+ All Categories
Home > Documents > CAD Pipe Tutorials

CAD Pipe Tutorials

Date post: 08-Nov-2014
Category:
Upload: bakry-kamal
View: 19 times
Download: 4 times
Share this document with a friend
Description:
ASD
Popular Tags:
42
CAEPIPE Tutorial TM From the CAdvantagE Library by TM S Y S T E M S , I N C .
Transcript
Page 1: CAD Pipe Tutorials

CAEPIPE

Tutorial

TM

From the CAdvantagE Libraryby

TM

S Y S T E M S , I N C .

Page 2: CAD Pipe Tutorials

Caepipe Tutorial, ©2001, SST Systems, Inc. All Rights Reserved.

Disclaimer

Please read the following carefully:

This software and this manual have been developed and checked for correctness and accuracy by SSTSystems, Inc. However, no warranty, expressed or implied, is made by the authors or by SST Systems,Inc., as to the accuracy or functioning of the software and the accuracy, correctness and utilization of itscalculations. Users must carry out all necessary tests to assure the proper functioning of the software and theapplicability of its results. All information presented by the software is for review, interpretation, approvaland application by a Registered Professional Engineer.

Caepipe and CAdvantagE are trademarks of SST Systems, Inc. All other product names mentioned in thisdocument are trademarks or registered trademarks of their respective companies/holders.

SST Systems, Inc.1641 N. First Street, Suite 275San Jose, California 95112

Tel: (408) 452-8111Fax: (408) 452-8388

email: [email protected]

vijay
Text Box
SST Systems, Inc. 1798 Technology Drive, Ste. 236 San Jose, CA 95110, USA
Page 3: CAD Pipe Tutorials

Tutorial

The best way to learn Caepipe is to try it yourself. In this tutorial we will create a simple model to help youunderstand the use of Caepipe. The details of the model are shown below:

X

Y

Z

9'0"

6'0"

6'0"

6'0"

6'0"

2'0"

6'0"

10

20

30

40

50

6070

80

8" sch 80 pipe

6" std pipe

18" radius

Specified displacement: Y = 0.5"

A53 Grade B materialCalcium silicate insulation, 2" thk200 psi, 600 FContents specific gravity = 0.8

You will learn how to:

1. Enter Title2. Select Analysis options (piping code etc.)3. Define Material, Section and Loads for the model4. Input Model Layout5. Select Load Cases for Analysis6. Analyze7. View Results

Start Caepipe. Then click on the New file button. The New file dialog opens.

1

Page 4: CAD Pipe Tutorials

Tutorial

From the New file dialog, select the type of the new file as Model (.mod) file. This opens two independentwindows: Layout and Graphics.

Layout window

Graphics window

Adjust the size of the windows to fit your desktop such that you can view both comfortably at the sametime.

1. Enter Title

Type “Sample problem” as the title in the first row that contains “Title = ”. Press Enter.

2. Select Analysis options (piping code etc.)

Click on the Options menu and then select Analysis (Options> Analysis) to specify options for analysis.

2

Page 5: CAD Pipe Tutorials

Tutorial

This opens the Analysis Options dialog.

On the Code property page, select B31.3 for Piping code. Then click on OK to close Analysis Optionsdialog.

3. Define Material, Sections and Load

Material

Click on “Matl” in the header in the Layout window (or press Ctrl+Shift+M)

This opens up the Materials list in a separate List window. Position and resize the list window as you desire.Click on Library button on the Toolbar (or choose File> Library).

3

Page 6: CAD Pipe Tutorials

Tutorial

The Open Material Library dialog is shown.

Select B313.mat as the library file to open by double clicking on it. The available materials in the libraryare shown.

4

Page 7: CAD Pipe Tutorials

Tutorial

Double click on A53 Grade B material to select it. The properties for this material are transferred to thematerial in the List window. Type “A53” for material name and then press Enter.

Sections

Select Sections from the Misc menu of the List window (or press Ctrl+Shift+S).

The Sections list is shown. To enter the first section, Type ‘8’ for Section name and press Enter.

5

Page 8: CAD Pipe Tutorials

Tutorial

The Section Properties dialog is shown with the section name 8.

Click on the down arrow of the Drop-Down combo box for Nominal diameter and select 8” for Nominaldiameter. The Outside diameter (8.625”) is automatically entered.

To select the schedule for the 8” pipe, click on the down arrow of the Drop-Down combo box for Scheduleand select 80 for Schedule.

The Thickness (0.5”) is automatically entered.

For Insulation density, click on the Insulation button or Press Alt+I.

6

Page 9: CAD Pipe Tutorials

Tutorial

A table of Insulation materials and their densities is shown.

Double click on Calcium Silicate. The Insulation density (11.0 lb/ft3) is entered on the Section dialog. Type2 (inches) for Insulation Thickness then press Enter or click OK to enter the first section.

Now repeat the process for the second section.

In row # 2, Type 6 for Section name and press Enter. The Section Properties dialog is shown with the sectionname 6. Select 6” for Nominal diameter, STD for Schedule and 2” Calcium Silicate for Insulation. PressEnter or click on OK to enter the second section.

7

Page 10: CAD Pipe Tutorials

Tutorial

Load

Select Loads from the Misc menu (or press Ctrl+Shift+L).

