+ All Categories
Home > Documents > C alibration of the input parameters in pilot test areas

C alibration of the input parameters in pilot test areas

Date post: 23-Feb-2016
Category:
Upload: brygid
View: 51 times
Download: 0 times
Share this document with a friend
Description:
Task C. C alibration of the input parameters in pilot test areas. D. Galluzzo, F. Bianco, H . Langer, L.Scarfi , G. Tusa & G. Zonno INGV, Catania , Milano, Napoli, Italy A. Carvalho LNEC, Lisboa , Portugal S. Olafsson , R. Rupakhety & R. Sigbjörnsson - PowerPoint PPT Presentation
Popular Tags:
32
Calibration of the input parameters in pilot test areas D. Galluzzo, F. Bianco, H. Langer, L.Scarfi, G. Tusa & G. Zonno INGV, Catania, Milano, Napoli, Italy A. Carvalho LNEC, Lisboa, Portugal S. Olafsson, R. Rupakhety & R. Sigbjörnsson EERC, Selfoss, Iceland M.Garcia Fernandez, M.J. Jimenez, J. Jenny CSIC, Madrid, Spain M. La Rocca, M. Massa and R. Nappi are aknowledged for their contributions INGV, Napoli, Milano Task C
Transcript
Page 1: C alibration  of the input  parameters  in  pilot  test  areas

Calibration of the input parameters in pilot test areas

D. Galluzzo, F. Bianco, H. Langer, L.Scarfi, G. Tusa & G. Zonno• INGV, Catania, Milano, Napoli, Italy

A. Carvalho• LNEC, Lisboa, Portugal

S. Olafsson, R. Rupakhety & R. Sigbjörnsson • EERC, Selfoss, Iceland

M.Garcia Fernandez, M.J. Jimenez, J. Jenny• CSIC, Madrid, Spain

M. La Rocca, M. Massa and R. Nappi are aknowledged for their contributions• INGV, Napoli, Milano

Task C

Page 2: C alibration  of the input  parameters  in  pilot  test  areas

Main Goals of Task C: Calibration of earthquake source, path and site parameters/physical quantities by comparison between observed and synthetic waveforms. The application of the finite fault stochastic approach.

Simulation of scenarios for strong and rare earthquakes for which real data may not be available

Page 3: C alibration  of the input  parameters  in  pilot  test  areas

Task C - D E L I V E R A B L E S

C1.1 Definition of the critical points to calibrate the input parameters of the finite fault stochastic program

C2.1 Estimates of input parameters of EXSIM for the pilot study in test area 1(Mt Etna ML=4.8, Mt Vesuvius MD = 3.6 , Campi Flegrei MD=2.2)

C2.2 Estimates of input parameters of EXSIM for the pilot study in test area 2(Azores Islands Mw=6.0, mainland and offshore Portugal)

C2.3 Estimates of input parameters of EXSIM for the pilot study in test area 3(Spain, ML > 4.5)

C2.4 Estimates of input parameters of EXSIM for the pilot study in test area 4(South Iceland MW=6.5)

C3.1 Computation of synthetic ground shaking at the pilot test sites

C4.1 Computation of synthetic macroseismic fields derived from simulated PGV

C5.1 Enriched dataset using observed and synthetic bedrock Mfs.

Page 4: C alibration  of the input  parameters  in  pilot  test  areas

•Outline Strategy of work:

Calibration of ground motion parameters: application of a stochastic approach (EXSIM code, Motazedian and Atkinson, 2005)

1 - Definition of critical points to calibrate physical quantities and parameters

2 - Calibration: examples of applications for the investigated areas

3 - Conclusions and Further developments

Page 5: C alibration  of the input  parameters  in  pilot  test  areas

Definition of Critical Points for Calibration Procedure

The different data set characteristics have induced the participants to fix the criticalities that could be arise in managing different areas:

- the low magnitude data set for some areas;

- the application of stochastic approach for small faults;

- the variation of input parameters relative to the wide hypocentral distance range and focal depth of earthquakes;

- the uncertainties associated to some input parameters (stress drop for low magnitude earthquakes and time duration);

- Ground Motion Parmeters to be evaluated: PGA (PGV for small-to-moderate earthquakes), Response Spectra (5%), Housner/Arias Intensity...

