce e!t al#!0 l#!0er s$a! i! i--le Stri$ :9# $tC veE &.(σck x - x d EAσyQ %;.X%\I ; =.> MuEAσck - d+

    CO.(x+&x %&&& x %'&EA=%( \%;X%;\=.>x(.l x %&>EA+& x %&&& x %'&+

    %%+.>( mm+

    7rovided mm dia along longer span at mid span$pacmg CxE C(&.+& x %&&&EA%%+.>( ==(.>& mm

  • 8/18/2019 Building .docx

    39/134

    7rovided mm dia Y '&& mm cAc#rea of $teel along the longer span C#$tE in cont. edge# $t C;veE &.(σck x - x d EAσyQ %;X% C% ; =.> MuEAWck - d+

    C&.( x +& x %&&& x %'& EA=%( \ % j % ; C=.> x >. > x %&>EA+& x %&&& L %%= .,.% %(&mm7rovided mm dia along longer span at continuous edge$pacingCxE C(&.+& x %&&&EA%(& ''(.%& mm7rovided mm dia Y '&& mm cAcChec7 1#r -e1lecti#! :9

    /Ad provided =%'&A%(& +).(' mm@ of reinforcement %&& x #$t A C- x dE

    %&& x +'=.&( A%&&& x %'& &.+&@1s &.( xWy x #rea of $teel re:uired A area of $teel provided&.( x =%( x +'=.&(A+=>.%&1s ++ . %3 Amm+

    Modification factor %.> Cfrom graph* I$ ;=(> ;+&&& EC/AdEmax +> x %.> =%.> [ C/AdE provided CO. .EChec7 1#r shear :9

    Max shear force at support CvE 9u x lxA+%&. )( x =.%' %+ ++.=( kn 3ominal shear$tress Gv vA- x d++.=(L %&' AC%&&& x %'&E &.% 3 Amm+

    @ of reinforcement %&& x #$tA C- x dE

  • 8/18/2019 Building .docx

    40/134

    %&& x +'=.&( A %&&& x %'& &.% @Hence shear $trength v &.'% 3Amm+ C#s per I$;=(>; +&&& .ta"le %=E$hear $trength for sla" Cc k vE

    %' x &.'% &.=&' 3Amm+

    bc .[ v * Hence safe C okE

    Desi0! #1 slab RS

    0$;'

    $la" si.& x =.&EmDepth of sla"-asic span depth ratio for continuous sla" +>#ssuming O.' @$teel *Modification factor %.(&

    herefore effective depth re:uired end spanA C"asic span x M1 E(&&&A +> x %.(& %+ .+& %'&mm

    otal Depth CDE 2ffective depth clear cover %'& +& %(& mm#dopt total depth & %(&mm#ctual effective depth d %'&mm2ffective span is C >.%' x =.%' Em/yA/x >.%'A(.%' %.+& T + C Hence wo way sla"EL#a- C#!si-erati#!:

    onsidering % m width of sla"- %&&&mm % mDead load Density of concrete x D x -

  • 8/18/2019 Building .docx

    41/134

    +( x &.%(& x %'.)( k3Am

    $uper Imposed /oad CI/E %.(k3Am Cas per I$ )(Eerrace water proofing .w.p %.(k3Am

    1.1 8O.(k3Amotal load dead /oad . w. p 11

    ( %.( %.( &.().+(k3Am

    factor /oad %.( x ).+(%&. )(k3AmE!- C#!-iti#! : #!e sh#rter e-0e -isc#!ti!u#us ;5r# S ?(>9*&&&;table 9*>66

    Moment oefficient x Uy1or ;ve -M at continuous edge &.&= &.&')1or ve -M at mid span &.&'> &.&+

    M# e!t Calculati#!:9

    1or $horter $pan8;ve -M at continuous edgeMx C.j Ux . 9 . Ix+

    &.&= x %&. )( L (.%'+ %'.)=k3Amve -.M. at mid span

    MxC E Ux.w.lx+

    &.&'> x %&. )( x (.%'+ %&.'k3Am1or longer $pan8.ve -M at continuous edgeMxC;E Ux. 9 .lx +

    &.&') x %&. )( L (.%'+ %&.( k3Amve -.M. at mid span

    MxC E Uxw .lx+

    &.&+ x %&. )( L (.%'+ .&%k3Am

  • 8/18/2019 Building .docx

    42/134

    Chec7 1#r -e$th #1 slab a8 3M:

    M8 &.%' Wck "D+

    D X%&.%>'% x %&>A&.%' x +& x %&&&)> T%'& C$afeE

    Hence adopl effective depth d %'&mmOverall depth D %(&mm

    Calculati#! 5#r Rei!1#rce e!t:

    #rea of $teel along the shorter span C#$tE in middle $trip CspanE# $tC E888; &.( Wck x - x d EAWyQ %;X%C% ; =.> MuEAWck - d +

    CO.(x+&x %&&& x %'& EA=%( \ I;X% ; C=.> x %&.' x %&>EA+& x %&&& x %'&+

    ++). = mm+

    7rovided mm dia along shorter span at mid span$pacingCxE C(&.+& x %&&&EA+ &. > ++&.' mm7rovided mm Y +&& mm cAc#rea of $teel along the shorter span C#$tE in cont. edge# $tC.E &.( Wck x - x d EAayQ %;X%C% ;=.> MuEAWck - d +

    CO.(x+&xI&&&x %'&EA=%( \%;X%;C=.>x %'.'=x %&>EA+& x %&&& x %'&+ '& .&&mm+

    7rovided mmφ along shorter span at cont. edge$pacingCxE C(&.+& x %&&&EA'& .&& %> . +) mm7rovided mmφ Y %>& mm cA c

    0einforcement along longer span in middle $trip8#rca of $teel along the longer span C#$tE in middle $trip#$tC E ; &.(σck x - x d EAayQ %;X% C% ; =.> MuEAWck - d +

    CO.(x+&xI&&&x %'&EA=%( \% X%;C=.>x .&% x %&>EA+& x %&&& x %'&+

    %)(.>>mm+

    7rovided mm dia along longer span at mid span

    $pacingCxE C(&.+& x %&&&EA %)(.>> + (.)> mm+

  • 8/18/2019 Building .docx

    43/134

    7rovided mm dia +)( mm cAc#rea of $teel along the longer span C#$tE in cont. edge 8#$tC;E ; &.(σck x - x d EAWyQ %;X% C%; =.> MuEAWck - d +

    C&.( x +& x %&&& x %'& EA=%( \ %; X % ; C=.> x %&.( x %&>EA+& x %&&& L %'&+

    %'=.+ mm+

    provided mm dia along longer span at cont. edge$pacing CxE C(&.+& x %&&&EA+'=.+ +%=.+> mm7rovided mm Y +&& mm cAcChec7 1#r -e1lecti#! :9

    lAd provided (%'&A%(& '=.+@ of reinforcement %&& x #$t A - x d

    %&& x '& .&& AC %&&& x %'&E &.+ @f s &.( xWy x #rea of $teel re:uired Aarea of $teel provided

    &.( x =%( x '& .&&A'+>.&( ++).') 3Amm+Modification factor %.> Cfrom graph* I$ ;=(> ;+&&& EC/AdEmax +> x %.> =%.> [ C/AdE provided CO. .EHence shear$trength c &.'> nAmm+ as per CI$ ;=(> ;+&&&* ta"le % EChec7 1#r shear :9

