+ All Categories
Home > Documents > C-MORE Schofield Lecture 3

C-MORE Schofield Lecture 3

Date post: 05-Apr-2018
Category:
Upload: rucool
View: 224 times
Download: 0 times
Share this document with a friend

of 65

Transcript
  • 7/31/2019 C-MORE Schofield Lecture 3

    1/65

    C-MORE 2012: Measuring phytoplankton productivity &biomass

    Oscar Schofield

  • 7/31/2019 C-MORE Schofield Lecture 3

    2/65

    Photosynthesis = PAR * * f

    aph =

    a(l )*Eo(l )dl400nm

    700nm

    Eo(l)d

    l400nm

    700nm

    Spectrally averaged absorption

    Energy that is into the cellVaries with cell pigmentation,

    light history, and size

    ~ 1%

    )()()(

    dd

    d EKdz

    dE

    0.00 0.20 0.40 0.60 0.80 1.00

    Irradiance

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    Dep

    th

    (m

    )

    Scalar visible irradiance

    Energy into the oceanVaries with depth according to the IOPsIOPs with radiative transfer eqns describe the AOPS

    Efficiency of converting energy intoEnd product (electrons, oxygen, carVaries with end product and physiolo

    Quantum efficiency of ..

    High

    Low

    Absorption

    Fluorescenceor chargeseparation

    oxygen

    carbonfixation

    growth

  • 7/31/2019 C-MORE Schofield Lecture 3

    3/65

    Enough energy make something new(rearrange a molecule)

    Enough energy to excite(vibrate a molecule) Enough energy move electrons

    Phytoplankton growth and nutrient assimilation is tied to ambient light levels.

  • 7/31/2019 C-MORE Schofield Lecture 3

    4/65

    Every day, the ocean changes colour or rather, it passes though a varietyof hues between the morning, noon

    and night of a single day. The subtleshapes of clouds, the glittering light

    of the sun, and the shifts in

    atmospheric pressure tint the seawith deep tones, cheerful tomes,

    plaintive tones that would cause anypainter to pause in wonder.

    from The Samurai by Shusaku Endo(1980)

  • 7/31/2019 C-MORE Schofield Lecture 3

    5/65

    Eyeball Optics

    The Secchi Disk:

    First systematic usage reported in 1866, but

    observed and remarked upon much earlier.

    Early experiments carried out by Commander

    Cialdi, head of the Papal Navy, and Professor

    Secchi onboard the SS LImmacolata

    Concezione (Cialdi, 1866).

    Used operationally for establishing aids to

    navigation over shallow water.Thanks to Marlon Lewis

  • 7/31/2019 C-MORE Schofield Lecture 3

    6/65

    Eyeballs Watch Harmful Algal Blooms

    HABs

  • 7/31/2019 C-MORE Schofield Lecture 3

    7/65

    The underwater light field is not a collimated beam.

    So we define another term(s), the diffuse attenuationcoefficient(s), K, to describe the penetration of light in

    the sea. It is closely related to absorption.

    ~ 1%

    Optical Properties of the Sea

    )()()(

    dd

    d EKdz

    dE

    0.00 0.20 0.40 0.60 0.80 1.00

    Irradiance

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    Dep

    th(m

    )

  • 7/31/2019 C-MORE Schofield Lecture 3

    8/65

    From John T. O. Kirks billabongs

    Measuring the light into the system

  • 7/31/2019 C-MORE Schofield Lecture 3

    9/65

    Reflectance() = G* bb()/{bb() +a()}

  • 7/31/2019 C-MORE Schofield Lecture 3

    10/65

    primary productivity

    or export productivity

    (Behrenfeld and Falkowski, 1997)

    (Muller-Karger et al., 2005)

    Wh t f th l i l DIMS?

  • 7/31/2019 C-MORE Schofield Lecture 3

    11/65

    What are some of the classical DIMS?

    laustre et al.