Page 6: C alibration  of the input  parameters  in  pilot  test  areas

• Calibration of input parameters

…the most important parameters: Source: Magnitude, Fault dimensions, Stress Drop,

Subfault divisions

Path: Q(f,R) attenuation parameter

Site: High frequency decay “k” parameter, Empirical ”Site Effect” function

..Others: Time duration

Page 7: C alibration  of the input  parameters  in  pilot  test  areas

• Source parameter: the Magnitude

Seismic Moment estimation from low frequency flat part of displacement spectrum(Havskov & Ottemoller, 2010)

..a tool for a UNIFORM earthquake size determination …

From Catalogue ML=5.3, from Low Frequency Disp. Spectra Mw=5.1 +/-0.2 2000-06-21 00:55:13 South Iceland EQ

Mw = 5.1

Page 8: C alibration  of the input  parameters  in  pilot  test  areas

2007-08-01 23:38:16 Mt. Etna EQ

Catalogue ML = 3.2 MD = 3.3 ---- Low Freq. Disp. Spectra Mw = 3.3 +/- 0.2

Mw = 3.3

Page 9: C alibration  of the input  parameters  in  pilot  test  areas

Mw = 2.5

2012-09-07 07:34 Campi Flegrei EQ

Catalogue MD= 1.7 -- -- LFDS Mw = 2.5 +/- 0.2

Page 10: C alibration  of the input  parameters  in  pilot  test  areas

•MD [-0.3, 2.2], Depth [0.5, 3.0] km b.s.l., •30 seismic events in the period 2000 - 2012

•Campi Flegrei (Southern Italy, Area 1)

• Epicenters of selected earthquakes (red stars) • Seismic stations (blu triangles)

Page 11: C alibration  of the input  parameters  in  pilot  test  areas

•..An example of VT earthquake..Volcano-Tectonic Seismic Event occurred on 07-09-2012; MD=1.7

•Geostructural Map of Campi Flegrei (Di Vito et al., 1999)

Page 12: C alibration  of the input  parameters  in  pilot  test  areas

Fault Geometrical Parameter Strike = 300° , Dip = 80°

Magnitude Mw=2.7

Fault Dimension 0.2 x 0.2 km2

Depth of the fault 2.8 km b.s.l.

Stress Drop 7 bar

Average S-Wave velocity 2.0 km/s

Density 2.5 g/cm3

Attenuation Q parameter Q=27 f 0.6

Geometrical Spreading 1/R

Volcano-Tectonic Seismic Event occurred on 07-09-2012 MD=1.7 --- MW=2.5 +/- 0.2

Page 13: C alibration  of the input  parameters  in  pilot  test  areas

Calibration Results: Sensitivity to Stress Drop

Sim. 1 bar

Sim. 7 bar

Sim. 15 bar

Obs.E-W

Obs. N-S

Page 14: C alibration  of the input  parameters  in  pilot  test  areas

Calibration Results: Sensitivity to Stress Drop

Sim. 1 bar

Sim. 7 bar

Sim. 15 bar

Obs.E-W

Obs. N-S

Page 15: C alibration  of the input  parameters  in  pilot  test  areas

•Stochastic Simulation vs Empirical Results• for VT earthquake occurred on 07-09-2012, 07:34

• [km]

Page 16: C alibration  of the input  parameters  in  pilot  test  areas

Mt. Vesuvius (Southern Italy, Area 1)•MD [1.5, 3.6], Depth =[0.0, 4.0] km b.s.l., •50 seismic events in the period 1999 - 2012

Page 17: C alibration  of the input  parameters  in  pilot  test  areas

Fault Geometrical Parameter Strike = 300° , Dip = 80°Magnitude Mw=2.4Fault Dimension 0.2 x 0.2 km2

Depth of the fault 1.7 km b.s.l.Stress Drop 12 barAverage S-Wave velocity 1.7 km/sDensity 2.5 g/cm3

Attenuation Q parameter Q=30 f 0.7

Geometrical Spreading 1/R

2001-04-11 Mt. Vesuvius EQ MD=2.8

Page 18: C alibration  of the input  parameters  in  pilot  test  areas

Results of Calibration : Sensitivity to Stress Drop

Sim. 1 bar

Sim. 5 bar

Sim. 12 bar

Sim. 20 bar

Obs.E-W

Obs. N-S

Page 19: C alibration  of the input  parameters  in  pilot  test  areas

Sensitivity to Q and high freq k values

Q=10 f 0.5

Q=30 f 0.7

Q=50 f 0.8

k=0.015

k=0.04

k=0.06

Page 20: C alibration  of the input  parameters  in  pilot  test  areas

•Mt. Etna (Southern Italy, Area 1)

Epicentres of selected earthquakes and seismic stations of the RSPSO (triangles) for the Etnean zone.