The Loads list is shown. To enter the first load, Type ‘1’ for Name, Tab to T1 and type 600, Tab to P1 andtype 200, Tab to Specific gravity and type 0.8. Then press Enter. That is it! The load is entered. (Alternately,you could have pressed Ctrl+E on the first row and typed in the same information in a dialog box).

Click in the Layout window or press F3 to move the focus to the Layout window.

8

Page 11: CAD Pipe Tutorials

Tutorial

4. Input Model Layout

We are going to model the 8” header line first, followed by the 6” branch line.

NOTE

• In the following text, the word ‘type’ should be distinguished from the words ‘Type column’ or simply‘Type’ (upper case ‘T’). The former (‘type’) would mean press the keys for the text you want to type.The latter word ‘Type’ would refer to the Type column in the Layout spreadsheet.

• Also, the instruction “type B for Bend” does not necessarily mean the upper case ‘B’. The lower case‘b’ could also be typed.

• For items input in the Data column (such as Anchor or Hanger), the cursor needs to be in the Datacolumn. This can be quickly done by pressing Ctrl+D from any column or clicking in the Datacolumn. Another way is to Tab repeatedly to reach the Data column.

• As the graphics window is simultaneously updated, you should position the graphics window in sucha way that you can see it along with the input window.

First the 8” header

Following the Title at row #1, row #2 is already generated with Node 10 of Type “From” with an Anchor inthe Data column.

Press Enter to move the highlight to the next row(#3). Tab to the Type column. The next Node 20 isautomatically assigned. In the Type column, type ‘b’ (for Bend), Tab to DX, type 9. Tab over to Material,type A53, Tab to Section, type 8, Tab to Load, type 1. Press Enter and the cursor moves to the next row(#4).

In row #4, Tab to the Type column. The next Node 30, is automatically assigned.

9

Page 12: CAD Pipe Tutorials

Tutorial

You will see the model in the graphics window as it is entered. You can press F2 to switch between text andgraphics windows.

In row #4 with Node 30, Tab to DZ, type 6, Tab to Data (or press Ctrl+D), type ‘h’ (for a to-be-designedHanger) and press Enter, the Hanger dialog is opened.

Press Enter or click on OK to input the hanger. The material, section and load are automatically inserted(based on the previous row’s material, section and load), and the cursor moves to the next row.

10

Page 13: CAD Pipe Tutorials

Tutorial

The Graphics window will look like this.

In row #5, Tab to the Type column. The next Node 40, is automatically assigned. In the Type column, type‘b’ (for Bend). This bend has a non standard (user defined) bend radius. Therefore the bend radius needs tobe modified from the default long radius. Double click on the bend in the Type column or press Ctrl+T tobring up the bend dialog box. Click on User Bend Radius radio button and enter 18 for bend radius. PressEnter or click on OK to modify the bend.

While still in row #5, Tab to DZ, type 6 then press Enter. The material, section and load are automaticallyinserted like before, and the cursor moves to the next row.

11

Page 14: CAD Pipe Tutorials

Tutorial

In row #6, Tab to the DY column. The next Node 50, is automatically assigned. In the DY column, type−6, Tab to the Data column or press Ctrl+D to move to the data column, then type ‘a’ (for Anchor). Ananchor, material, section and load are automatically inserted, and the cursor moves to the next row.

Let us specify a thermal anchor movement for the Anchor we just put in at node 50. Double click on theAnchor at node 50 in row #6. The Anchor dialog comes up.

Click on Displacements button. The Specified Displacements dialog for the anchor comes up. Tab to Ydisplacement field and type 0.5.

Press Enter to exit the Specified Displacements dialog. Press Enter again to exit the Anchor dialog. In theLayout window, press Enter to move to the next row.

12

Page 15: CAD Pipe Tutorials

Tutorial

Click on the Zoom All button (or press Ctrl+A) to view the 8” header line fully in the graphics window.

Now the 6” branch

Let us input a comment saying that this is a 6” std pipe. On an empty row, if the first character in the Nodefield is input as ‘c’, that row becomes a comment row. On row #7, type ‘c’ to create the comment and thentype: 6” std pipe and then press Enter to go to the next row.

On the next row (#8), type 30 for Node, Tab to the Type column, type ‘f’ (for “From”, since we are beginninga new branch), press Enter. In the next row (#9), Tab to the DX column. The next Node 60, is automaticallyassigned. In the DX column, type 6 and press Enter.

13

Page 16: CAD Pipe Tutorials

Tutorial

Caepipe inserts the previous material, and automatically detects the new branch and asks if you want tochange section.

Since we want to change the section to 6, click on Yes. This opens the Section selection dialog.

Select the 6” section by double clicking on it. The section (6) is entered in the Section column in the Layoutwindow. Press Enter to go to the next row. The load is again automatically inserted from the previous load.

14

Page 17: CAD Pipe Tutorials

Tutorial

The graphics window will look like this.

In the next row (#10), Tab to the Type column. The next Node 70, is automatically assigned. In the Typecolumn, type ‘v’ (for Valve). This brings up the Valve dialog box.

In the Valve dialog box, type 200 for Weight, 50 for Additional Weight and 18 for DY offset. Then pressEnter or click on OK to input the valve.