    Diatoms Y 0.114 + 0.051Cryptophytes Y 0.053 + 0.011

    Y* = P/(Qpar(0+))

    Localweather

    seasonal

    Morel and Platt show Y* variabilityOf 50% around a value of at specific

    chl values

  • 7/31/2019 C-MORE Schofield Lecture 3

    12/65

    Penetration of light is determined by the material in the waterwhich is determined by the overall inherent optical properties (IOPs)

    Absorption (a) color

    Photos by S. Etheridge

  • 7/31/2019 C-MORE Schofield Lecture 3

    13/65

  • 7/31/2019 C-MORE Schofield Lecture 3

    14/65

  • 7/31/2019 C-MORE Schofield Lecture 3

    15/65

    Scattering (b) clarity

    a + b = c

    c = attenuation

    From Collin Roesler

  • 7/31/2019 C-MORE Schofield Lecture 3

    16/65

    detector detector

    Absorption (a)Attenuation (b)

    WetLabs

  • 7/31/2019 C-MORE Schofield Lecture 3

    17/65

    Scattering Case I waterscp(660) bp(660)

    Loisel and Morel 1998Bp ChlAc )660(

    Positively correlated Non-linear, B 0.7 High unexplainedvariance

  • 7/31/2019 C-MORE Schofield Lecture 3

    18/65

    Particle backscattering

    Cannizzaro et al. 2002

    West Florida Shelf

    Karenia brevisbloom

    POC S i (C I )

  • 7/31/2019 C-MORE Schofield Lecture 3

    19/65

    POC Scattering (Case I waters)

    Loisel and Morel 1998

    Bp POCAc )660(

    B 1

    Subtropical Pacific, North Atlantic

    Contrast with non-linear

    dependence on Chl

    POC-Chl variationsare important

  • 7/31/2019 C-MORE Schofield Lecture 3

    20/65

  • 7/31/2019 C-MORE Schofield Lecture 3

    21/65

    E.m. radiation propagating as plane waves;g

    geometric cross

    section (its shadow )

    EFFICIENCY FACTORS

    Energy absorbed withinEnergy scattered out by..

    Divided by

    Energy impinging on g

    Qa and Qb, respectively

    From beautiful work of Morel, Bricaud, and Kirk

  • 7/31/2019 C-MORE Schofield Lecture 3

    22/65

    (Finkel 2001)

  • 7/31/2019 C-MORE Schofield Lecture 3

    23/65

    Durand et al. 2002

  • 7/31/2019 C-MORE Schofield Lecture 3

    24/65

    Positivelycorrelated

    Chl: 0.02 25mg m-3

    (eutrophic,mesotrophic, and

    oligotrophic

    waters) Bricaud et al. 1995 Non-linear dependence

    Thanks to Heidi Sosik

  • 7/31/2019 C-MORE Schofield Lecture 3

    25/65

    Chl-specific phytoplankton

    absorption Second-ordervariability in aph()

    )(* )()( Bph ChlAa

    Chl

    aa

    ph

    ph

    )()(*

    A() and B()

    statistically determined

    This reflects effects of changing growth conditions andcommunity structure with trophic status

    Note: unexplained variability

    Negatively correlated

  • 7/31/2019 C-MORE Schofield Lecture 3

    26/65

    Low light

    High light

  • 7/31/2019 C-MORE Schofield Lecture 3

    27/65

  • 7/31/2019 C-MORE Schofield Lecture 3

    28/65

    Low light

    High light

    Photosyntheticpigments

    Photo-protectivepigments

    chlorophyte alga Haematococcus pluvialis

  • 7/31/2019 C-MORE Schofield Lecture 3

    29/65

    0

    5

    10

    15

    20

    400 450 500 550 600 650 700

    Wavelength (nm)

    SpectralIrr

    adiance(

    mW

    cm-2nm-1)

    chl a chl achl b

    chl c

    chl bcarotenoids

    phycobilins

    0

    0.25

    0.50

    0.75

    1.0

    1.25

    RelativeAbsorption

    chl a-chl c-carotenoidschl a-chl b-carotenoids

    chl a-phycobilins

  • 7/31/2019 C-MORE Schofield Lecture 3

    30/65

    2 0 22 0 42 0 62 0 82 1 02 1 22 1 4

    0

    2

    4

    6

    8

    0

    2

    e

    p

    t

    h

    (

    m

    2 0 22 0 42 0 62 0 82 1 02 1 22 1 4

    0

    2

    4

    6

    8

    0

    2

    e

    p

    t

    h

    (

    m

    mo

    lpho

    tons

    (m-2

    s-1)

    Dep

    th(m)

    Calendar DayB

    mol photons m-2 s-1

    C

    Calendar Day

    D

    (m-1)pha

    Dep

    th(m)

    0 22 0 42 0 62 0 82 1 02 1 22 1 4

    500

    1000

    1500

    2000

    0400 450 500 550 600 650 700

    0

    0.3

    0.6

    0.9

    1.2

    surface

    1m

    2m

    5m13m

    Wavelength (nm)Calendar Day

    A

    . . . .

