+ All Categories
Home > Documents > Burden of disease from rising coal emissions in...

Burden of disease from rising coal emissions in...

Date post: 21-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
7
Burden of disease from rising coal emissions in Asia Shannon Koplitz 1 , Daniel Jacob 1 , Lauri Myllyvirta 2 , Melissa Sulprizio 1 1 Harvard University 2 Greenpeace International
Transcript
  • Burden of disease from rising coal emissions in Asia

    Shannon Koplitz1, Daniel Jacob1, Lauri Myllyvirta2, Melissa Sulprizio1 1Harvard University

    2Greenpeace International

  • Coal use is expanding rapidly in Asia 2014 Population

    1. China = 1369.5 million 2. India = 1270 million 3. U.S. = 321 million

    4. Indonesia = 255 million Japan

    S. Korea

    Taiwan

    Philippines

    Vietnam Myanmar

    Malaysia

    Indonesia

    Thailand

    China India U.S.

    0

    1

    2

    3

    4

    5

    6

    7

    China India U.S. Countries in this work

    Tg y

    r-1

    Coal SO2 Emissions (Present Day ~2011)

    Lu et al., 2011; EPA Annual ARP report 2013

  • Coal use is expanding rapidly in Asia

    If all projected plants become operational, Asian coal emissions of SO2 and NOx could triple by 2030. Indonesia and Vietnam together account for 67% of this projected increase, as well as an additional 35 million people by 2030.

    Japan

    S. Korea

    Taiwan

    Philippines

    Vietnam Myanmar

    Malaysia

    Indonesia

    Thailand

    Estimated 2030 Population 1. India = 1523 million 2. China = 1393 million

    3. U.S. = 361 million 4. Indonesia = 280 million

    Lu et al., 2011; EPA Annual ARP report 2013

    China India U.S. Countries in this work

    Tg y

    r-1

    Coal SO2 Emissions

    China India U.S.

    0

    1

    2

    3

    4

    5

    6

    7

    Increase by 2030

    2011

  • 1.  Calculate surface PM and ozone concentrations due to both 2011 and estimated 2030 coal emissions in East and Southeast Asia (excluding emissions from China and India).

    2.  Estimate the human health burden of this rising coal pollution.

    Project Objectives

    Approach

    1.  Implement three 1-year emission scenarios of coal SO2, NOx, and primary PM2.5 (as fine mode dust) into v9-02 of GEOS-Chem at 0.5°x0.666° resolution over Asia:

    a.  Present Day (2011) – Replace EDGAR v4.2 emissions over Asia with 2011

    reported emissions b.  2030 – Add emissions for all Asian coal plants in the developmental

    pipeline c.  No Coal – Remove contribution of Asian coal emissions from EDGAR v4.2

    2.  Apply concentration-response relationships following Krewski et al., 2009

    (PM) and Anenberg et al., 2010 (ozone) to estimate the premature mortality due to coal-related pollution.

  • Regional PM enhancements are mostly from sulfate

    PM enhancements correlate spatially with population density. Total exposure is third highest in China, due to high population levels in southern China near Vietnamese emissions.

    (Gridded Population of the World from CIESIN)

    2010 Population Map

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 100oE 110oE 120oE 130oE

    0.100.20

    0.501.002.00

    5.0010.00

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 100oE 110oE 120oE 130oE

    0

    25000

    50000

    75000

    100000

    125000

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 100oE 110oE 120oE 130oE

    050000100000150000200000250000300000350000

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 95oE 100oE 105oE 110oE 115oE 120oE 125oE 130oE

    0

    50000

    100000

    150000

    200000

    250000

    300000

    350000

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 95oE 100oE 105oE 110oE 115oE 120oE 125oE 130oE

    0

    50000

    100000

    150000

    200000

    250000

    300000

    350000

    population

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 95oE 100oE 105oE 110oE 115oE 120oE 125oE 130oE

    0.10

    0.20

    0.50

    1.00

    2.00

    5.00

    10.00

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 100oE 110oE 120oE 130oE

    0.100.20

    0.501.002.00

    5.0010.00

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 100oE 110oE 120oE 130oE

    0

    25000

    50000

    75000

    100000

    125000

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 100oE 110oE 120oE 130oE

    050000100000150000200000250000300000350000

    ΔPM2.5 from 2030 Coal

    µg m-3

    Jakarta

    Hanoi

  • We estimate 16,000 deaths annually from current coal

    Including a 10% population increase by 2030 in both Indonesia and Vietnam, we estimate 45,600 deaths annually by 2030 if all projected plants become operational.

    Excess Deaths Per Year Total Exposure in 2030 (ΔPM2.5 x Population)

    Base mortality rate

    concentration-response factor

    from GEOS-Chem

    2011: 14,860 PM 1,530 ozone 16,390 total 2030 increase: 24,160 PM 2,390 ozone 26,550 total = 42,940 excess deaths per year (using 2010 population)

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 100oE 110oE 120oE 130oE

    0.100.20

    0.501.002.00

    5.0010.00

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 100oE 110oE 120oE 130oE

    0

    25000

    50000

    75000

    100000

    125000

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 100oE 110oE 120oE 130oE

    050000100000150000200000250000300000350000

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    25oN

    30oN

    90oE 95oE 100oE 105oE 110oE 115oE 120oE 125oE 130oE

    0

    25000

    50000

    75000

    100000

    ΔMortality = γ0 x CRF(β, ΔPM2.5) x Population

  • Global changes in PM are small and driven by NOx

    Intercontinental enhancements in surface PM reflect the influence of NOx emissions on oxidant chemistry. Greater influence over Europe compared to U.S. is likely due to higher domestic PM sources there (SO2, NOx, NH3).

    Future - No Coal Surface PM2.5

    90oS

    60oS

    30oS

    0o30oN

    60oN

    90oN

    180o 120oW 60oW 0o 60oE 120oE 180o

    0 0.005 0.01 0.015 0.02 0.025 ug m-3

    Future - No Coal Surface O3

    90oS

    60oS

    30oS

    0o30oN

    60oN

    90oN

    180o 120oW 60oW 0o 60oE 120oE 180o

    0 0.1 0.2 0.3 0.4 0.5 ppb

    Future - No Coal Surface PM2.5

    90oS

    60oS

    30oS

    0o30oN

    60oN

    90oN

    180o 120oW 60oW 0o 60oE 120oE 180o

    0 0.005 0.01 0.015 0.02 0.025 ug m-3

    Future - No Coal Surface O3

    90oS

    60oS

    30oS

    0o30oN

    60oN

    90oN

    180o 120oW 60oW 0o 60oE 120oE 180o

    0 0.1 0.2 0.3 0.4 0.5 ppb

    ΔPM2.5 from Asian NOx

    Leibensperger et al., 2011: ΔPM2.5 from 2030 Coal (this work) ΔPM2.5 from Asian SO2

    µg m-3

    µg m-3


Recommended