In the Layout window, type 2 for DX offset and press Enter. The material, section and load are automaticallyinserted as before, and the cursor moves to the next row.

In the next row (#11), Tab to DX. The next Node 80, is automatically assigned. In the DX column, type 6.Tab to Data or press Ctrl D to move to the data column, then type ‘a’(for Anchor). Material, section andload are automatically inserted like before, and the cursor moves to the next row.

15

Page 18: CAD Pipe Tutorials

Tutorial

5. Select Load Cases for Analysis

Select Loads cases from the Loads menu.

The Load cases dialog is shown.

By default, Sustained(W+P), Expansion(T1) and Operating(W+P1+T1) load cases are already selected.Press OK to return to the Layout window. The model input is now complete.

16

Page 19: CAD Pipe Tutorials

Tutorial

Click on the Zoom All button (or press Ctrl+A) to show the whole model in the graphics window.

To see a 3D rendered view of the model, click on the Render button (or press Ctrl+R) in the graphicswindow.

To return to the non rendered view, click on the Do not render button (or press Ctrl+R).

17

Page 20: CAD Pipe Tutorials

Tutorial

List

One of the useful features of Caepipe is the ability to show a list of all like items such as anchors,bends etc. in a separate List window. Click on the List button (or press Ctrl+L) to show the list dialog.

Click on an item of interest to show the list for that item.

A list of all the anchors in the sample model is shown below:

The highlighted item can be edited directly in the List window (in most cases) or in a dialog by pressingCtrl+E. The items can be deleted by pressing Ctrl+X. The item is also highlighted in the graphics windowby flashing and with a box around the node number.

A list of all the bends in the sample model is shown below:

18

Page 21: CAD Pipe Tutorials

Tutorial

Editing in the Graphics Window

Another useful feature is the ability to edit an item in the graphics window. When an item such as a Hangeris clicked in the graphics window, a dialog box for that item is opened, where it can be modified.

19

Page 22: CAD Pipe Tutorials

Tutorial

Save

Save the model by clicking on the Save button.

The “Save Model As” dialog is shown.

Type the File name as “Sample” and press Enter to save the model. We are done with modelling. Let usanalyze now.

20

Page 23: CAD Pipe Tutorials

Tutorial

6. Analyze

Click on Analyze under the File menu.

After the analysis, you are asked if you want to see the results. Select Yes.

21

Page 24: CAD Pipe Tutorials

Tutorial

7. View Results

After finishing the analysis and choosing to see the results or by opening the results file (.res), the resultswindow is displayed. The Results dialog is opened automatically.

Select an item of interest by clicking on it. When you are viewing the results, use Tab (orNext Result button) to view the next result and Shift+Tab (or Previous Result button) to viewthe previous result. The Results dialog can be brought up by clicking on the Results button(or press Ctrl+R).

While viewing the results, the model data can also be simultaneously viewed in separate Layout and Listwindows. These are now ”read only” windows, i.e. the model data can not be modified while viewing theresults. Some of the results from the sample problem are shown below:

Sorted Stresses

The computed stresses (sustained, expansion and occasional) are sorted in descending order by stress ratios.

When the stress ratio exceeds 1.00, the stress and the stress ratio are shown in red.

In this particular case, the high thermal stresses may be reduced by replacing the anchor at Node 80 bya guide. This allows the 6” pipe to expand more freely and reduce the thermal stresses. The maximumthermal stress is reduced to 22195 psi and the stress ratio is reduced to 0.76.

22

Page 25: CAD Pipe Tutorials

Tutorial

Color coded stresses may be rendered in the graphics window by pressing the Show stresses button(or choose View> Show Stresses). The stresses in the highlighted columns (the bar highlights threecolumns simultaneously) are displayed in the graphics window. Use the left and right arrow keys tochange the highlighted column or click in a particular column.

The stress ratios may similarly be rendered by using the Show stress ratios button (or choose View>Show Stress Ratios).

Instead of rendering color coded stresses/ratios, the values of stresses/stress ratios may be plotted by usingthe menu: View> No color coding.

23

Page 26: CAD Pipe Tutorials

Tutorial

While plotting stresses or stress ratios, thresholds may be specified (choose View> Thresholds). Only thestresses or stress ratios exceeding the thresholds are plotted.

Code compliance

The element stresses calculated according to the piping code are shown under code compliance.

Hanger report

The hanger report is shown below.

24

Page 27: CAD Pipe Tutorials

Tutorial

The “No of” field shows the number of hangers required at the indicated location. The Figure No. and Sizerefer to the manufacturer’s catalog. The vertical travel is the vertical deflection at the hanger location for thefirst operating load case. Similarly, the horizontal travel is the resultant horizontal deflection at the hangerlocation for the first operating case. The hot load is the hanger load for the operating condition and the coldload is the hanger load at zero deflection.

Variability(%) = (Spring rate × Hanger travel / Hot load) × 100

Support load summary

Support load summary for each support is created by considering all the load cases and appropriate combi-nations and then showing the maximum and minimum loads.

Use the Other supports button (F6), Next support button (Ctrl+Right arrow) or Previoussupport button (Ctrl+Left arrow) to see loads on other supports (e.g. other anchors, hangersetc.).

Support loads

Support loads are the loads acting on the supports imposed by the piping system. The loads on anchors forthe Sustained case are shown below.