    Oliver et al. 2004

  • 7/31/2019 C-MORE Schofield Lecture 3

    31/65

    0.0

    0.02

    0.04

    0.06

    0.08

    400 450 500 550 600 650 700

    chl achl b

    chl c

    PSC

    PPC

    wavelength (nm)

    absorptioncoefficient(m2m

    g-1)

    From Bidigare

    Individual pigments can be measured on discrete samples biochemically

  • 7/31/2019 C-MORE Schofield Lecture 3

    32/65

    0

    20

    40

    60

    80

    1000 1 2 3

    D

    epth(m)

    Relative pigment-specific

    spectrally weighted absorption

    B)

    Decreasing efficiency Increasing efficiency

    Chl a

    Chl bPSCChl c

    Wavelength (nm)

    0.00001

    0.0001

    0.001

    0.01

    0.1

    1

    10

    400 500 600 700Spectralirradiance(mWcm-2s-1)

    1

    25

    90

    Sun stimulated

    fluorescence

    A)

  • 7/31/2019 C-MORE Schofield Lecture 3

    33/65

    Absorbed photon Charge stabilization &

    photosynthesis

    Heat

    Fluorescence

  • 7/31/2019 C-MORE Schofield Lecture 3

    34/65

    Chlorophyll a -Fate of photonsabsorbed by an isolated molecule

    Diagram of energy states in chlorophyll and possible

    transitions

  • 7/31/2019 C-MORE Schofield Lecture 3

    35/65

    Alexander Graham Belldeveloped spectrophone,

    essentially an ordinaryspectroscope equipped with

    a hearing tube instead of aneyepiece listening to lightinduced changes in the

    thermal sound.

    Light Absorption

    Heating

    Thermal Expansion

    PressureWave

    Photoacousticsignal

  • 7/31/2019 C-MORE Schofield Lecture 3

    36/65

    Weak light flash

    Strong light flash

  • 7/31/2019 C-MORE Schofield Lecture 3

    37/65

    Absorbed photon Charge stabilization &

    photosynthesis

    Heat

    Fluorescence

  • 7/31/2019 C-MORE Schofield Lecture 3

    38/65

    Fluorescence

    Use of sun-induced chlorophyll

  • 7/31/2019 C-MORE Schofield Lecture 3

    39/65

    Use of sun induced chlorophyllfluorescence to estimate the rate of

    carbon fixation -Example

    Stegmann et al. (1992)

    JGR

    Pacific

  • 7/31/2019 C-MORE Schofield Lecture 3

    40/65

    Chloroph

    yll

    fluorescence

    Chlorophyll concentration

    Stress(light, nutrients)

  • 7/31/2019 C-MORE Schofield Lecture 3

    41/65

  • 7/31/2019 C-MORE Schofield Lecture 3

    42/65

    8:00 12:00 18:00 22:00

    5

    10

    15

    20

    Local DaylightTime

    0

    Depth(m)

    CDOM

    8:00 12:00 18:00 22:00

    5

    10

    15

    20

    0

    D

    epth(m)

    Chl a

    mixed

    chromophyte

    community

    m

    onospecific

    G.breve

    c

    ommunity

    Local DaylightTime

  • 7/31/2019 C-MORE Schofield Lecture 3

    43/65

  • 7/31/2019 C-MORE Schofield Lecture 3

    44/65

    0.00

    0.25

    0.50

    0.75

    5:00 9:00 13:00 17:00 21:00

    0

    400

    800

    1200

    1600

    PAR

    molm-2

    s-1)

    Fv/Fm

    EPS

    Local Daylight Time

    0

    0.2

    0.4

    0.6

    6:00 10:00 18:0014:00

    Local Daylight Time

    Fv/F

    m

    0

    200

    400

    600

    800Visible light downregulation

    UVB

    damage

    PAR(

    molm-2

    s-1)

