+ All Categories
Home > Documents > BWR Nuclear Systems

BWR Nuclear Systems

Date post: 08-Apr-2018
Category:
Upload: laavaniyaa-ananthan
View: 217 times
Download: 0 times
Share this document with a friend

of 25

Transcript
  • 8/6/2019 BWR Nuclear Systems

    1/25

    Boiler Water Reactor Systems

    Bill Henwood

    Director, Nuclear

  • 8/6/2019 BWR Nuclear Systems

    2/25

    Boiler Water Reactor Systems

    Insidetheboilingwaterreactor(BWR)vessel,asteamwatermixtureisproducedwhenverypurewater(reactorcoolant)movesupwardthroughthecoreabsorbingheat.

    ThemajordifferenceintheoperationofaBWR

    fromothernuclearsystemsisthesteamvoid

    formationinthecore.

    Thesteamwatermixtureleavesthetopofthe

    coreandentersthetwostagesofmoistureseparation,wherewaterdropletsareremovedbeforethesteamisallowedtoenterthesteam

    line.

  • 8/6/2019 BWR Nuclear Systems

    3/25

    Boiler Water Reactor Systems

    Thesteamline,inturn,directsthesteam

    tothemainturbinecausingittoturnthe

    turbineandtheattachedelectricalgenerator.

    The

    unused

    steam

    is

    exhausted

    to

    the

    condenserwhereitiscondensedintowater.

    Theresultingwaterispumpedoutofthe

    condenserwithaseriesofpumpsandbacktothereactorvessel.

    Therecirculationpumpsandjetpumpsallow

    theoperatortovarycoolantflowthroughthe

    coreandchangereactorpower.

  • 8/6/2019 BWR Nuclear Systems

    4/25

    BWR 6 Reactor Vessel

    Thereactorvesselassemblyshown,consistsofthereactorvesselanditsinternalcomponents,includingthecore

    supportstructures,coreshroud,moistureremovalequipment,andjetpumpassemblies.

    Thepurposesofthereactorvesselassemblyareto:

    Housethereactorcore,

    Serveaspartofthereactorcoolantpressureboundary,

    Supportandalignthefuelandcontrolrods,

    Provideaflowpathforcirculationofcoolantpastthefuel,

    Removemoisturefromthesteamexitingthecore,and

    Providearefloodablevolumeforalossofcoolantaccident.

  • 8/6/2019 BWR Nuclear Systems

    5/25

    BWR 6 Reactor Vessel

    Thereactorvesselisverticallymountedwithinthedrywell

    andconsistsofacylindricalshellwithanintegralrounded

    bottomhead.

    Thetopheadisalsoroundedinshapebutisremovableviathestudandnutarrangementtofacilitaterefuelingoperations.

    Thevesselassemblyissupportedbythevesselsupportskirt

    (20)whichismountedtothereactorvesselsupportpedestal.

  • 8/6/2019 BWR Nuclear Systems

    6/25

    BWR 6 Reactor Vessel

    Theinternalcomponentsofthereactorvesselaresupportedfromthebottomheadand/orvesselwall.

    Thereactorcoreismadeupoffuelassemblies(15),controlrods(16),andneutronmonitoringinstruments(24).

    Thestructuresurroundingtheactivecoreconsistsofacore

    shroud

    (14),

    core

    plate(17),

    and

    top

    guide

    (12).

    Thecomponentsmakinguptheremainderofthereactorvesselinternalsarethejetpumpassemblies(13),steamseparators(6),steamdryers(3),feedwaterspargers(8),and

    coresprayspargers(11).

    Thejetpumpassembliesarelocatedintheregionbetween

    thecoreshroudandthevesselwall,submergedinwater.

    Thejetpumpassembliesarearrangedintwosemicirculargroupsoften,witheachgroupbeingsuppliedbyaseparate

    recirculationpump.

  • 8/6/2019 BWR Nuclear Systems

    7/25

    BWR 6 Reactor Vessel

    Theemergencycorecoolingsystems,penetrationsnumber5and9,andthereactorvesseldesignsarecompatibletoensurethatthe

    corecanbeadequatelycooledfollowingalossofreactorcoolant.

    Theworstcaselossofcoolantaccident,withrespecttocore

    cooling,isarecirculationlinebreak(penetrationsnumber18and19).

    Inthisevent,reactorwaterleveldecreasesrapidly,uncovering the

    core.

    However,severalemergencycorecoolingsystemsautomatically

    providemakeupwatertothenuclearcorewithintheshroud,providingcorecooling

  • 8/6/2019 BWR Nuclear Systems

    8/25

    BWR 6 Fuel Assembly

    Thecontrolcellassemblyisrepresentativeforboilingwaterreactor1through6.