    Max shear force at support CvE 9 u x %xA+%&. )( x (.%'A+

    +). km

    3ominal shear $tress v vA - x d +). x %&' AC=&&& x %'&E &.+%3 Amm+

    @ of reinforcement %&& x #$t A C- x dE %&& x '> .=(A%&&& x %'& &.+ @

    Hence shear $trength c &.') 3Amm+ C#s per I$;=(>; +&&& .ta"le % E$hear $trength for sla" Cc k vE

    %.' x &.') &.= % 3Amm+

    Gc[ hence safe C okE

  • 8/18/2019 Building .docx

    44/134

    5#r 1l##r slab ;t"# "a, slab6

    ype of Ux Uy Mx UxM Ux 0einforcement 0einforcementymoment . 9 detail along detail along long

    9lx+ Ix+ short span span

    ;ve &.&)( &.&=) %(. ' . + mmcpY%'& mmcpY%'&mmcAc mmcAc

    ve &.&(> &.&'( %%. ( ).' mmcpY% & mmcpY+(&

    mmcAc mmclc

    ;ve &.&() &.&') %+.&' ). % mmcpY % & mmcpY+ &mmcAc mmcAc

    ve &.&== &.&+ .+ ) (.+)> mmcpY+=& mmcpY'&&

    mmcAc mmcAc

    ;ve &.&= &.&') %(.>' %+.&= mmdiaY%=&mmdiaY%&

    %.(

    mmcAcmmcAc

    ve &.&'> &.&+ %%.)+ .%% mmdiaY% &mmdiaY+=&

    mmcAcmmcAc

    5#r ROO5 slab ; t"# "a, slab6

    lyp

    eof Ux Uy Mx Ux My Ux 0einforcement 0einforcement

    ;x moment 9 detail along detail along long

  • 8/18/2019 Building .docx

    45/134

    9lx+ Ix+ short span span

    ;ve &.&)( &.&=) %'. % .)+ mmdiaY%(&mmdiaY+(&

    .( mmcAc mmcAc

    ve &.&(> &.&'( %&.' >.(& mmdiaY+% OmmmdiaY'&&

    m cAc mmcAc

    ;ve &.&() &.&') >. > ). % mmdiaY+&&mmmdiaY'&&

    .( mcAc mmcAc

    ve &.&== &.&+ .%> (.% & mmdiaY+)(mmdiaY'&&

    mmcAc mmcAc

    ;ve &.&= &.&') %'.)= %&.( mmdiaY%>&mmdiaY+&&

    ( mmcAc mmcAc

    ve &.&'> &.&+ %&.' .&% mmdiaY+&& mmdiaY+)(

    mmcAc mmcAc

  • 8/18/2019 Building .docx

    46/134

    L#a- A!al,sis

    ype of $tructure Multi;$torey

    %. None III+. 3um"er of $tories hree C4 +E %. 1loor to floor height '.(m=. 2xternal walls +(& mm including pla$ter(. Internal walls %(& mm>. $i

  • 8/18/2019 Building .docx

    47/134

    O.& PhACdE C&.& P%&(EAC+%E&.+% sec

    $aAg +.(#h C&.%>A+EPC%.(A(EP +.(

    &.&>m

    A!al,sis #1 sub91ra e ;'9?6

    D/ of roof level89eight of sla" +(D +(P&.%(

    '.)( 3Am9eight of finish 11 91

    &.( %.( + 3Amotal 9eight + '.)( S (.)( 3Amotal weight on the "eam C->Eri"utary floor area on "eam C->E \O(PC> % EP+.(EPC&.(PC > +EP+E %>.)( m

    0oofweight on "eam C->E (.)(P %>.%( >.'%+( 39eight on "eam C->E per metre& >.'%+(A>

    %>.&( 3Am$elf weight of "eam +(P &.+(PC&.=(;&.%%(E %. )( 3Am

    otal weight on "eam C->E%>.&( %. )(

    %). +( 3AmD/ at floor level8

    9eight of sla" +(D +(P&.%( '.)( 3Am9eight of finishes C11E % 3Am

    otal weight '.)( % =.)( 3Amotal weight on "eam C->E

  • 8/18/2019 Building .docx

    48/134

    C&.(PC> % EP+.(E > +EP+E%>.)( m

    $la" weight in "eam C->E%>.)(P =.)( ) .(>+( 39eight on "eam C->E per metre) .(>+(A>

    %'.+> 3Am$elf weight on "eam +(P&.+(PC&.=(;&.%(E %. )( 3Am9eight of walls +&P&.%(PC'.(;&.%(E

    .%( 3Am#ssume inner wall %(& mm thick

    otal weight on "eam C->E%'.+> %. )( .%( +=.+ ( 3Am

  • 8/18/2019 Building .docx

    49/134

    Dea- l#a- #! 1ra e 3>

    live ;i $#se-6 l#a- a!al,sis:

    /iveload at roof level89t of live load %.( 3Am

    otal weight on "eam C->EC&.(PC> I EP+.(E C&.(PC > +EP+E %>.)( motsl weight on "eam C->E %(P%>.)( +(.%+( 3otal weight on "eam C->E per each

    +'.%+(A> =.% )( 3Am

  • 8/18/2019 Building .docx

    50/134

    Live l#a- at 1l##r level:

    9eight of live load '.( 3Am9eight on "eamC">E

    wt of live loadP #reari"utary floor area in "eam C->E&A(PC> %EP+.(E CO.(PC > +EP+E %>.)( motal weight on "eam C->E '.(P%>.)(( .>+( 3Amotal wt on "eam C->E per each "eam ( .>+(A>

    .))% 3Am

    EarthJua7e l#a- a!al,sis:

    Determination of total "ase shear8Dead load8

  • 8/18/2019 Building .docx

    51/134

    /x = = ( = = +% m/y > > %+maE9t of floor C+%P%+PC'.)( %EE %% ) 3 "E9t of roof C9s 91 11E +%P%+PC'.)( %.( &.(E %= 3cE9t of peripherals "eam C raverseE Q+P\>; &.(P&.+(&;&.(P&.+(&EP%.(>+(RP+ '(.

    3dE 9t of peripheral "eam C%ongitudinalE Q=PC=;&.+(&A+;&.+(&A+EP%.(>+(RP+ Q

    &.(P&.+(&; &.(P&.+(&EP%.(>+(RP+ => . )( %=. =')( >%.)% )( 3eE 9t of parapet wall C% m high and %(& mm thickE +PC%+ +%EP% PC&.%(&EP+&external wall +&P&.+( P C+P% .)( +P%%.(E C'.(; &.=%E ('.%+(gE Interior "eams CtransverseE Q=PC>;&.=(&EP %. )(EP+R

    hE Interior "eamsClongitudinalE =PC=;&.+(&EP%. )(R Q% PC(;&.+(&EP%. )(R + .').&' 3

    iE 9t of interior wall C%(& mm thickE/ength CtransverseE \C>;&.(P&.+(;&.(P&.+(EP=P+ =>m

    9t of interior wall +&P &.%(& P=>PC'.(;&.=(&E =+&. 3/ength C%ongitudinalE \=;&.+(EP=] C(;&.+(E