Use the Load cases button, Next load case button(Right arrow) or Previous load case button(Left arrow) to see loads for different load cases(e.g. Sustained, Expansion etc.).

25

Page 28: CAD Pipe Tutorials

Tutorial

Use the Other supports button (F6), Next support button(Ctrl+Right arrow) or Previous sup-port button (Ctrl+Left arrow) to see loads on other supports (e.g. other anchors, hangersetc.).

The loads on hangers (i.e. the loads acting at the hanger locations imposed by the piping system) for theOperating case are shown below.

Element Forces

The element forces in local and global coordinates are shown. For pipe (also bend and reducer) elementforces in local coordinates, the stress intensification factors (SIFs) and stresses are also shown.

Use the Global forces button (F7) to see the element forces in global coordinates.

26

Page 29: CAD Pipe Tutorials

Tutorial

Use the Local forces button (F7) to see the element forces in local coordinates.

Use the Other forces button (F6), Next force button(Ctrl+Right arrow) or Previous forcebutton (Ctrl+Left arrow) to see other element forces(e.g. valves, bellows etc.).

27

Page 30: CAD Pipe Tutorials

Tutorial

Displacements

The nodal displacements are shown.

Use the Load cases button, Next load case button (Right arrow) or Previous load case button(Left arrow) to see loads for different load cases(e.g. Sustained, Expansion etc.).

Use the Deflected shape button (or View> Show deflected shape) to plot the deflected shape in thegraphics window.

Use the Animated deflected shape button (or View> Show animated deflected shape) to plot theanimated deflected shape in the graphics window.

28

Page 31: CAD Pipe Tutorials

Tutorial

Choose View> Magnification to change the magnification of the deflected shape.

The reset button is used to calculate a default magnification factor which scales the maximum deflection toabout 5% of the width of the graphics window.

Use the Other displacements button (F6), Next displacement button (Ctrl+Right arrow) orPrevious displacement button (Ctrl+Left arrow) to see other displacements (e.g. Min/Max,displacements at hangers, flex joints, limit stops etc.).

The minimum and maximum displacements for each of the directions and the corresponding nodes areshown below.

The displacements at hanger nodes are shown below.

29

Page 32: CAD Pipe Tutorials

Tutorial

Print

To print results and model data, click on the Print button (or press Ctrl+P). In the Print Results dialog,the items to print can be selected in the property pages.

You can also be print to a text file by using the To File button.

A preview of the printed output can be seen by using the Preview button.

The printing options such as choice of printer, margins, portrait or landscape and font can be set on thePrinter tab.

The sample problem report is shown next. Observe that for sorted stresses and code compliance, when thestress ratio exceeds 1.00, the stress and the stress ratio are shown in white letters on black background.

This is the end of the tutorial. If you have questions or comments, please email them to:

[email protected].

30

Page 33: CAD Pipe Tutorials

Caepipe Sample problem Page 1

Quality Assurance Block

Caepipe

Version 5.1

Client : Users

Project : Tutorial

File Number :

Report Number :

Model Name : Sample

Title : Sample problem

Analyzed : Sun Jul 01 10:38:43 2001

Prepared by : _________________________ Date:SST Systems, Inc.

Checked by : _________________________ Date:

31

Page 34: CAD Pipe Tutorials

Caepipe Sample problem Page 2

Analysis Options

Code : Piping code = B31.3 (1999)Do not include axial force in stress calculationsDo not use liberal allowable stresses

Temperature : Reference temperature = 70 (F)Number of thermal cycles = 7000Number of thermal loads = 1Thermal = Operating - SustainedUse modulus at reference temperature

Pressure : Pressure stress = PD / 4tPeak pressure factor = 1.00Do not include Bourdon effectUse pressure correction for bends

Dynamics : Cut off frequency = 33 HzNumber of modes = 20Include missing mass correctionDo not use friction in dynamic analysis

Misc. : Include hanger stiffnessVertical direction = Y

Layout (11)

# Node Type DX (ft'in") DY (ft'in") DZ (ft'in") Matl Sect Load Data1 Title = Sample problem2 10 From Anchor3 20 Bend 9'0" A53 8 14 30 6'0" A53 8 1 Hanger5 40 Bend 6'0" A53 8 16 50 -6'0" A53 8 1 Anchor7 6" std pipe8 30 From9 60 6'0" A53 6 110 70 Valve 2'0" A53 6 111 80 6'0" A53 6 1 Anchor

Anchors (3)

ReleasesNode KX KY KZ KXX KYY KZZ(lb/inch) (lb/inch) (lb/inch) (in-lb/deg) (in-lb/deg) (in-lb/deg) X Y Z XX YY ZZ

10 Rigid Rigid Rigid Rigid Rigid Rigid50 Rigid Rigid Rigid Rigid Rigid Rigid80 Rigid Rigid Rigid Rigid Rigid Rigid

Bends (2)

Bend Radius Rad. Thk Bend Flex. In Pln OutPl Int. Angle Int. AngleNode (inch) Type (inch) Matl Fact. SIF SIF Node (deg) Node (deg)20 12 Long40 18 User

Hangers (1)

Node Type No Load Short Spring rate Load Load CNodeof var% range (lb/inch) (lb) Type

