+ All Categories
Home > Documents > Butler Matrix

Butler Matrix

Date post: 05-Mar-2015
Category:
Upload: amgadadel
View: 485 times
Download: 9 times
Share this document with a friend
32
-Harish Rajagopalan
Transcript
Page 1: Butler Matrix

-Har

ish

Raj

ago

pal

an

Page 2: Butler Matrix

O

bje

ctiv

e

E

lem

ents

of

Butl

er m

atri

x

S

tudy o

f 2x2, 4x4 a

nd 8

x8 b

utl

er m

atri

ces

T

esti

ng a

nd r

esult

s fo

r 4x4

C

oncl

usi

on a

nd f

utu

re s

cope

Page 3: Butler Matrix

Antenna Beam Scanning Methods

Mechanical Scanning Electronic Scanning

Phase Scanning Frequency Scanning

Series Feed Parallel Feed

(Blass m

atrix) (Butler matrix)

Page 4: Butler Matrix

Principle of Butler matrix

Inci

dent

wav

efro

nt

Ant

enna

s

0

-90

-90

0

1

2

1

2

1’

2

1

2’

BE

AM

B

EA

M

LE

FT

RIG

HT

I 1= A

1e j0

------(1)

I 2 =A2e jπ

/2 ------(2)

and A1 = A

2 -------(3)

I 1’= I1+ I2ejπ/2

or I1’= A

1ej0+ A

2ejπ-------(4)

I 2’= I1ejπ/2+ I2,

I 2’= A

1ejπ/2+A2ejπ/2,

Or I 2’= (A1 + A

2 )ejπ/2 -------(5)

A1and A

2

amplitudes of antenna currents

I 1and I2

Input antenna currents I1’and I2’

output antenna currents

Page 5: Butler Matrix

Characteristics of Butler matrix

-Number of beams = Number of antenna elements =N

-Number of Hybrid rings = N/2log2N

-Number of Phase shifters =

N/2 (log2N-1)

-Low insertion loss

-Uniform

antenna array illumination

Page 6: Butler Matrix

4 x 4 Butler matrix

1L = A1 ∠

450 + A2 ∠

900 + A3 ∠

1350+ A4 ∠

1800

2R = A1 ∠

1350+ A2 ∠

00 + A3 ∠

2250+ A4 ∠

900

2L = A1 ∠

900+ A2 ∠

2250+ A3 ∠

00+ A4 ∠

1350

1R = A1 ∠

1800+ A2 ∠

1350+A3 ∠

900+ A4 ∠

450

Page 7: Butler Matrix

2R

1R

1L

2L

=

e-j3/4π

e-j0π

e-j5/4π

e-jπ/2

e-jπ

e-j3/4π

e-jπ/2

e-jπ/4

e-jπ/4

e-jπ/2

e-j3/4π

e-jπ

e-jπ/2

e-j5/4π

e-j0π

e-j3/4π

A1

A2

A3

A4

Phase matrix of 4 x 4 Butler matrix

2R

0 -

135 9

0-4

5

A1

1R

=0 -

45 -9

0-1

35

A2

1L

0

45 9

0135

A3

2L

0

135 -9

045

A4

Phase progression

Page 8: Butler Matrix

8 x 8 Butler matrix

1 2

3 4 5 6

7 8

9

Equation for 1L port.

At point 1: A1 + A5∠90

At point 2: A2 + A6∠90

At point 3: A1∠45 + A5∠135

At point 4: A3 + A7∠90

At point 5: A2∠45 + A6∠135

At point 6: A4 + A8∠90

At point 7: A1∠45 + A5∠90 + A3∠90

+A7∠180

At point 8: A2∠45 + A6∠135 + A4∠90

+A8∠180

At point 9: A1∠112.5 + A5∠157.5

+A3∠157.5 + A7∠247.5

At port 1L: A1∠112.5 + A5∠157.5 + A3∠157.5 + A7∠247.5 + A2∠135 + A6∠225 + A4∠180 + A8∠270

Page 9: Butler Matrix

Phase m

atrix of 8 x 8 Butler matrix

Phase progression

Page 10: Butler Matrix

Beam pattern for 8x8 Butler matrix

Page 11: Butler Matrix

Components of Butler matrix

•Qudrature hybrid

•Fixed phase shifter

•Helical antenna

Page 12: Butler Matrix

Qudrature Hybrid

Branch line coupler

Page 13: Butler Matrix

MicrostripLines

Basic Structure

Page 14: Butler Matrix

Desig

n O

f H

ybrid (B

ranchline C

ouple

r)Frequency = 1GHz Wavelength(in air) = 30 cm.