    Eachcontrolcellconsistsofacontrolrod(7)andfourfuelassembliesthatsurroundit.

    Unlikethepressurizedwaterreactorfuelassemblies,theboilingwaterreactorfuelbundleisenclosedinafuel

    channel(6)todirectcoolantupthroughthefuelassembly

    andactasabearingsurfaceforthecontrolrod.

    Inaddition,thefuelchannelprotectsthefuelduringrefuelingoperations.

    Thepowerofthecoreisregulatedbymovementofbottom

    entrycontrolrods.

  • 8/6/2019 BWR Nuclear Systems

    9/25

    Reactor Water Cleanup System

    Thepurposeofthereactorwatercleanupsystem(RWCU)istomaintainahighreactorwaterqualitybyremovingfissionproducts,corrosionproducts,andothersolubleand

    insolubleimpurities.

    Thereactorwatercleanuppumptakeswater

    fromtherecirculationsystemandthevesselbottomheadandpumpsthewaterthroughheatexchangerstocooltheflow.

    The

    water

    is

    then

    sent

    through

    filter/demineralizersforcleanup.

    Aftercleanup,thewaterisreturnedtothereactorvesselviathefeedwaterpiping.

  • 8/6/2019 BWR Nuclear Systems

    10/25

    Decay Heat Removal

    Heatisremovedduringnormalpoweroperationbygeneratingsteaminthereactorvesselandthenusingthatsteamtogenerateelectricalenergy.

    Whenthereactorisshutdown,thecorewillstill

    continuetogeneratedecayheat.

    Theheatisremovedbybypassingtheturbineanddumpingthesteamdirectlytothe

    condenser.

    Theshutdowncoolingmodeoftheresidualheatremoval(RHR)systemisusedtocompletethe

    cooldownprocesswhenpressuredecreasesto

    approximately50psig.

    Waterispumpedfromthereactorrecirculationloopthroughaheatexchangerandbacktothereactorviatherecirculationloop.

    Therecirculationloopisusedtolimitthe

    numberofpenetrationsintothereactorvessel.

  • 8/6/2019 BWR Nuclear Systems

    11/25

    Reactor Core Isolation Cooling

    Thereactorcoreisolationcooling(RCIC)systemprovidesmakeupwatertothereactor

    vessel

    for

    core

    cooling

    when

    the

    main

    steam

    linesareisolatedandthenormalsupplyofwatertothereactorvesselislost.

    TheRCICsystemconsistsofaturbinedrivenpump,piping,andvalvesnecessarytodeliver

    watertothereactorvesselatoperatingconditions.

  • 8/6/2019 BWR Nuclear Systems

    12/25

    Reactor Core Isolation Cooling

    Theturbineisdrivenbysteamsuppliedbythemainsteamlines.Theturbineexhaustisroutedtothesuppressionpool.

    Theturbinedrivenpumpsuppliesmakeupwaterfromthecondensatestoragetank,

    withanalternatesupplyfromthesuppressionpool,tothereactorvesselviathefeedwaterpiping.

    Thesystemflowrateisapproximatelyequaltothesteamingrate15minutesaftershutdown

    withdesignmaximumdecayheat.

    Initiationofthesystemisaccomplishedautomaticallyonlowwaterlevelinthereactor

    vesselormanuallybytheoperator.

  • 8/6/2019 BWR Nuclear Systems

    13/25

    Standby Liquid Control System

    The

    standby

    liquid

    control

    system

    injects

    a

    neutronpoison(boron)intothereactorvesseltoshutdownthechainreaction,independentof

    thecontrolrods,andmaintainsthereactorshutdownastheplantiscooledtomaintenancetemperatures.

    Thestandbyliquidcontrolsystemconsistsofaheatedstoragetank,twopositivedisplacement

    pumps,twoexplosivevalves,andthepiping

    necessarytoinjecttheneutronabsorbingsolutionintothereactorvessel.

    Thestandbyliquidcontrolsystemismanually

    initiatedandprovidestheoperatorwitha

    relativelyslowmethodofachievingreactor

    shutdownconditions.

  • 8/6/2019 BWR Nuclear Systems

    14/25

    Emergency Core Cooling

    Theemergencycorecoolingsystems(ECCS)providecorecoolingunderlossofcoolantaccidentconditionstolimitfuelcladdingdamage.

    Theemergencycorecoolingsystemsconsistoftwohighpressureandtwolowpressuresystems.

    Thehighpressuresystemsarethehighpressurecoolant

    injection(HPCI)systemandtheautomaticdepressurizationsystem(ADS).