•ML [3.0, 4.8], Depth =[5.0, 30.0] km b.s.l., • more than 120 seismic events in the period 2006 - 2011

Page 21: C alibration  of the input  parameters  in  pilot  test  areas

Empirical and synthetic ground motion prediction for a superficial ML=3.3 earthquake.

Empirical and synthetic ground motion prediction for a deeper (z= 10 km) ML=4 earthquake.

Results of Calibration procedure: synthetic vs predicted PGA

Page 22: C alibration  of the input  parameters  in  pilot  test  areas

Azores Island, Mainland and Offshore of Portugal (Area 2)

•ML [3, 6], Depth =[5.0, 30.0] km b.s.l., • 47 seismic events in the period 1969 - 2006

Strong-motion network stations (yellow triangles) in Central Group Azores Archipelago.

Page 23: C alibration  of the input  parameters  in  pilot  test  areas

Left:Example of k estimations from the amplitude Fourier spectra of acceleration. Right: Example of a displacement-amplitude spectra of S-waves and lines of ω2 model

K parameter estimation

Page 24: C alibration  of the input  parameters  in  pilot  test  areas

•Southern Spain (Area 3)

Earthquakes 1999-2012 (red circles) and strong-motion stations (white triangles) selected for calibration and validation.

•ML [3.3, 5.2], Epicentral dist. < 100 km, • selected well constrained 24 seismic events in the period 1999 - 2012

Page 25: C alibration  of the input  parameters  in  pilot  test  areas

Sensitivity of spectral amplitudes (FAS, PSA, PSV) to different values of the stress parameter (50, 100 and

200 bar). (a) Site 1, (b) Site 2.

Results of Calibration : ground motion simulations at two sites (55 km NE, and 5 km SW of the epicenter) were done

to evaluate the effect of stress drop parameters

Page 26: C alibration  of the input  parameters  in  pilot  test  areas

Results of Calibration procedure: synthetic vs observed FAS and PSA

02/03/2008 M3.5 Vega Baja earthquake. Comparison of recorded and EXSIM-simulated horizontal-component spectral amplitudes (FAS and PSA) at stations TOR, GUA and CTG.

Page 27: C alibration  of the input  parameters  in  pilot  test  areas

•South Iceland (Iceland, Area 4)

20' 20oW 40'

20.0 km

Hella (HE-105)

Selfoss SF-101 SR-112

Hveragerði

KH-103

Búrfell (BF)Ljósafossvirkjun (LF-306)

TB-502

FL-106

TH-104

MN-108

OM-501 OS-501

SO-109

SA-304SV-307

SL-309SM-309

SL-309LaugarvatnThingvallavatn

Eyjafjallajökull

1912-M7.2

1987-M6.02008-M6.3

2000(21/6)-M6.5 2009(17/6)-M6.5

South Iceland map. The faults of the largest earthquakes since 1912 are indicated and the stations in the Icelandic Strong Motion Network are shown triangles.

Page 28: C alibration  of the input  parameters  in  pilot  test  areas

0 20 40 60 80 100 120 140-30

-20

-10

0

10

20

30

TIME (s)

ACCE

LERA

TION

(cm/

s2 )

Station no.2 Burfell-Hydroelectric Power Station e-distanc = 45

0 20 40 60 80 100 120 140-80

-60

-40

-20

0

20

40

60

80

TIME (s)

ACCE

LERA

TION

(cm/

s2 )

Station no.3 Flagbjarnarholt e-distanc = 22

0 20 40 60 80 100 120 140-150

-100

-50

0

50

100

150

TIME (s)

ACCE

LERA

TION

(cm/

s2 )

Station no.4 Hella e-distanc = 21

0 20 40 60 80 100 120 140-10

-8

-6

-4

-2

0

2

4

6

8

10

TIME (s)

ACCE

LERA

TION

(cm/

s2 )

Station no.5 Hrauneyjafoss-Hydroelectric Power Station e-distanc = 76

0 20 40 60 80 100 120 140-80

-60

-40

-20

0

20

40

60

80

100

TIME (s)

ACCE

LERA

TION

(cm/

s2 )