    UVB + UVA + PAR

    UVA + PAR

    PAR

    Ik>PARIk>PAR

    Physiological response Environmental Stress

    Falkowski et al. (1991) Nature

  • 7/31/2019 C-MORE Schofield Lecture 3

    45/65

    Falkowski et al. (1991) Nature

  • 7/31/2019 C-MORE Schofield Lecture 3

    46/65

    Fluorescence: The Basics

    F0 = aph PARkf

    kp +kf+kd

    Fm = aph PARkf

    kf+kd

    Fv = aph PARkf

    kp(Q)+kf+kd

    Fm - F0

    Fm=

    kp

    kp +kf+kd= f IIeo

    time

    Fluorescence

    intens

    ity

    F0

    Fm

    Ft

    Saturating flash

    Fm

    Other useful indices

  • 7/31/2019 C-MORE Schofield Lecture 3

    47/65

    Time

    Fluorescencerise

    Integrated area isreflection of the absorption

    cross-section

    Flash is on RC2

    Highlightcells

    Lowlightcells

    Photo-acclimation

    Photons

    Ot e use u d cesFLUORESCENCE INDUCTION

    O

  • 7/31/2019 C-MORE Schofield Lecture 3

    48/65

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

    Fluorescence

    decaycons

    tan

    ts

    Local time of day

    Time

    Other useful indicesFLOURESCENCE DECAY CONSTANTS

    LightFlash

    TurnedOff

    Fluorescenc

    e

    RC

    Pheo

    Qa

    Qb

    PQ

    D1

    D2

  • 7/31/2019 C-MORE Schofield Lecture 3

    49/65

    Absorbed photon Charge stabilization &

    photosynthesis

    Heat

    Fluorescence

  • 7/31/2019 C-MORE Schofield Lecture 3

    50/65

    Light Reactions produce ATP, NADPH2

    Light

    Transmission& light absorption

    Light Reactions Dark Reactions

    ATP& NADPH

    CO2 sugars& carbos

    Cellular Growth

    Nitrogen,

    Phosphorus,Metals

    BiomassIncrease

  • 7/31/2019 C-MORE Schofield Lecture 3

    51/65

    0

    2

    4

    6

    8

    10

    0.1 1 10 100 1000

    0.4

    0.5

    0.6

    0.7

    0.8

    Irradiance (mmol photons m-2 s-1)Prod

    uctivity(mg

    CmgChla-2h

    -1)

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    CarbonQ

    uantumYield

    (molCmolphotonsabsorbed-1)

    Fv/Fm

    a

    Pmax

    Ik

    fmax

    Environmentalstress

  • 7/31/2019 C-MORE Schofield Lecture 3

    52/65

    Production = Pmax. tanh(PAR/Ik)

    Pmax

    a

    Ik = Pmax/a

    PAR (mmol photons m-2 s-1)

    oxygen

    evo

    lution

    0

    1

    2

    3

    4

    0 50 100 150 200 250 300

  • 7/31/2019 C-MORE Schofield Lecture 3

    53/65

    fluorescence-based predictions of oxygen evolution

    measuredoxyge

    nevolution

    0

    1

    2

    3

    4

    5

    6

    0 1 2 3 4 5 6

    R2=0.92, P

  • 7/31/2019 C-MORE Schofield Lecture 3

    54/65

    From Jassby and Platt 1976

    Is a cell a puddle or lake?

  • 7/31/2019 C-MORE Schofield Lecture 3

    55/65

    Chl-specific alpha

    0

    20

    40

    60

    80

    100

    0.02 0.03 0.04 0.05 0.06 0.07 0.08

    aw a

    light-limited

    (mg C mg chl a-1 h-1[ mol photons m-2 s-1]-1)

    depth(m

    )

    light-saturated

  • 7/31/2019 C-MORE Schofield Lecture 3

    56/65

    Photosynthesis a chain of cascading reactions:

    Each step sets the upper limit efficiency for each following step down the line

    Fmpsii (0.65) > fm02 (on the order 0.125)>fmco2 (on the order 0.07)

    For each use of energy go to one process, it is the expense of

    another reaction, this impacts the overall efficiency

    Nutrient source fmco2Ammonium 0.09Nitrate 0.07

    Simplest expression for photosynthesis is

    P = f * aph * PAR

  • 7/31/2019 C-MORE Schofield Lecture 3

    57/65

    From Behrenfeld et al.