    %( =.)( % .)(m9t of interior wall +&P&.%(&P % .)(PC'.)(;&.=(E

    % (.(+( 3otal wt of interior wall =+% % (.(+( >%>.(+( 3

    jE 9t of external columnAheight C>P+(&P&.=(&P+(EP+ ' .')( 3Am

    9t of external column ' .')(P C'.(;&.(&E %'+ 3kE 9t of interior columnAheight

    =PC&.+(P&.=(P+(E %%.+( 3Am9t of interior column %%.+(PC'.(;&.%(&E ').> )( 3

    Live L#a-:

    /ive load on roof &

  • 8/18/2019 Building .docx

    52/134

    /ive load on floors (&@ of '.( 3Am %.)( 3Amotal live load on each floor +% P %+P %. )(==% 3

    C#!ce!trate- Mass:

    #t roof " c d e C fA+ E g h C iA+ E C' jA+ E C' kA+E%== '> >%.)+ % C ('.%+(A+E '.+( ') C>%>.(+(A+E C%'+A+ C').> )(A+E

    +)'=>' + 3

    !- 1l##r:

    a c d f g h i Cj kE%% % '> >%..)+ ('.%+( '.+( ') >%>.(+( %'+ ').> )(

    '%= .'% 3

    St 1l##r:

    a c d f g h i Cj kE%% % '> >% .)+ ('.%+( '.+( ') >%>.(+( %'+ ').> )(

    '%= .'% 3otal weight C9E

    +)'=.>' + +P'%= .'%&'%.+(' + 3

    otal "ase shear #hP9&.&>P &'%.+(' + (=%. )( 3

    -ase shear in each frame 6- (=+A> &.'' 3

    P#rtal Meth#-:

    Terrace

    Hori

  • 8/18/2019 Building .docx

    53/134

    7 %'.))( 3

  • 8/18/2019 Building .docx

    54/134

    PORTAL MET2OD

    2#ri #!tal shear i! c#lu !

    (( + .+& =KK +&. +( 3((.%& + .+& ).&( =0 0 ++.( 3

    M# e!t i! C#lu !:

    C%C2xternal column +nd floorEM#+#I M% + M + % 7hA+ %'.))(P'.(A+ +=.%% .3

    Internal olumnM-%-+ M-+-% +7hA+ +P%'.))(P'.(A+ = .+ 3;m

    +I$t floorC2xtemal olumnEM#+#' M#+#+ M ' + M ' + KhA+MP'.(A+

    '>.== 3;minternal columnM -+-' M-'-+ +KhA+ +P+&. +(P'.(A+

    )+. % 3;m' 4round floor C2xternal columnE

    M#'#= M#=#' M ' = M = ' 0hAw ++.( P'.(A+' .(%( n;m

    CInternal olumnEM-'-' M-=-' +0hA+ +P'>. ( ) .&' 3;m

    M# e!t i! bea :

    R##1 bea

    3% M#%-% M-%#% M-% % M %-% 7hA+ %'.))(P'.(A++=.% n;m

  • 8/18/2019 Building .docx

    55/134

    3* M#+- + M-+#+ M-+ + M +-+ C7 KEhA+%%'.))( +&. +(EP '.(A+

    >&.(( kn;M3' M#'-' M-'#' M-' ' M '-' CK 0EHA+C+&. + ++.( EP'.(A+. )> 3;m

    Shear i! bea :

    $hear in any "eam -eam end momentAHalf of the span

    R##1 S

    $#%-% $-%#% $-% % $ %-% +=.%&AC>A+E .&' 3

    S* %St 5l##r

    $#+-+ $-+#+ $-+ + $ +-+ >&.((AC>A+E +&.% 3

    S' !- 5l##r

    A8ial 1#rces i! c#lu !s:

  • 8/18/2019 Building .docx

    56/134

    aking moment a"out C#E0 - PI M M0 - +MA%

    olumn #I#+ +M#I#+A% +P+=.%%A> .&' 3olumn #+#' +M#+#' A% +P'>.==A>%+.%(knolumn #'#= +M#'#= A% +P)+. A> +=.' 3

    AH AL 5ORCES N COLO4MN

    olumn #I#+ $1#%-% .&' 3olumn #+#' #xial forces in column #%#+ $1#+-+ .&' +&.% % + .+% 3olumn #'#= #xial force in #+#' $1#+-' + .+%% +(.'> ('.() 3

    oloumn -%-+ $1#%#+;$.1-% %.O'; .&' &

    olumn -+-' #xial force in column -%-+ $1#+-+ ;$1-+ +& +&.% ;+&.% &

  • 8/18/2019 Building .docx

    57/134

    olumn -'-= #xial force in column #+-+ $1#'-' ;$1-' '+(.'>; +(.'( &

    olumn % + $1-% % .&' 3olumn + ' #xial force in column % + $1-+ +

    %.&' +&.% + .+% 3olumn ' = #xial forces in column + ' $1-' ' + .+% +(.'> ('.() 3

    P#rtal eth#-:

    Terrace :

    Hori

  • 8/18/2019 Building .docx

    58/134

    St 5l##r:

    ((.%& + .+& ).&( l&0 0 .&'( 3

    M# e!t i! c#lu !

    +nd 1loor Cexternal f%oor E

    C%;M#%#+ M#+#% Mf%f+ Mf+f%7hA+ (.(% P'.(A+

    .>=+( 3;m

    C* ; M-%-+ M-+-% M % + M + % MDID+ MD+DI M1l1+ M1+1I +7hA++P(.(% P'.(A+% .+ ( 3;m

    I$t floor Cinternal columnE

    C' ; M#+#' M#'#+ M1+1' M1'1+ KhA+.''P'.(A+

    %=.()( 3;mCInternal columnE

    C? ; M-+-' M-'-+ M + ' M ' + MD+D' MD'D+ M1+1' M1'1+ +KhA++P .'' P'. (A+

    + . %(( 3;mC2xlernal columnE 4round floor

    C( ; M#'#= M#=#' M1'1= M1=1' 0HA++%.&'(P'.(A+ %(. % 3;mCInternal columnE

  • 8/18/2019 Building .docx

    59/134

    C> ; M-'-= M-=-' M ' = M = ' MD'D= MD=D' M2'2= M2=2' +0hA++P .&'(P'.(A+

    '%.>+ 3;m

    MOMENT N 3EAM:

    ROO5 3EAM:

    3%; M#%-% M-%#% M-% % M %-% M %D% MD% %MD%2% M2%D% M2%1% M1%2% 7hA+(.(P'.(A+

    .>+( n;m

    !- 5##r

    3*9 M#+-+ M-+#+ M-+ + M +-+ M +D+ MD+ + MD+2+ M2+D+ M2+1+ M1+2+C7 KE PhA+C(.(% .''EP'.(A+

    +=.++ 3;m

    %St 5l##r

    3' ;M#'-' M-+#' M-' ' M '-' M 'D' MD' ' MD'2' M2'1' M1'2'C K 0E PhA+C .'' .&'(EP'.(A+

    '&.' k3;m

    Shear i! bea :

    $hear in any "eam "eam end moment A half of the span

    R##1 S%:

    $#%-% $-%#% $-% % $ %-% $D%2% $2lD% $2%1% $1%2%.>+(AC=A+E =. %+( 3

    $ %D% $D% % .>+(AC(A+E '. ( 3

  • 8/18/2019 Building .docx

    60/134

    !- 5l##r

    S* ;$#+-+ $-+#+ $-+ + $ +-+ $D+2+ $2+D+ $2+1+ $1+2++=.++AC=A+E

    %+.%% 3$ +D+ $D+ + +=.++AC(A+E .> 3

    St 1l##r

    S' ;$#'-' $-'#' $-' ' $ '-' $ '-' $D'2' $2'D' $2'1' $1'2''&.' AC=A+E

    %(.% 3$ 'D' $D' ' '&.' AC(A+E %+.%( 3

    A8ial 1#rces i! c#lu !:

    aking moment a"out #0 - P/;M;M &

    +MA/0 # +MA/

    olumn #%#+ +MA/+P .>+(A= =. % 3

    oloumn #+#' +M#+#' A%+P%=.())(A= ).+ 3

    olumn #' #= +M#' # =Al +P%(. %A= ). &( 3

    A8ial 1#rces i! c#lu !:

    olumn#%#+ $.1#l-% =. %+( 3olumn#+#' column #%#+ $.1#+ +=. %+( %+.%% %>. ++( 3olumn #'#= axial force in column #+#' $.1#'-'

    %>. ++( %(.% > '+.%%+( 3olumn-%-+ $.1#%-% ` $.1-% I=. %+(;=. %+( &

  • 8/18/2019 Building .docx

    61/134

    olume-+-' axial force column -%-+ $1#+-+ `$1-+ +& %+.%% ;%+.%% &

    olumn -'-= axial force column -+-' $1#'-' ;$1-' '& %(.% ;%(.% &

    olumn % + $.1-% % ;$1 %D%=. %+(;'. ( &. >+( 3olumn + ' axial force column % + $1-+ + `$.1 +D+

    &. >+( %+.%%; .> =.% (( 3olumn ' = axial force column + ' $1-' '=.% (( %(.% ;%+.%( ).++( 3olumn D%D+ $1%D% ;$1D%2%

    '. (=. %+( ;&. >+( 3olumn D+D' axial force column D%D+ $1+D+ `$1D+2+;&. >+( .> ;%+.%% ;&'.' =( 3olumn D'D= axial force columnD+D' $1'D' `$1D'2';'.' =( %+.%(;%(.% ;>.=+=( 3olumn 2%2+ $1D%2l;$12%1%

    =. %+(;=. %+( &olumn 2+2' axial force column $1D+2+ `$12+1+

    & %+.%%;%+.%% &olumn 2'2= axial force column 2+2' $1D'2' ;$12'1'

    & %(.% ;%(.% &olumn1%1+ $12%1% =. %+( 3olumn 1+1' axial force column 1%1+ $12+1+

    =. %+( %+.%% %>. ++( 3olumn 1'1= axial force column 1+1' $12'1'

    %>. ++( %(.% '+.%% 3

    L#a- #! c#lu ! ;C(+C%?6

    C='.( ).( ='.(EP+A+ C ) P) %%.+(EP+A+ +) .)( 3

  • 8/18/2019 Building .docx

    62/134

    l#a- #! c#lu ! ;CB+ Cll6

    C='.( ='.( ).(EA+ C> > .=EA+ C ) %%.+( (.%(EP+A+ '%'.'( 3

    %St 5l##r C#lu !

    9eight of column C+(P&.+(P&.=(&PC'.(;&.=&E .)+ 39eight of wall C>mE2x +&P&.+(&P(.)(P'.&( ).> 39eight of wall C=>mE2x +&P&.+(&P'.&(PC=;&.+(E ().% 39eight of wall C(mE2x +&P&.+(&P'.&(PC>;&.+(E )+.== 39eight of wall C>mE2x +&P&.%(&P'.&(PC>;&.+(E (+.> 39eight of wall C=mE2x +&P&.%(&P'.&( PC =;&.+(E '=.'% 39eight ofwaIlC(>mE2x +&P&.%(&P'.&(PC(;&.+(E ='.=> 3

    L#a- #! c#lu ! ;cl+ c'+ cl>+ c%B6

    .&> .)+t ).> A+ () .% A+ C ) .')(EA+ C='.( >.+(EA+ +(% 3

    L#a- #! c#lu ! ;c?+ c>+ cl'+ cl(6

    %>'.')( .)+ () .% (+.>A+ C ='.( >.+(EP+A+ C ) ) %%A+(EA+ =&>.> 3

    L#a- #! c#lu ! ;c)+ c'.')( .)+ ().% (+.>A+ C='.( >.+(EP+A+ C). > EA+ C (.%( ) %%.+(EA+==%.'% .)+ =(& 3

    L#a- #! c#lu ! ;c*+ cl)6

    %>( ).> '=.'%A+ C ) A')(EP+A+ C='.( ).( ='.(EA+ ='% 3

    L#a- #! c#lu ! ;c(+ cl?6

    +) .)( .)+ (+.> '=.'% C ) ) %%.+(EP+A+ C='.( ='.( ).(EP+A+ >>' 3

  • 8/18/2019 Building .docx

    63/134

    L#a- #! c#lu ! ;cB+ c %% 6

    '%'.'( .)+ (+.( '=.'%A+ ='.=>A+ C (.%( %%.+( )EP+A+ C> > .=EA+ C='.()+>.)>( .)( )'(.= ( 3

    GRO4ND 5LOOR

    L#a- #! c#lu ! ;cl+ c'+ c%>+ c%B6

    +=+.+ .)+ (+.> '=.'% C ) ) %%.+(EP+A+ C='.( >.+(EA+' >.( .)+ =&(.++ 3

    L#a- #! c#lu ! ;c?+ c>+ cl'+ c%(6

    ' ). > .)+ ().% (+.>A+ C='.( >.+(EP+A+ C ) ) %%.+(EA+

    >'+.(=( .)+ >=%.+>( 3

    L#a- #! c#lu ! ;c)+ c.+(EA+ C). > EA+ C (.%( ))&&.>+ .)+ )& .'= 3

    L#a- #! c#lu ! ;c*+ cl)6

    =++.++ .) ).> '=.'%A+ C ) .')(EP+A+ C='.( ='.( ).(EP+A+>) .== .)+ > .%> 3

    L#a- #! c#lu ! ;c(+ c%?6

    >((.%+ .)+ (+.> '=.') C ) ) %%.+(EP+A+ C='.( ='.( ).(EP+A+%&'&.( .)+ %&' .++ 3

    L#a- #! c#lu ! ;cB+ c%%6

    )+>.)> .)+ (+.( '=.'%A+ ='.=>A+ C (.%( ) %%.)(EP+A+ C> > .=EA+ C='+ %%=&.% .)+ %%= . & 3

    LOAD NG AND 5 HED END MOMENT

  • 8/18/2019 Building .docx

    64/134

    M2M-20 D2#D /O#D /I62 /O#D C//E 12M DF2 O D/ 12M DF2 O

    CD/E 9/A%+O #/

    /O#D#- +=*+ ( .))%

    BOI3 M2M-20 $ I1132$$ OM-I32D DI $ 0I-F IO3

    $ I1132$$ 1# O0 CD1E

    # #- &.>) &.++)#4 %.%= +. ( &.' >

    #D %.%= &.' >

    %- - &.>) &.% (

    -2 %.%= '.>+ &.'%(-H %.%= &.'%(-# &.>% &.% (

    %- &.>) &.++)1 %.%= +. ( &.' >

    I %.%= &.' >&. ≈ %

    MAH M4M NEGAT IE 3M AT S4PPORT O NT A

    LL A3 DL 3C

  • 8/18/2019 Building .docx

    65/134

    .#BOI3 -

    M2M-20$ #- -# - -D1 &.++) &.% ( &.% ( &.++)