30 Grinnell 1 25

Specified Displacements (1)

Node Type Load X (inch) Y (inch) Z (inch) XX (deg) YY (deg) ZZ (deg)50 Anchor T1 0.5

32

Page 35: CAD Pipe Tutorials

Caepipe Sample problem Page 3

Valves (1)

Offsets of Add.WgtFrom To Weight Length Thick Insul Add.Wgt(lb) (inch) X Wgt X (lb) DX (inch) DY (inch) DZ (inch)

60 70 200 3.00 1.75 50 0 18 0

Coordinates (12)

Node X (ft'in") Y (ft'in") Z (ft'in")10 0 0 020A 8'0" 0 020 9'0" 0 020B 9'0" 0 1'0"30 9'0" 0 6'0"40A 9'0" 0 10'6"40 9'0" 0 12'0"40B 9'0" -1'6" 12'0"50 9'0" -6'0" 12'0"60 15'0" 0 6'0"70 17'0" 0 6'0"80 23'0" 0 6'0"

Pipe material A53: A53 Grade B

Density = 0.283 (lb/in3), Nu = 0.300, Joint factor = 1.00, Type = CS

Temp E Alpha Allowable(F) (psi) (in/in/F) (psi)-325 31.4E+6 5.00E-6 20000-200 30.8E+6 5.35E-6 20000-100 30.2E+6 5.65E-6 2000070 29.5E+6 6.07E-6 20000200 28.8E+6 6.38E-6 20000300 28.3E+6 6.60E-6 20000400 27.7E+6 6.82E-6 20000500 27.3E+6 7.02E-6 18900600 26.7E+6 7.23E-6 17300650 26.1E+6 7.33E-6 17000700 25.5E+6 7.44E-6 16500750 24.9E+6 7.54E-6 13000800 24.2E+6 7.65E-6 10800850 23.3E+6 7.75E-6 8700900 22.4E+6 7.84E-6 6500950 21.4E+6 7.91E-6 45001000 20.4E+6 7.97E-6 25001050 19.2E+6 8.05E-6 16001100 18.0E+6 8.12E-6 1000

Pipe Sections (2)

Name Nom Sch OD Thk Cor.Al M.Tol Ins.Dens Ins.Thk Lin.Dens Lin.Thk SoilDia (inch) (inch) (inch) (%) (lb/ft3) (inch) (lb/ft3) (inch)

8 8" 80 8.625 0.5 11 26 6" STD 6.625 0.28 11 2

Pipe Loads (1)

Name T1 P1 Specific Add.Wgt. Wind(F) (psi) gravity (lb/ft) Load

1 600 200 0.8

33

Page 36: CAD Pipe Tutorials

Caepipe Sample problem Page 4

B31.3 (1999) Code compliance (Sorted stresses)

Sustained ExpansionSL SH SL SE SA SE

Node (psi) (psi) SH Node (psi) (psi) SA80 2504 17300 0.14 30 51519 29325 1.7660 2186 17300 0.13 50 49890 29325 1.7070 2117 17300 0.12 20A 44996 29325 1.5330 2020 17300 0.12 20B 32373 29325 1.1010 1416 17300 0.08 10 29813 29325 1.0240B 1079 17300 0.06 80 18818 29325 0.6420B 1000 17300 0.06 40A 17810 29325 0.6120A 938 17300 0.05 40B 9940 29325 0.3450 937 17300 0.05 60 9239 29325 0.3240A 886 17300 0.05 70 3960 29325 0.14

B31.3 (1999) Code Compliance

Sustained ExpansionPress.Node Allow. SL SH SL SE SA SE

(psi) (psi) (psi) SH (psi) (psi) SA10 200 1416 17300 0.08 29813 29325 1.0220A 2103 913 17300 0.05 25828 29325 0.88

20A 200 938 17300 0.05 44996 29325 1.5320B 2103 1000 17300 0.06 32373 29325 1.10

20B 200 954 17300 0.06 18524 29325 0.6330 2103 1739 17300 0.10 51519 29325 1.76

30 200 1727 17300 0.10 46307 29325 1.5840A 2103 883 17300 0.05 14909 29325 0.5140A 200 886 17300 0.05 17810 29325 0.6140B 2103 1079 17300 0.06 9940 29325 0.34

40B 200 1041 17300 0.06 8949 29325 0.3150 2103 937 17300 0.05 49890 29325 1.70

30 200 2020 17300 0.12 29014 29325 0.9960 1514 2186 17300 0.13 9239 29325 0.32

70 200 2117 17300 0.12 3960 29325 0.1480 1514 2504 17300 0.14 18818 29325 0.64

Hanger Report

Spring Vert Horz Hot ColdNode No Type Figure Size rate travel travel load load Var

of No. (lb/inch) (inch) (inch) (lb) (lb) (%)30 1 Grinnell B-268 10 260 0.600 0.604 1249 1405 12

Support load summary for anchor at node 10

Load combination FX (lb) FY (lb) FZ (lb) MX (ft-lb) MY (ft-lb) MZ (ft-lb)Sustained -13 -385 26 -365 -171 -1118Operating1 -28550 1474 -13762 -6909 57834 16248Maximum -13 1474 26 -365 57834 16248Minimum -28550 -385 -13762 -6909 -171 -1118