    The conversion efficiency can varies between end products

  • 7/31/2019 C-MORE Schofield Lecture 3

    58/65

    0

    2

    4

    6

    8

    10

    12

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    Absorbed Quanta by phytoplankton

    Light-saturated photosynthesis

    Light-limitedphotosynthesis

    Ra

    tioo

    fOxygen

    toCar

    bon

    Quan

    tum

    Y

    ields

    The conversion efficiency can varies between end products

    While chlorophyll specific absorption varies 3-4 foldt i ld b d f it d

  • 7/31/2019 C-MORE Schofield Lecture 3

    59/65

    From Babin et al.

    quantum yields vary by an order of magnitude

    Even in 1980s was treated as a constant

    NUTRIENT LIMITATIONS

  • 7/31/2019 C-MORE Schofield Lecture 3

    60/65

    U O S

    Iron-Ex

    )Roug

    h seas

  • 7/31/2019 C-MORE Schofield Lecture 3

    61/65

    50 100 150 200 250 300 3500.005

    0.025

    0.045

    0.065

    0.085

    0.105

    0.125

    1

    2

    3

    45

    6

    7

    8 9

    10

    11

    12

    13

    14

    1516

    171819

    20

    21

    22

    23

    New Jersey Coastal Region22 Southern California Bight21

    NW Atlantic Continental Shelf (Spring)

    20 Gulf Stream (Spring)19 NW Atlantic Subtropical Gyre (Spring)18 NE Atlantic Subtropical Gyre (Spring)17 Canary Islands (Spring)16 NW Atlantic Continental Shelf (Fall)15 Gulf Stream (Fall)14 NW Atlantic Subtropical Gyre (Fall)13 NE Atlantic Subtropical Gyre (Fall)12 Canary Islands (Fall)11 Antarctic (Palmer Station)10 Antarctic (Transitional Weddell Water)9 Antarctic (Bellingshausen Warm water)

    8 Antarctic (Bellingshausen Cold water)7

    Arabian Sea (NE Monsoon)

    6

    Arabian Sea (Inter Monsoon)

    5

    Arabian Sea (SW Monsoon)

    4321

    Antarctic (Bransfield-Bellingshausen water)Antarctic (Bransfield-Weddell water)Antarctic (Ice-Edge water)Antarctic (Weddell-Scotia Confluence waters)

    23

    Ek(PAR) (mol photons m-2 s-1)

    max

    (molCm

    olphotonsabsorbed-1)

    Oligotrohicseas

    Types of satellite models

  • 7/31/2019 C-MORE Schofield Lecture 3

    62/65

    Empirical: Purely a statistical fit. Earliest ones were simple regressionmodels of measured primary production against satellite derivedchlorophyll concentration. These models can explain a lot of the observed

    variance; however assume that the fraction of productivity perphytoplankton cell is essentially fixed.

    Early models were derived by Smith et al. (1982) and Eppley (1985) atScripps Visibility Labs and Food Chain Working Group

    Types of satellite models

    Ck = surface chlorophyll concentration, II or Pt = depth-integrated production

    Smith & Baker 1978

    Eppley et al. 1978

    Types of satellite models

  • 7/31/2019 C-MORE Schofield Lecture 3

    63/65

    Empirical: It works because, the amount of chlorophyll in a volume ofwater is proportional to the number of phytoplankton cells and the numberof photosynthetic reaction centers. In many ways it provides a goodOckams razor for the sophisticated productivity models.

    Problems:

    l These relationships assume that the conversion of light energy is constant (nottrue), that the light harvested for within and between phytoplankton is constant (nottrue).

    l Chlorophyll is a concentration, productivity is a rate which has a time dependentvariable.

    l Scales in which to apply the model?

    Applying the razor: Back in early 1990s, many sophisticated bio-opticalproductivity were being developed. A global comparison of the models at thetime indicated that simple correlation models did as well or even sometimesbetter than more sophisticated and biologically realistic models. This did notsit well with some in the community.

    Complexity can add uncertainty

    The overcome the errors associated with the depth-dependent variabilityY t li t l i d id li d fil

  • 7/31/2019 C-MORE Schofield Lecture 3

    64/65

    Platt and Sathyendranath, Science

    You generate climatalogies and idealized profiles.

    Ignoring the vertical behaviorcan lead to a 30% error

    Remember the majority of

    phytoplankton biomass is likelylight limited, so the importance

    of the upper water column wherelight levels are high dominate

    the integrated productivityestimates.

  • 7/31/2019 C-MORE Schofield Lecture 3

    65/65

    Relative cloud cover Biogeographic provinces

    Monthly weighted chl productivity


Recommended