    %. 12M dueto D/

    ;)+. ( )+. ((

    +. 12Mdue to /

    ;%&+.%> %&+.%>

    '.Di$tri"ution

    C%&+.%> ;)+. ((EP&. %( ;(.=+

    =.arryover

    ;(.=+A+ ;+.)%

    ( #dd +.#nd =.>.Di$tri"utive

    C %&+.%> P&.++)E

    ;+'.+&otal

    Moment ; %.> 3;mC( >E

    MAH M4M NEGAT IE 3M AT S4PPORT O NT 3// -# , - D/ #-

    ;#BOI3 -

  • 8/18/2019 Building .docx

    66/134

    M2M-20$ #- -# - -

    D1 &.++) &.% ( &.% ( &.++)

    12M dueto D/

    ; ; ; ;

    12M dueto /

    %&+.%> %&+.%> ;%&+.%> %&+.%>

    C%&+.%> P&.++)E C;%&+.%> P&.++)E

    DI$ 0I-F IO 3

    +'.+& ;+'.+&

    =. arryover ;(.=+A+ ;+.)% ;%%.>& %%.>&(. #dd +. #nd = ;%&=. &.( ; &.(>. Di$tri"utive C %&+.%> P&.++

    )E +'.+&

    C %&+.%> P&.% (E ` %>.)(

    C;%&+.%> P% (E

    %>.)(otal Moment

    C( >E)'. ' 3;m ;)'. ' 3;m

    MAH M4M NEGAT IE 3M AT S4PPORT O NT C

    // - D/ #-

    .#BOI3 -

    M2M-20$ #- -# - -D1 &.++) &.% ( &.% ( &.++)

  • 8/18/2019 Building .docx

    67/134

    %. 12M dueto D/

    ;)+. (( )+. (( ; ;

    +. 12Mdue to /

    ;%&+.%> %&+.%>

    C%&+.%> P&.++)E C)+. ((;'.Di$tri"ution

    +'.+& %&+.%> EP&.% (

    (.=+=.

    arryover (.=+A+ +.)%

    ( #dd +.#nd =.>.Di$tri"utive C %&+.%> P&.++)E

    ;+'.+&otal

    Moment%.>

    C( >E

    MAH M4M POS T IE 3M AT M D SPAN A3// #- D/ #-

    .#BOI3 -

    M2M-20$ #- -# - -D1 &.++) &.% ( &.% ( &.++)

  • 8/18/2019 Building .docx

    68/134

    %. 12M dueto D/

    ;)+. (( )+. ((

    +. 12Mdue to /

    ; %&+.%> %&+.%>

    C%&+.%> P&.++)E'.Di$tri"ution

    +'.+& C%&+.%> ;)+. ((EP&.% (

    ;(.=+=.

    arryover ;(.=+A+ +.)% %%.>&

    otalMoment

    ; %.> 3;m %& .'= 3;m

    3ow free -M 9%+A C'=.&((EP>+A %('.+= 3;m 3et -M at the centre of #-

    %('.+= ; C %.> %& .'= EA+ ( .++> 3;m

    MAH M4M POS T IE 3M AT M D SPAN 3C

    // - *D/ #-

    .#BOI3 -

    M2M-20$ #- -# - -D1 &.++) &.% ( &.% ( &.++)%. 12M dueto D/

    ;)+. (( )+. (( ; ;

  • 8/18/2019 Building .docx

    69/134

    +. 12Mdue to /

    ;%&+.%> %&+.%>

    '.Di$tri"ution

    C;

    %&+.%> )+. ((EP&.% (

    C;%&+.%> P&.++)E;+'.+&

    (.=+=.

    arryover ;%%.( (.=+A+ +.)%

    otalMoment

    ;%& .'=3;m

    %.> 3;m

    3ow free -M 9l+AC'=.&((EP>+A %('.+( k3;m

    3et -M at the centre of #-%('.+=;C %.> %& .'= EA+ ( .++> 3;m

  • 8/18/2019 Building .docx

    70/134

    Desi0! #1 C#lu !

    Gr#u!- 5l##r

    Design of 2xternal column Ccl c' cl> c% E

    $imm dia Y ) "ars

    Lateral Ties :

    Diameter of lateral ties shall "e not less then

  • 8/18/2019 Building .docx

    71/134

    aE >mm "E¼ x diameter of longitudinal reinforcement %A= x %> =

    herefore* provide >mm tie$pacing of tie shall not exceedaE /ea$t lateral diamension of column +(&mm "E %> x diameter of longitudinal %> x %> +(> mmcE = x diameter of ties = x > + mmdE '&&mm

    $pacing +(&mm

    herefore >mm "ar Y+(&mm cAc.

    Desi0! #1 E8ter!al c#lu ! ;c? c> c%' c%(6

    $i=%.+>(k3Moment acting on column ' .(%(k3;m1actori=%.+>( >%. )( k3

    1actor Moment acting of column CMuE %.( x ' .(%( >&.>> k3;m#ssume Moment due to minimum eccentricity are less then the values given a"ove0einforcement is di$tri"uted e:ual on = side#ssume effective cover CdGE (&mmFniaxial moment capacity of the section effective cover Overall depth

    dZAD (&A=(& &.%%alculation of 7uATσ ck x " x D and MuATσ ck"D+

    9here 7u and Mu are the factored axial compressive load and "ending moment respectively7uAσ ck x"xD >%. )( x %&' A+& x +(& x =(& &.='MuAσ ck x " x D+ >& x %&> A+& x +(& x =(&+ &.%&

    herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating p Aσ ck herefore pA σ ck &.&

  • 8/18/2019 Building .docx

    72/134

    percentage of reinforcement C7E &.& x +& %. @#rea of reinforcement re:uired #x p x "D %. x +(& x =(&A%&& +&+(mm+

    therefore provided +&mm dia Y) "ars

    Laterial Ties :

    Diameter of lateral ties shall "e not less thencE >mmdE x diameter of longitudinal reinforcement %A= x +& (

    herefore* provide >mm tie$pacing of tie shall not exceedeE /ea$t lateral diamention of column +(&mm

    fE %> x diameter of longitudinal %> x +& '+& mmgE = x diameter of ties = x > + mmhE '&&mm[ $pacing '&&mm

    herefore >mm "ar Y'&&mm cAc.

    Desi0! #1 E8ter!al c#lu ! ;c) c< cl& c%*6

    $i&.&& k3;m#ssume Moment due to minimum eccentricity are less then the values given a"ove0einforcement is di$tri"uted e:ual on = side#ssume ffective cover CdGE (&mmaxial moment capacity of the section effective cover

  • 8/18/2019 Building .docx

    73/134

    overall depthdZAD (&A=( & &. %%alculation of 7uAσ ck L " x D and MuAσ ck "D+

    9here 7u and Mu are the factored axial compressive load and "ending moment respectively7uAσ ck x " D %&>=.&% x %&' A+& x +(& x =(& &.=)MuAσ ck x " L D+ >& L %&>A+& x +(& x =(&+ &.% &

    herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating piAσ ck herefore pAσ ck &.%&herefore percentage of reinforcement C7E &.%& x +& +@

    #rea of reinforcement 7 x "D +x +(& x =(&A% &&

    ++(&mm+herefore provided +&mm diaY "ars

    Lateral Ties:

    Diameter of lateral ties shall "e not less theneE >mmfE¼ x diameter of longitudinal reinforcement %A= x +& (

    herefore* provide >mm tie$pacing of tie shall not exceediE /ea$t lateral diamention of column +(&mm

    jE %> x diameter of longitudinal %> x +& '+& mm kE = x diameter of ties = x > + mmlE '&&mm $pacing '&&mm

    herefore >mm "ar Y'&&mm cAc.