    Thelowpressuresystemsarethelowpressurecoolant

    injection(LPCI)modeoftheresidualheatremovalsystem

    andthecorespray(CS)system.

  • 8/6/2019 BWR Nuclear Systems

    15/25

    Emergency Core Cooling

    Themannerinwhichtheemergencycorecoolingsystems

    operatetoprotectthecoreisafunctionoftherateatwhich

    reactorcoolantinventoryislostfromthebreakinthenuclearsystemprocessbarrier.

    Thehighpressurecoolantinjectionsystemisdesignedto

    operate

    while

    the

    nuclear

    system

    is

    at

    high

    pressure.

    Thecorespraysystemandlowpressurecoolantinjection

    modeoftheresidualheatremovalsystemaredesignedforoperationatlowpressures.

    Ifthebreakinthenuclearsystemprocessbarrierisofsuchasizethatthelossofcoolantexceedsthecapabilityofthehighpressurecoolantinjectionsystem,reactorpressure

    decreasesataratefastenoughforthelowpressure

    emergencycorecoolingsystemstocommencecoolant

    injectionintothereactorvesselintimetocoolthecore.

  • 8/6/2019 BWR Nuclear Systems

    16/25

    Emergency Core Cooling

    Automaticdepressurizationisprovidedtoautomatically

    reducereactorpressureifabreakhasoccurredandthehigh

    pressurecoolantinjectionsystemisinoperable.

    Rapiddepressurizationofthereactorisdesirabletopermit

    flowfromthelowpressureemergencycorecoolingsystemssothatthetemperatureriseinthecoreislimitedtolessthanregulatoryrequirements.

    If,foragivenbreaksize,thehighpressurecoolantinjectionsystemhasthecapacitytomakeupforallofthecoolant

    loss,flowfromthelowpressureemergencycorecooling

    systemsisnotrequiredforcorecoolingprotectionuntilreactorpressurehasdecreasedbelowapproximately100psig.

  • 8/6/2019 BWR Nuclear Systems

    17/25

    Emergency Core Cooling

    Theperformanceoftheemergencycorecoolingsystemsas

    an

    integrated

    package

    can

    be

    evaluated

    by

    determining

    whatisleftafterthepostulatedbreakandasinglefailureofoneoftheemergencycorecooingsystems.

    Theremainingemergencycorecoolingsystemsandcomponentsmustmeetthe10CFRrequirementsoverthe

    entirespectrumofbreaklocationsandsizes.

  • 8/6/2019 BWR Nuclear Systems

    18/25

    High Pressure EmergencyCore Cooling System

    Thehighpressurecoolantinjection(HPCI)systemisanindependentemergencycore

    coolingsystemrequiringnoauxiliaryacpower,

    plantairsystems,orexternalcoolingwatersystemstoperformitspurposeofproviding

    makeupwatertothereactorvesselforcore

    coolingundersmallandintermediatesizelossofcoolantaccidents.

    Thehighpressurecoolantinjectionsystemcan

    supplymakeupwatertothereactorvesselfrom

    aboveratedreactorpressuretoareactor

    pressurebelowthatatwhichthelowpressureemergencycorecoolingsystemscaninject.

  • 8/6/2019 BWR Nuclear Systems

    19/25

    High Pressure EmergencyCore Cooling System

    Theautomaticdepressurizationsystem

    (ADS)consistsofredundantlogicscapableofopeningselectedsafetyreliefvalves,when

    required,toprovidereactordepressurizationforeventsinvolvingsmallorintermediate

    sizelossofcoolantaccidentsifthehighpressurecoolantinjectionsystemisnot

    availableorcannotrecoverreactorvessel

    water

    level.

  • 8/6/2019 BWR Nuclear Systems

    20/25

    Low Pressure EmergencyCore Cooling System

    Thelowpressureemergencycorecoolingsystemsconsistoftwoseparateand

    independentsystems,thecorespraysystem

    andthelowpressurecoolantinjection(LPCI)

    mode

    of

    the

    residual

    heat

    removal

    system.

    Thecorespraysystemconsistsoftwoseparateandindependentpumpingloops,eachcapable

    ofpumpingwaterfromthesuppressionpool

    intothereactorvessel.

    Corecoolingisaccomplishedbysprayingwater

    ontopofthefuelassemblies

  • 8/6/2019 BWR Nuclear Systems

    21/25

    Low Pressure EmergencyCore Cooling System

    Thelowpressurecoolantinjectionmodeoftheresidualheatremovalsystemprovidesmakeup

    watertothereactorvesselforcorecoolingunderlossofcoolantaccidentconditions.