Support load summary for anchor at node 50

Load combination FX (lb) FY (lb) FZ (lb) MX (ft-lb) MY (ft-lb) MZ (ft-lb)Sustained -40 -194 -27 124 103 -87Operating1 -17724 -4258 12531 48050 13222 88895Maximum -40 -194 12531 48050 13222 88895Minimum -17724 -4258 -27 124 103 -87

34

Page 37: CAD Pipe Tutorials

Caepipe Sample problem Page 5

Support load summary for anchor at node 80

Load combination FX (lb) FY (lb) FZ (lb) MX (ft-lb) MY (ft-lb) MZ (ft-lb)Sustained 54 -365 1 -23 17 935Operating1 46275 1685 1231 -1594 5074 -11290Maximum 46275 1685 1231 -23 5074 935Minimum 54 -365 1 -1594 17 -11290

Support load summary for hanger at node 30

Load combination Load (lb)Sustained -1404Operating1 -1249Maximum -1249Minimum -1404

Loads on Anchors: Sustained (W+P)

Node FX (lb) FY (lb) FZ (lb) MX (ft-lb) MY (ft-lb) MZ (ft-lb)10 -13 -385 26 -365 -171 -111850 -40 -194 -27 124 103 -8780 54 -365 1 -23 17 935

Loads on Hangers: Sustained (W+P)

Node Type Load (lb) No.of Total (lb)30 Grinnell -1404 1 -1404

Pipe forces in local coordinates: Sustained (W+P)

Inplane(ft-lb) Outplane(ft-lb)Node Axial y Shear z Shear Torque SL(lb) (lb) (lb) (ft-lb) Moment SIF Moment SIF (psi)

10 -13 -385 26 -365 -1118 -171 141620A -13 129 26 -365 -97 35 913

20A -13 26 -129 -365 -35 1.75 -97 1.46 93820B 26 13 -230 -264 -74 1.75 171 1.46 1000

20B 26 230 13 -264 171 74 95430 26 552 13 -264 -1784 140 1739

30 27 -536 -40 329 -1762 139 172740A 27 -247 -40 329 -1 -43 883

40A 27 247 40 329 1 1.33 43 1.11 88640B 95 -27 40 103 -245 1.33 -269 1.11 1079

40B 95 -40 -27 103 -269 245 104150 -194 -40 -27 103 -87 124 937

30 -54 -316 -1 23 -593 1 202060 -54 -118 -1 23 710 -7 2186

70 -54 167 -1 23 661 -9 211780 -54 365 -1 23 -935 -17 2504

Other forces in local coordinates: Sustained (W+P)

fx fy fz mx my mzNode Type (lb) (lb) (lb) (ft-lb) (ft-lb) (ft-lb)60 Valve -54 -93 -1 23 -7 73570 -54 142 -1 23 -9 686

Element forces in global coordinates: Sustained (W+P)

Node FX FY FZ MX MY MZ(lb) (lb) (lb) (ft-lb) (ft-lb) (ft-lb)

10 13 385 -26 365 171 111820A -13 129 26 -365 35 -97

20A 13 -129 -26 365 -35 9720B -13 230 26 -171 74 -264

35

Page 38: CAD Pipe Tutorials

Caepipe Sample problem Page 6

Element forces in global coordinates: Sustained (W+P)

Node FX FY FZ MX MY MZ(lb) (lb) (lb) (ft-lb) (ft-lb) (ft-lb)

20B 13 -230 -26 171 -74 26430 -13 552 26 1784 140 -264

30 -40 536 -27 -1762 -139 -32940A 40 -247 27 1 -43 329

40A -40 247 -27 -1 43 -32940B 40 -95 27 -245 -103 269

40B -40 95 -27 245 103 -26950 40 194 27 -124 -103 8730 54 316 1 -23 -1 59360 -54 -118 -1 23 -7 710

60 54 93 1 -23 7 -73570 -54 142 -1 23 -9 686

70 54 -167 1 -23 9 -66180 -54 365 -1 23 -17 -935

Displacements: Sustained (W+P)

Node X (inch) Y (inch) Z (inch) XX (deg) YY (deg) ZZ (deg)10 0.000 0.000 0.000 0.0000 0.0000 0.000020A 0.000 -0.008 0.002 -0.0100 -0.0014 -0.005620B -0.000 -0.007 0.002 -0.0125 -0.0004 -0.006430 0.000 0.004 0.002 -0.0036 0.0010 -0.011040A 0.001 0.002 0.002 0.0056 0.0016 -0.005940B 0.001 0.000 0.001 0.0022 0.0016 -0.002150 0.000 0.000 0.000 0.0000 0.0000 0.000060 0.000 -0.012 0.001 -0.0019 0.0008 -0.001670 0.000 -0.012 0.001 -0.0017 0.0008 0.002280 0.000 0.000 0.000 0.0000 0.0000 0.0000

Loads on Anchors: Expansion (T1)

Node FX (lb) FY (lb) FZ (lb) MX (ft-lb) MY (ft-lb) MZ (ft-lb)10 -28537 1859 -13787 -6544 58005 1736650 -17684 -4064 12558 47926 13118 8898380 46221 2051 1230 -1572 5057 -12225

Loads on Hangers: Expansion (T1)