    Desi0! #1 E8ter!al c#lu ! ;c* c%)6

    $i

  • 8/18/2019 Building .docx

    74/134

    #xial force on column > .%>k3Moment acting on column ' .(%(k3;m1actored #xial force on columnC7uE %.(P> .%>

    %&'+.+= k31actor Moment acting of column CMuE %.( x ' .(%(

    >&.&& k3;m#ssume Moment due to minimum eccentricity are less then the values given a"overeinforcement is di$tri"uted e:ual on = sideeffective cover CdGE (&mmial moment capacity of the section effective cover dZAD (&A=(& &.%%

    alculation of 7uAσ ck x " x D and MuAock"D+7u and Mu are the factored axial compressive load and "ending moment respectively7uAσ ck xbxd %&'+.+= x %&'A+& x +(& x =(& &.=>MuAσ ck L " L D+ >& x %&>A+& x +(& x =(&+ &.%&therefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating pAσ ck therefore pAσ ck &.& ( percentage of reinforcement C7E &.& ( x +& %. @

    area of reinforcement #$t 7 x "D%. x+(& x =(&A%&&

    +%').(mm+

    herefore provided +&mm dia Y)"ars

    Lateral Ties:

    7arameter of lateral ties shall "e not less thengE >mmhE¼ x diameter of longitudinal reinforcement %A= x +& (

    herefore* provide >mm tie$pacing of tie shall not exceedmE /ea$t lateral diamension of column +(&mmnE %> x diameter of longitudinal %> x +& '+& mm

  • 8/18/2019 Building .docx

    75/134

    oE = x diameter of ties = x > + mm pE '&&mm$pacing '&&mm

    herefore >mm "ar Y'&&mm cAc.

    Desi0! #1 !ter!al c#lu ! ;c( c%?6

    $i

  • 8/18/2019 Building .docx

    76/134

    Diameter of lateral ties shall "e not less theniE >mmiiE diameter of longitudinal reinforcement %A= x +& (

    herefore * provide >mm tie$pacing of tie shall not exceed:E /ea$t lateral dimension of column +(&mmrE %>x diameter of longitudinal %> x +& '+& mmsE = x diameter of ties = x > + mmtE '&&mm

    $pacing '&&mm

    herefore >mm "ar Y'&&mm cAc.

    Desi0! #1 !ter!al c#lu ! ;eB c%%6

    $i

  • 8/18/2019 Building .docx

    77/134

    herefore pAWck &.%=herefore percentage of reinforcement C7E &.%= x +& +. @

    #rea of reinforcement re:uired #$t 7 x "D+. x+(&x=(&A%&& '%(&mm+

    herefore provided +&mm diaY%& "ars

    / ateral Ties:Diameter of lateral ties shall "e not less thenkE >mmIE diameter of longitudinal reinforcement %%= x +& (

    herefore* provide >mm tie

    $pacing of tie shall not exceeduE /ea$t lateral dimension of column +(&mmvE %> x diameter of longitudinal %> x +& '+& mmwE = x diameter of ties = x > + mmxE '&&mm

    $pacing '&&mm

    herefore >mm "ar Y'&&mm cAc.

  • 8/18/2019 Building .docx

    78/134

    5 RST 5LOOR

    DES GN O5 COL4MN

    Desi0! #1 E8ter!al C#lu ! ;c% c' c%> c B6

    $i.(k31actori.( x %&'A+& x +(& x =(& &.%)MuAWck x (=.>> x %&>A+& x +(& x =(&+ &.&(

    herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating pAWck herefore pA Wck &.&=herefore percentage of reinforcement C7E &.&= x +& &. @

    #rea in reinforcement re:uired #$t p x "D&. x +(& x =(& A %&& &&mm+

    herefore provided %> mm Y ( "ars

    Lateral Ties:

  • 8/18/2019 Building .docx

    79/134

    Diameter of laterial ties shall "e not less thenmE >mm

    nE diameter of longitudinal reinforcement % A%= x %> =herefore provide >mm tie$pacing of tie shall not exceedyE /ea$t lateral dimension of column +(&mm

    x diameter of longitudinal %> x %> +(> mm . aaE = x diameter of ties = x > + mm ""E '&& mm

    $pacing ` +(& mm

    herefore >mm "ar Y+(&mm cAc.

    Desi0! #1 e8ter!al C#lu ! ;c? c> c ' c (6

    $i.== (=.>>k3;m#ssume Moment due to minimum eccentricity are less then the values given a"overeinforcement is di$tri"uted e:ual on = side#ssume effective cover CdGE (&mmFniaxial moment capacity of the section effective cover Overall depth

    dZAD (&A=(& &.%%alculation of 7uW ck x " x D and MuAWck "D+

    9here 7u and Mu are the factored axial compressive load and "ending moment respectively7uAWck x " D >%&x %&' A+& x +(& x =(& &.+)MuAσck x " x D+ (=.>>x %&>A+& x +(& L =(&+ &.&(

    . herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating pWck

  • 8/18/2019 Building .docx

    80/134

    herefore pWck &.&=herefore percentage of reinforcement C7E &.&= x +& &. @

    #rea of reinforcement re:uired #$t p x "D&. x +(& x =(&A%&& &&mm+herefore provided %>mm diaY( "ars

    Lateral Ties:

    Diameter of lateral ties shall "e not less thenoE >mm pE x diameter of longitudinal reinforcement %A= x %> =

    herefore* provide >mm tie

    $pacing of tie shall not exceedccE /ea$t lateral dimension of column +(&mmddE %> x diameter of longitudinal %> x %> +(> mmeeE = x diameter of ties = x > + mmffE '&&mm

    $pacing +(&mm

    herefore >mm "ar Y+(&mm cAc.

    Desi0! #1 E8ter!al C#lu ! ;c) c< cl& c (6

    $i.== (=.>>k3;m#ssume Moment due to minimum eccentricity are less then the values given a"ove0einforcement is di$tri"uted e:ual on = side#ssume effective cover CdGE (&mmFniaxial moment capacity of the section effective cover

  • 8/18/2019 Building .docx

    81/134

    Kverall DepthdZAD (&A=(& &.%%alculation of 7u Wck L " x D and MuAWck"D+

    9here 7u and Mu are the factored axial compressive load and "ending moment respectively7uAWck x " D >)(x %&' A+& x +(& x =(& &.'&MuAWck x"xD+ (=.>>x %&>A+& x +(& x =(&+ &.&(

    herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating pAWck herefore percentage of reinforcement C7E &.&= x +& &. @

    #rea of reinforcemant re:uired #$t p x "D&. x +(& x =(&A% && &&mm+herefore provided %>mm diaY( "ars

    Laterial Ties:

    Diameter of lateral ties shall "e not less then:E >mmrE x diameter of longitudinal reinforcement % A= x %> =

    herefore * provide >mm tie$pacing of tie shall not exceedggE /ea$t lateral dimension of column +(&mmhhE %> x diameter of longitudinal %> x %> +(> mmiiE = x diameter of ties = x > + mm jjE '&&mm

    $pacing +(&mm

    herefore >mm "ar Y+(Omm cAc.