Station no.8 Irafoss-Hydroelectric Power Station e-distanc = 20

0 20 40 60 80 100 120 140-80

-60

-40

-20

0

20

40

60

80

100

120

TIME (s)

ACCE

LERA

TION

(cm/

s2 )

Station no.10 Ljosafoss-Hydroelectric Power Station e-distanc = 20

0 20 40 60 80 100 120 140-15

-10

-5

0

5

10

15

20

TIME (s)

ACCE

LERA

TION

(cm/

s2 )

Station no.14 Reykjavik-Hus Verslunarinnar e-distanc = 61

0 20 40 60 80 100 120 140-150

-100

-50

0

50

100

150

200

TIME (s)

ACCE

LERA

TION

(cm/

s2 )

Station no.15 Selfoss-City Hall e-distanc = 15

0 20 40 60 80 100 120 140-800

-600

-400

-200

0

200

400

600

800

TIME (s)

ACCE

LERA

TION

(cm/

s2 )

Station no.23 Thjorsartun e-distanc = 6

Observed (black dashed) and simulated (red solid curve) Mw6.5 seismic event accelerograms for 9 stations of Icelandic Strong Motion Network.

Calibration and Simulations for the South-Iceland was done earthquake on July 21, 2000 (Mw6.5)

Page 29: C alibration  of the input  parameters  in  pilot  test  areas

10-2

10-1

100

101

0

10

20

30

40

50

60

70

80

PERIOD (s)

PSA

(cm/s2 )

Station no.2 Burfell-Hydroelectric Power Station e-distanc = 45

10-2

10-1

100

101

0

20

40

60

80

100

120

140

160

180

PERIOD (s)

PSA

(cm/s2 )

Station no.3 Flagbjarnarholt e-distanc = 22

10-2

10-1

100

101

0

50

100

150

200

250

300

350

400

PERIOD (s)

PSA

(cm/s2 )

Station no.4 Hella e-distanc = 21

10-2

10-1

100

101

0

5

10

15

20

25

PERIOD (s)

PSA

(cm/s2 )

Station no.5 Hrauneyjafoss-Hydroelectric Power Station e-distanc = 76

10-2

10-1

100

101

0

50

100

150

200

250

PERIOD (s)

PSA

(cm/s2 )

Station no.8 Irafoss-Hydroelectric Power Station e-distanc = 20

10-2

10-1

100

101

0

50

100

150

200

250

300

PERIOD (s)

PSA

(cm/s2 )

Station no.10 Ljosafoss-Hydroelectric Power Station e-distanc = 20

10-2

10-1

100

101

0

10

20

30

40

50

60

70

PERIOD (s)

PSA

(cm/s2 )

Station no.14 Reykjavik-Hus Verslunarinnar e-distanc = 61

10-2

10-1

100

101

0

100

200

300

400

500

600

PERIOD (s)

PSA

(cm/s2 )

Station no.15 Selfoss-City Hall e-distanc = 15

10-2

10-1

100

101

0

500

1000

1500

2000

2500

PERIOD (s)

PSA

(cm/s2 )

Station no.23 Thjorsartun e-distanc = 6

Acceleration response spectra, with 5% damping, for 9 stations of Icelandic Strong Motion Network. A comparison of the average PSA for the simulations (red curve) and PSA of the measured acceleration records for Mw6.5 earthquake.

Page 30: C alibration  of the input  parameters  in  pilot  test  areas

Stress Drop (bar) [7 – 250] barMagnitude Mw= [2.0 – 6.5]Q=Q0 fb Q0 = [27-100] ; b = [0.5-1.0]k [0.015 – 0.070]Site Effect Soil Classification, H/V, H/Href

..A synthetic overview…

Page 31: C alibration  of the input  parameters  in  pilot  test  areas

Conclusions and Further Developments

The Stochastic Aprroach has revealed a good tool to

calibrate source, path and site parameters/physical

quantities; The joint use of the different Data Set has allowed to

define the limits of applicability, the potentiality of

implementation of stochastic procedure and give an

interesting general overview of seismological quantities

referred to different areas; The next step consists on the application of well-

calibrated parameter to genereate large earthquake

scenario.

Page 32: C alibration  of the input  parameters  in  pilot  test  areas

S I M U L T I O N

S I M U A T I O N

TASK

C

A

L

I B

R

A

T

I

O

N

Thank you!


Recommended