Node Type Load (lb) No.of Total (lb)30 Grinnell 155 1 155

Pipe forces in local coordinates: Expansion (T1)

Inplane(ft-lb) Outplane(ft-lb)Node Axial y Shear z Shear Torque SE(lb) (lb) (lb) (ft-lb) Moment SIF Moment SIF (psi)

10 -28537 1859 -13787 -6544 17366 58005 2981320A -28537 1859 -13787 -6544 2496 -52294 25828

20A -28537 -13787 -1859 -6544 52294 1.75 2496 1.46 4499620B -13787 28537 -1859 637 37545 1.75 4686 1.46 32373

20B -13787 1859 28537 637 4686 -37545 1852430 -13787 1859 28537 637 -4608 105142 51519

30 -12558 4064 -17684 17121 -3036 92985 4630740A -12558 4064 -17684 17121 -21325 13407 1490940A -12558 -4064 17684 17121 21325 1.33 -13407 1.11 1781040B -4064 12558 17684 13118 8584 1.33 9405 1.11 9940

40B -4064 -17684 12558 13118 9405 -8584 894950 -4064 -17684 12558 13118 88983 47926 49890

36

Page 39: CAD Pipe Tutorials

Caepipe Sample problem Page 7

Pipe forces in local coordinates: Expansion (T1)

Inplane(ft-lb) Outplane(ft-lb)Node Axial y Shear z Shear Torque SE(lb) (lb) (lb) (ft-lb) Moment SIF Moment SIF (psi)

30 -46221 -2051 -1230 1572 -16483 12157 2901460 -46221 -2051 -1230 1572 -4180 4779 9239

70 -46221 -2051 -1230 1572 -79 2320 396080 -46221 -2051 -1230 1572 12225 -5057 18818

Other forces in local coordinates: Expansion (T1)

fx fy fz mx my mzNode Type (lb) (lb) (lb) (ft-lb) (ft-lb) (ft-lb)60 Valve -46221 -2051 -1230 1572 4779 -418070 -46221 -2051 -1230 1572 2320 -79

Element forces in global coordinates: Expansion (T1)

Node FX FY FZ MX MY MZ(lb) (lb) (lb) (ft-lb) (ft-lb) (ft-lb)

10 28537 -1859 13787 6544 -58005 -1736620A -28537 1859 -13787 -6544 -52294 2496

20A 28537 -1859 13787 6544 52294 -249620B -28537 1859 -13787 -4686 -37545 637

20B 28537 -1859 13787 4686 37545 -63730 -28537 1859 -13787 4608 105142 637

30 -17684 -4064 12558 -3036 -92985 -1712140A 17684 4064 -12558 21325 13407 17121

40A -17684 -4064 12558 -21325 -13407 -1712140B 17684 4064 -12558 8584 -13118 -9405

40B -17684 -4064 12558 -8584 13118 940550 17684 4064 -12558 -47926 -13118 -88983

30 46221 2051 1230 -1572 -12157 1648360 -46221 -2051 -1230 1572 4779 -4180

60 46221 2051 1230 -1572 -4779 418070 -46221 -2051 -1230 1572 2320 -79

70 46221 2051 1230 -1572 -2320 7980 -46221 -2051 -1230 1572 -5057 12225

Displacements: Expansion (T1)

Node X (inch) Y (inch) Z (inch) XX (deg) YY (deg) ZZ (deg)10 0.000 0.000 0.000 0.0000 0.0000 0.000020A 0.361 0.223 -0.395 -0.1801 0.0605 0.210220B 0.283 0.318 -0.285 -0.2535 -0.8884 0.253830 -0.601 0.596 -0.057 -0.2540 -0.4414 0.264740A -0.631 0.787 0.148 -0.1090 0.1919 0.529740B -0.364 0.706 0.173 0.2342 0.2030 0.585750 0.000 0.500 0.000 0.0000 0.0000 0.000160 -0.346 0.460 0.131 -0.1322 0.0636 -0.351370 -0.256 0.309 0.100 -0.1218 0.0816 -0.362180 0.000 0.000 0.000 0.0000 0.0000 0.0000

Loads on Anchors: Operating (W+P1+T1)

Node FX (lb) FY (lb) FZ (lb) MX (ft-lb) MY (ft-lb) MZ (ft-lb)10 -28550 1474 -13762 -6909 57834 1624850 -17724 -4258 12531 48050 13222 8889580 46275 1685 1231 -1594 5074 -11290

37

Page 40: CAD Pipe Tutorials

Caepipe Sample problem Page 8

Loads on Hangers: Operating (W+P1+T1)

Node Type Load (lb) No.of Total (lb)30 Grinnell -1249 1 -1249

Pipe forces in local coordinates: Operating (W+P1+T1)

Inplane(ft-lb) Outplane(ft-lb)Node Axial y Shear z Shear Torque(lb) (lb) (lb) (ft-lb) Moment SIF Moment SIF

10 -28550 1474 -13762 -6909 16248 5783420A -28550 1988 -13762 -6909 2399 -52260

20A -28550 -13762 -1988 -6909 52260 1.75 2399 1.4620B -13762 28550 -2089 374 37471 1.75 4857 1.4620B -13762 2089 28550 374 4857 -3747130 -13762 2410 28550 374 -6392 105281