    Desi0! #1 E8ter!al C#lu ! ;c* c%)6

    $i

  • 8/18/2019 Building .docx

    82/134

    oncrete mix M+&haracteri$tic $trength of reinforcement =%(3Amm+

    #xial force on column ='%.&&k3Moment acting on column '>.==k3;m1actored #xial force on columnC7uE %.(P='%.&& >=>.(k31actor Moment acting of column CMuE %.( x '>.== (=.>>k3;m#ssume Moment due to minimum eccentricity are less then the values given a"ove0einforcement is di$tri"uted e:ual on = side#ssume effective cover CdGE (&mmFniaxial moment capacity of the section effective cover Overall depth

    dZAD (&A=(& &.%%alculation of 7uAWck x " x D and MuAWck "D+

    9here 7u and Mu are the factored axial compressive load and "ending moment respectively 7uAWck x " D >=>.(x %&' A+& x +(& x =(& &.+ MuAWck x " L D+ (=.>>x %&>A+& x +(& x =(&+ &.&(

    herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating pAWck herefore pAWck &.&=herefore percentage of reinforcement C7E &.&= x +& &. @

    #rea of reinforcement re:uired #$t 7 x "D&. x+(& x =(&A%&& &&mm+

    herefore provided %>mm diaY( "ars

    Lateral Ties :

    Diameter of /ateral ties shall "e not less thensE >mmtE x diameter of longitudinal reinforcement %A= x %> =

  • 8/18/2019 Building .docx

    83/134

    herefore* provide >mm tie$pacing of tie shall not exceedkkE /ea$t lateral diamention of column +(&mmllE %> x diameter of longitudinal %> x %> +(> mmmmE = x diameter of ties = x > + mmnnE'&&mm

    ^ $pacing +(&mm

    herefore >mm "ar Y+(&mm cAc.

    Desi0! O1 !ter!al C#lu ! ;c( c%?6

    $i>'. =k3Moment acting on column )+. k3;m1actored #xial force on columnC7uE %.(P>>'. = (.)>k31actor Moment acting of column CMnE^ %.( x )+. %& .'+k3;m#ssume Moment due to minimum eccentricity are less then the values given a"ove

    0einforcement is di$tri"uted e:ual on = sidefumeetfective cover CdGE (&mmuniaxial moment capacity of the section effective cover Overall depth

    dZAD (&A=(& &.%%alculation of 7AWck x " x D and MuAWck x "D+

    9here 7u and Mu are the factored axial compressive load and "ending moment respectively7uAWck x " D (.)>x %&'A+& x +(& x =(& &.==MuAWck x " x D+ %& .'+x %&>A+& x +(& x =(&+ &.%%

    herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating pi Wck herefore pAWck &.&herefore percentage of reinforcement C7E &.& x +& %.>@

    #rea of reinforcemant re:uired #$t p x "D

  • 8/18/2019 Building .docx

    84/134

    %.> L +(& x =(&% %&& % &&mm+

    herefore provided +&mm diaY> "ars

    Lateral Ties:

    Diameter of lateral ties shall "e not less thenuE >rnrnvE x diameter of longitudinal reinforcement % %= x +& (

    herefore provide > mm tie$pacing of tie shall not exceedooE /ea$t lateral dimension of column +(&mm ppE%> x diameter of longitudinal %> x +& '+&

    ::E = x dia. Of ties = x> + mmrrE'&mm

    $pacing '&&mm

    herefore >mm "ar Y'&&m cAc

    Desi0! O1 !ter!al C#lu ! ;eB c%%6

    $i

  • 8/18/2019 Building .docx

    85/134

    alculation of 7AWck x " x D and MuAWck x "D+

    9here 7u and Mu are the factored axial compressive load and "ending moment respectively7uAWck x " D %% &'.+=x %&'A+& x +(& x =(& &.=MuAWck x " x D+ %& .'+x %&>A+& x +(& x =(&+ &.%%

    herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating pAWck herefore percentage of reinforcement CpE &.& x+& %. @

    #rea of reinforcement re:uired #$t p x "D%..x+(&x=(&A% && +&+(mm+

    hereforeore provided +&mm diaY) "ars

    Laterial Tiles :

    Diameter of lateral ties shall "e not less thenwE >mmxE x diameter of longitudinal reinforcement x +& (

    herefore* provide >mm tie$pacing of tie shall not exceedssE /ea$t lateral dimension of column +(&mmttE %> x diameter of longitudinal %> x +& '+& mmuuE= x diameter of ties = x > + mmvvE '&&mm

    $pacing '&&mm

    SECOND 5LOOR

    DES GN O5 COL4MN

    Desi0! #1 E8ter!al C#lu ! ;cl c' cl) c%B6$i

  • 8/18/2019 Building .docx

    86/134

    oncrete mix M+&haracteri$tic $trength of reinforcement =%(3Amm+

    #xial force on column >. %k3Moment acting on co%umn +=.%%k3;m1actor axial force on column C7uE %.( x >. % %=(.+%( kn1actor movement acting on column CMuE %.( x +=.%% '>.%>(kn;m#ssume Moment due to minimum eccentricity are less then the values given a"ove0einforcement is di$tri"uted e:ual on = side#ssume effective cover CdGE (&mmFniaxial moment capacity of the section effective cover Overall depth

    dZAD (&A=(& &.%%alculation of 7uAWck x " x d and MuAuck"D+

    9her 7u and Mu are the factored axial compressive load and "ending moment respectively7uAWck x" x d %=(.+% x %&' A+& x +(& x =(& G&.&>MuAW ck x " x D+ '>.%>(x %&>A+& x +(& x =(&+ &.&'

    herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating pAσck

    herefore pAWck &.&=

    herefore percentage of reinforcement C7E &.&= x +& &. @#rea of reinforcement re:uired #$t p x "D

    &. x +(& x =(&A%&& &&mm+

    roreprovided l>mm diaY( "ars

    Lateral Ties:

    Diameter of lateral ties shall "e not less thenyE >mm =

    herefore* provide >mm tie$pacing of tie shall not exceedwwE /ea$t lateral dimension of column +(&mmxxE %> x diameter of longitudinal %> x %> +(> mm

  • 8/18/2019 Building .docx

    87/134

    yyE = x diameter of ties = x > + mm.%>(k3;m#ssume Moment due to minimum eccentricity are less then the values given a"ove0einforcement is di$tri"uted e:ual on = side#ssume effective cover CdGE (&mm GFniaxial moment capacity of the section effective cover Overall depth

    dZ AD (&A=(& &.%%alculation of 7uAWck x " x D and MuAWck x "D+

    9here 7u and Mu are the factored axial compressive load and "ending moment respectively7uAWck x"D +>%.++ x %&'A+& x +(& x =(& &.%+MuAWckx " x D+ '>.%>(x %&>%+& x +(& x =(&+ &.&'

    herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating pAWck herefore pAWck &.&=herefore percentage of reinforcement C7E &.&= x +& &. @

    #rea of rainforcemant re:uired #$t 7 x "D&. x +(& x =(&A%&& &&mm+

    herefore provided %>mm diaY( "ars

  • 8/18/2019 Building .docx

    88/134

    Lateral Ties:

    Diameter of lateral ties shall "e not less thenccE > mmddE diameter of longitudinal reinforcement %A= x %> =

    herefore* provide >mm tie$pacing of tie shall not exceedaaaE /ea$t lateral dimension of column +(&mm """E %> x diameter of longitudinal %> x %> +(> mmcccE = x diameter of ties = x > + mmdddE '&&mm

    $pacing +(&mmherefore >mm "ar Y+(&mm cAc.