Substrate used for PCB manufacturing is FR-4 Glass Epoxy.

For FR-4 board, Relative dielectric constant (εr) = 4.4

The height of the dielectric (d) = 1.6 mm

Characteristic impedance Zo = 50 Ω

Zo1 = Zo/√2 = 35.35 Ω

Formulae:

1. E

ffec

tive

Die

lect

ric

const

ant(εe) = εr+1+ εr-1 (1 + 12 d / W

)-1/2

2

2

2 . W

/d = 2/π[B –1 –ln (2B –1) + (εr –1)/2εr ln (B –1) + 0.39 -0.61/εr]. …

W/d > 2

where

B = 377π

2Zo(εr)

1/2

Page 15: Butler Matrix

Calculations

For 50 Ω

B = 5.646312

W/d = 1.91335

W = 3.06136 m

m

ε eff = 3.33024

λmicrostrip = λo/√εeff = 16.43886 cm

Length of track = λmicrostrip/4 = 4.1097 cm

For 35.35 Ω

B = 7.98629

W/d = 3.26475

W = 5.2236

ε eff =3.48619

λmicrostrip = λo/√εeff = 16.0674 cm

Length of track = λmicrostrip/4 = 4.0168 cm

Page 16: Butler Matrix

Fixed Phase shifter

Semi rigid cable

•O

ute

r C

onducto

r (C

opper)

-minimizes the power loss

-maximizes the mechanical integrity

-provides the desired interface with connections

•C

ente

r conducto

r(Silver pla

ted c

opper)

-acts as primary signal carrier

-provides excellent high frequency conductivity

•D

iele

ctr

ic m

ate

rial (P

oly

tetr

afluoro

eth

yle

ne )

-maintains the spacing and geometry of the cable

-assures mechanical integrity during form

ing and

bending or under pressure

Page 17: Butler Matrix

Design of phase shifter

L1

a1

L2

a2

Differential measurement

L1 provides phase shift of a1o

L2 provides phase shift of a2 o

(L1-L2) provides phase shift of (a1-a2) o

L1 = 10 cm,

a1 = 97.2

o

L2 = 15 cm,

a2 = 18.5

o

(15-10) cm

(18.5-97.2) o

5 cm

-78.7

o

1 cm

-15.7

o

22.87 cm

360o

λc-wavelength in cable = 22.8 cm

λa-wavelength in air = 30.0 cm

Velocity factor = λc/λa = 76%.

Page 18: Butler Matrix

Helical antenna

Helical geom

etr

y

D = 110 mm

d = 2 mm

L = 353.5 mm

S = 75 mm

A = 450 mm

C = πD = 345.5mm

α= arc tan S/πD = 12.24o

N =

num

ber

of

turn

s =

6

1.2 ≥Cλ≥0.8,

14o ≥α≥12o and n ≥4

Page 19: Butler Matrix

Transmission And Radiation Modes Of Helix

1.

Norm

al mode-

The field radiated by the antenna is m

aximum in a plane norm

al to the helix

and minimum along its axis.

2. Axial mode

The field radiated by the antenna is maximum along its axis.

Power Beam W

idth (HPBW) = 52

= 36o

cλ√nsλ

Page 20: Butler Matrix

Impedance m

atching

With axial feed the term

inal impedance (resistive)is given by

R = 140Cλ

(Ω)

Gradually tapered transition from helix to coaxial line

Page 21: Butler Matrix

Testing and Results

Testing of Phase shifter

Testing of 4 x 4 Butler matrix

Beam form

ation of 4 x 4 Butler matrix

Page 22: Butler Matrix

Tes

ting

of

Hy

bri

d

Page 23: Butler Matrix
Page 24: Butler Matrix
Page 25: Butler Matrix
Page 26: Butler Matrix
Page 27: Butler Matrix
Page 28: Butler Matrix

PC

B L

ayou

t

Page 29: Butler Matrix
Page 30: Butler Matrix

Applications

-tra

ckin

g o

f ra

dio

sourc

es

-direction fin

din

g

Futu

re s

cope

-Adaptive a

rray a

nd s

mart

ante

nna -D

igitiz

ation

Page 31: Butler Matrix

Ref

eren

ces

Page 32: Butler Matrix

Recommended