30 -12531 3528 -17724 17450 -4798 9312340A -12531 3818 -17724 17450 -21326 13365

40A -12531 -3818 17724 17450 21326 1.33 -13365 1.1140B -3969 12531 17724 13222 8339 1.33 9136 1.11

40B -3969 -17724 12531 13222 9136 -833950 -4258 -17724 12531 13222 88895 4805030 -46275 -2367 -1231 1594 -17076 1215860 -46275 -2168 -1231 1594 -3470 4773

70 -46275 -1884 -1231 1594 582 231180 -46275 -1685 -1231 1594 11290 -5074

Other forces in local coordinates: Operating (W+P1+T1)

fx fy fz mx my mzNode Type (lb) (lb) (lb) (ft-lb) (ft-lb) (ft-lb)60 Valve -46275 -2143 -1231 1594 4773 -344570 -46275 -1909 -1231 1594 2311 607

Element forces in global coordinates: Operating (W+P1+T1)

Node FX FY FZ MX MY MZ(lb) (lb) (lb) (ft-lb) (ft-lb) (ft-lb)

10 28550 -1474 13762 6909 -57834 -1624820A -28550 1988 -13762 -6909 -52260 2399

20A 28550 -1988 13762 6909 52260 -239920B -28550 2089 -13762 -4857 -37471 374

20B 28550 -2089 13762 4857 37471 -37430 -28550 2410 -13762 6392 105281 374

30 -17724 -3528 12531 -4798 -93123 -1745040A 17724 3818 -12531 21326 13365 17450

40A -17724 -3818 12531 -21326 -13365 -1745040B 17724 3969 -12531 8339 -13222 -9136

40B -17724 -3969 12531 -8339 13222 913650 17724 4258 -12531 -48050 -13222 -88895

30 46275 2367 1231 -1594 -12158 1707660 -46275 -2168 -1231 1594 4773 -3470

60 46275 2143 1231 -1594 -4773 344570 -46275 -1909 -1231 1594 2311 607

70 46275 1884 1231 -1594 -2311 -58280 -46275 -1685 -1231 1594 -5074 11290

Displacements: Operating (W+P1+T1)

Node X (inch) Y (inch) Z (inch) XX (deg) YY (deg) ZZ (deg)10 0.000 0.000 0.000 0.0000 0.0000 0.000020A 0.361 0.215 -0.393 -0.1901 0.0590 0.204620B 0.283 0.311 -0.283 -0.2661 -0.8888 0.2473

38

Page 41: CAD Pipe Tutorials

Caepipe Sample problem Page 9

Displacements: Operating (W+P1+T1)

Node X (inch) Y (inch) Z (inch) XX (deg) YY (deg) ZZ (deg)30 -0.601 0.600 -0.055 -0.2577 -0.4404 0.253740A -0.630 0.788 0.150 -0.1035 0.1935 0.523840B -0.363 0.706 0.173 0.2364 0.2046 0.583650 0.000 0.500 0.000 0.0000 0.0000 0.000160 -0.346 0.448 0.132 -0.1341 0.0644 -0.352970 -0.256 0.297 0.101 -0.1236 0.0824 -0.359980 0.000 0.000 0.000 0.0000 0.0000 0.0000

Center of gravity

X = 9.9221, Y = -0.4651, Z = 5.4697 (ft'in")Total weight = 2347.9 (lb)

Bill of materials: Materials

# Name Description1 A53 A53 Grade B

Bill of materials: Pipes

# Material OD Thk Total length Total weight(inch) (inch) (ft'in") (lb)

1 A53 6.625 0.28 12'0" 227.452 A53 8.625 0.5 22'0" 953.53

Bill of materials: Bends

# Material OD Thk Radius Angle Count Total weight(inch) (inch) (inch) (deg) (lb)

1 A53 8.625 0.5 12 90.00 1 68.0822 A53 8.625 0.5 18 90.00 1 102.12

Bill of materials: Valves

# OD Thk Weight Add.Weight Count Total weight(inch) (inch) (lb) (lb) (lb)

1 6.625 0.28 200 50 1 250

39

Page 42: CAD Pipe Tutorials

Caepipe Sample problem Page i

Table of Contents

Q.A.Block 1Analysis options 2Layout 2Details 2

Anchors 2Bends 2Hangers 2Specified displacements 2Valves 3

Coordinates 3Pipe materials 3Pipe sections 3Pipe loads 3Sorted stresses 4Code compliance 4Hanger report 4Support load summary 4

Anchor at Node 10 4Anchor at Node 50 4Anchor at Node 80 5Hanger at Node 30 5

Load case = Sustained (W+P) 5Loads on anchors 5Loads on hangers 5Pipe forces (local coordinates) 5Other forces (local coordinates) 5Element forces (global coordinates) 5Displacements 6

Load case = Expansion (T1) 6Loads on anchors 6Loads on hangers 6Pipe forces (local coordinates) 6Other forces (local coordinates) 7Element forces (global coordinates) 7Displacements 7

Load case = Operating (W+P1+T1) 7Loads on anchors 7Loads on hangers 8Pipe forces (local coordinates) 8Other forces (local coordinates) 8Element forces (global coordinates) 8Displacements 8

Center of gravity 9Bill of materials 9

40


Recommended