    Desi0! #1 E8ter!al C#lu ! ;c? c> c%' c%(6

    $i

  • 8/18/2019 Building .docx

    89/134

    alculation of 7AWck x " x D and MuAWck"D+

    9here 7u and Mu are the factored axial compressive load and "ending moment respectively

    7uAWck x"D +( .% x %&' A+& x +(& x =(& &.%%

    MuAWck x"xD+ '>.%>(x %&>A+& x +(& x =(&+ &.&'

    herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating pAWck

    herefore pAσck &.&=

    herefore percentage of reinforcement C7E &.&= x +& &. @

    #rea of reinforcement re:uired #$t p x "D

    &. x+(& x =(&A%&& &&mm+

    herefore provided l>mm diaY( "ars

    Lateral Ties:

    Diameter of lateral ties shall "e not less then

    ccE>mm

    ddE x diameter of longitudinal reinforcement %A= x %> =

    herefore* provide >mm tie

    $pacing of tie shall not exceed

    eeeE /ea$t lateral diamention of column +(&mm

    fffE %> x diameter of longitudinal %> x %> +(> mm

    gggE = x diameter of ties = x > + mmhhhE '&&mm

    $pacing +(&mm

    herefore >mm "ar Y+(&mm cAc.

  • 8/18/2019 Building .docx

    90/134

  • 8/18/2019 Building .docx

    91/134

    Lateral Ties:

    Diameter of lateral ties shall "e not less then

    eeE>mm

    ffE x diameter of longitudinal reinforcement %A= x %> =

    herefore* provide >mm tie

    $pacing of tie shall not exceed

    iiiE /ea$t lateral diamention of column +(&mm

    jjjE %> x diameter of longitudinal %> x %> +(> mmkkkE = x diameter of ties = x > + mm

    lllE '&&mm

    $pacing +(&mm

    herefore >mm "ar Y+(&mm cAc.

    Desi0! #1 !ter!al C#lu ! ;e( e%?6

    $i

  • 8/18/2019 Building .docx

    92/134

    #ssume effective cover CdGE (&mm

    Fniaxial moment capacity of the section effective cover

    Overall Depth dZAD (OA=(& &.%%

    alculation of 7AWck x " x D and MuAWck"D+

    9here 7u and Mu are the factored axial compressive load and "ending moment respectively

    7uAWck x"D ='+.)( x %&' A+& x +(& x =(& &.+&

    MuAWck x"xD+ )+.'x %&>A+& x +(& x =(&+ &.&)

    herefore using chart =( of design aid to is =(>;+&&& $7 %> for calculating pAWck

    herefore pAσck &.&=herefore percentage of reinforcement C7E &.&= x +& &. @

    #rea of reinforcement re:uired #$t p x "D

    &. x+(& x =(&A%&& &&mm+

    herefore provided l>mm diaY( "ars

    Lateral Ties:

    Diameter of lateral ties shall "e not less then

    ggE>mm

    hhE x diameter of longitudinal reinforcement %A= x %> =

    herefore* provide >mm tie

    $pacing of tie shall not exceed

    mmmE /ea$t lateral diamention of column +(&mmnnmE %> x diameter of longitudinal %> x %> +(> mm

    oooE = x diameter of ties = x > + mm

    pppE '&&mm

  • 8/18/2019 Building .docx

    93/134

    $pacing +(&mm

    herefore >mm "ar Y+(&mm cAc.

    Desi0! #1 !ter!al C#lu ! ;cB c%% 6

    $imm diaY( "ars

  • 8/18/2019 Building .docx

    94/134

    Lateral Ties:

    Diameter of lateral ties shall "e not less then

    iiE>mm

    jjE x diameter of longitudinal reinforcement %A= x %> =

    herefore* provide >mm tie

    $pacing of tie shall not exceed

    :::E /ea $t lateral diamention of column +(&mm

    rrrE %> x diameter of longitudinal %> x %> +(> mm

    sssE = x diameter of ties = x > + mmtttE '&&mm

    $pacing +(&mm

    herefore >mm "ar Y+(&mm cAc.

    DES GN O5 3EAM

    Desi0! #1 R##1 3ea :

    !ter!al bea 1#r r##1 bea s:

    - ' * -=*-(*->*-)*- *- *- %&* - %*-%*-+&*-+% *-++olal moment due to Dead load and /ive load

    M %& .&'( 3;m-ending Moment due to 2xternal load +=.% 3;m1actored com"ined load %.+CDead load /ive load 2xternal loadE

    %.+C%& .&'( +=.% EMu %( .(>+ 3;m-eam si

  • 8/18/2019 Building .docx

    95/134

    d =(& ;=& =%& " +(&mmLmlim &.=+d &.=+P=%& % )mm

    Mulim &.'>σ ck "Lmlim Cd;&.=+LmlimE &.'>P+&P+(&P % )C=%&;&.=+P % )E%%>.&( 3;m

    *Mulim T Mu C dou"ly reinforcementE

    &.'>σck "Lmlim &. )σy#$t

    # $t% +.%'(mm+

    Mu ; Mulim &. )σ y#$t+ Cd;dGEC%( .(>;%%>.&(E%&> &. )P=%(PC=%&;=&E #$t+*#$t.+ '% .+%mm+.8 #$t #$t% #$t+ +.%'( '% %'&&.'='mm+7rovided +&mm dia "ars 3o. of "ars %'&&.'='A'%= =.l≈ =

    7ercentage of $teel 7s %'&&.'='P %&&A+(&P=%& %.+> @

    Area i! Steel i! c# $ressi#! 82sc &.&&' Qxrnlirn;dG A LmlimR &.&&'Q% );=&A% )R &.&+= 3Amm+

    Hence the value of f sc as code I$ ;=(>;+&&&1sc &. (σy &. (P=%( '(+.)(3Amm+

    1s &.( σ y P #rea re:uiredA#rea provided

    . &.( P=%(P %'&&.'='A%+(> += .%

    # sc x σy &. )σy #$t+ # sc x '(+.)( . )P=%(P'% .+ '+(.> mm+

    7rovide %> mm dia "ars 3o.of "ars '+(.> A+&& %.)+≈ + "ars

    G@ of $teel in compression '+(.> P%&&A+(&P=%& &.'% @

  • 8/18/2019 Building .docx

    96/134

    Chec7 1#r De1lecti#!:

    1s += .B 3Amm+1% &. ( *1+ %.l *1' %Deflection provided /AdT re:uired otherwise depth>&& A =%&T f % f + f ' x +&%=.>'= T&. (P%.%'P% P+&%=.>'= T +%. ( Hence ok CsafeE

    heck?Maximum tension $teel #$t &.&="D =(&& mm+

    E8ter!al bea 1#r r##1:

    - ' * -=/et the peripheral wall +&P&.%(P% P> % 3

    olal load of peripheral wall on "eam*w % A> ' 3AmMw wl+Al+ 'P'>A%+ 3;m

    otal moment due to wall and dead load and live load

    M %& .&'( % %).&'( 3;m*-ending Moment due to 2xternal load +=.l 3;m1actored com"ined load %.+CDead load /ive load 2xternalloadE

    %.+


Recommended