    Theresidualheatremovalsystemisamultipurposesystemwithseveraloperationalmodes,eachutilizingthesamemajorpieces

    ofequipment.

    Thelowpressurecoolantinjectionmodeisthe

    dominantmodeandnormalvalvelineupconfigurationoftheresidualheatremovalsystem.

    The

    low

    pressure

    coolant

    injection

    mode

    operatesautomaticallytorestoreand,ifnecessary,maintainthereactorvesselcoolant

    inventorytoprecludefuel claddingtemperaturesinexcessof2200F.

    Duringlowpressurecoolantinjection

    operation,theresidualheatremovalpumpstakewaterfromthesuppressionpoolanddischargetothereactorvessel.

  • 8/6/2019 BWR Nuclear Systems

    22/25

    BoilingWaterReactorContainments

    MarkI MarkII MarkIII

    Theprimarycontainmentpackageprovidedforaparticularproductlineisdependentuponthevintage

    oftheplantandthecostbenefitanalysisperformedpriortotheplantbeingbuilt.

    Duringtheevolutionoftheboilingwaterreactors,threemajortypesofcontainmentswerebuilt.

    The

    major

    containment

    designs

    are

    the

    Mark

    I

    ,Mark

    II

    ,

    and

    the

    Mark

    III.

    UnliketheMarkIII,thatconsistsofaprimarycontainmentandadrywell,theMarkIandMarkIIdesignsconsistofa

    drywellandawetwell(suppressionpool).

    Allthreecontainmentdesignsusetheprincipleofpressuresuppressionforlossofcoolantaccidents.

    Theprimarycontainmentisdesignedtocondensesteamandtocontainfissionproductsreleasedfromalossofcoolant

    accidentsothatoffsiteradiationdosesspecifiedin10CFR100 arenotexceededandtoprovideaheatsinkandwater

    sourceforcertainsafetyrelatedequipment.

  • 8/6/2019 BWR Nuclear Systems

    23/25

    Mark I Containment - GE

    TheMarkIcontainmentdesignconsistsofseveralmajor

    components,manyofwhichcanbeseenonthisslide

    Thesemajorcomponentsinclude:

    Thedrywell,whichsurroundsthereactorvesselandrecirculationloops,

    Asuppressionchamber,whichstoresalargebodyofwater(suppressionpool),

    Aninterconnectingventnetworkbetweenthedrywelland

    the

    suppression

    chamber,

    and

    Thesecondarycontainment,whichsurroundstheprimary

    containment(drywellandsuppressionpool)andhousesthespentfuelpoolandemergencycorecoolingsystems.

  • 8/6/2019 BWR Nuclear Systems

    24/25

    Mark II Containment - GE

    TheMarkIIprimarycontainmentconsistsofasteeldomeheadandeitheraposttensionedconcretewall orreinforcedconcrete

    wallstandingonabasematofreinforcedconcrete.

    Theinnersurfaceofthecontainmentislinedwithasteelplatethatactsasaleaktightmembrane.

    Thecontainmentwallalsoservesasasupportforthefloorslabsof

    thereactorbuilding(secondarycontainment)andtherefuelingpools.

    TheMarkIIdesignisanoverunderconfiguration.

    Thedrywell,intheformofafrustumofaconeoratruncatedcone,islocateddirectlyabovethesuppressionpool.

    Thesuppressionchamberiscylindricalandseparatedfromthedrywellbyareinforcedconcreteslab.

    Thedrywellistoppedbyanellipticalsteeldomecalledadrywell

    head.

    Thedrywellinertedatmosphereisventedintothesuppressionchamberthroughasseriesofdowncomerpipespenetratingandsupportedbythedrywellfloor.

  • 8/6/2019 BWR Nuclear Systems

    25/25

    Mark III Containment - GE

    TheMarkIIIprimarycontainmentconsistsof

    severalmajorcomponents,manyofwhichcanbeseenhere.

    Thedrywell(13)isacylindrical,reinforcedconcretestructurewitharemovablehead.

    Thedrywellisdesignedtowithstandand

    confinesteamgeneratedduringapiperupture

    insidethecontainmentandtochannelthe

    releasedsteamintothesuppressionpool(10)viatheweirwall(11)andthehorizontalvents(12).

    Thesuppressionpoolcontainsalargevolumeofwaterforrapidlycondensingsteamdirectedto

    it.

    Aleaktight,cylindrical,steelcontainmentvessel

    (2)surroundthedrywellandthesuppressionpooltopreventgaseousandparticulatefission

    productsfromescapingtotheenvironmentfollowingapipebreakinsidecontainment.


Recommended