+ All Categories
Home > Documents > Calculation

Calculation

Date post: 16-Jul-2016
Category:
Upload: sneha
View: 8 times
Download: 3 times
Share this document with a friend
Description:
data
37
Transcript
Page 1: Calculation
Page 2: Calculation

Gas Strut Force Calculation

`

71.6

Platform Weight (G) -KgHorizontal distance between Hinge point S & CG (A) - mmPerpendicular distance between gas spring and hinge point S (K)- mmForce of the gas spring considering FOS for Two Gas strut (F)- N Force of the gas spring considering FOS for Single Gas strut (F1)- N

Page 3: Calculation

Gas Strut Force Calculation

50088.4

202.92397

1198.5

Centre of gravity of the Platform (CG)Hinge point of platform (S)Point of force of the spring on the fixed object (O)Max. typical stroke (X) - mmFOS = 10 %

Page 4: Calculation

Centre of gravity of the Platform (CG)Hinge point of platform (S)Point of force of the spring on the fixed object (O)Max. typical stroke (X) - mmFOS = 10 %

Page 5: Calculation
Page 6: Calculation

Gas Strut Force Matrix

Sr. No.

Kg mm1 500 55.82 500 55.83 500 55.84 500 55.85 500 55.86 500 55.87 500 55.88 500 55.89 500 55.8

10 500 55.811 500 55.812 500 55.813 500 55.815 500 55.815 500 55.8

Platform Weight (G)

Horizontal distance between Hinge point S &

CG (A)

0

5000

10000

15000

20000

Force of Gas Spring (Single Gas Strut)

Force of Gas Spring

Perpendicular distance between Gas spring and hinge point S (K)- mm

Force of Gas Spring Single Gas Strut(F1) -Kg

Page 7: Calculation

Gas Strut Force Matrix

mm N N10 30690 1534520 15345 7672.530 10230 511540 7673 3836.550 6138 306960 5115 2557.570 4385 2192.580 3837 1918.590 3410 1705

100 3069 1534.5110 2790 1395120 2558 1279130 2361 1180.5140 2193 1096.5150 2046 1023

331/67624

`

Perpendicular distance between gas spring and hinge point S

(K)

Force of the gas spring considering FOS

for Two Gas Strut (F)

Force of the gas spring

for Single Gas Strut (F1)

GAS STRUT : 1200N

0

5000

10000

15000

20000

Force of Gas Spring (Single Gas Strut)

Force of Gas Spring

Perpendicular distance between Gas spring and hinge point S (K)- mm

Force of Gas Spring Single Gas Strut(F1) -Kg

10 20 30 40 50 60 70 80 90 100 110 120 130 140 1500

20

40

60

80

100

Gas Strut Angle

Gas Strut Angle

Perpendicular distance between Gas spring and hinge point S (K)- mm

Gas Strut Angle -degree

For 250mm Solid length of Gas strut

Page 8: Calculation

Gas Strut Force Matrix 11/8/2015

degree mm74.5 211.876.1 217.777.5 223.778.9 229.980.3 236.281.5 242.782.7 249.483.9 256.285 263.286 270.387 277.588 284.9

88.9 292.591.7 310.590.6 307.9

Gas strut Angle with horizontal for (250 mm

Solid length)

Extended Length (250 mm Solid

length)

STRUT  M8 250.00  mm

99999.00  mm

99999.00  mm

10 20 30 40 50 60 70 80 90 100 110 120 130 140 1500

20

40

60

80

100

Gas Strut Angle

Gas Strut Angle

Perpendicular distance between Gas spring and hinge point S (K)- mm

Gas Strut Angle -degree

For 250mm Solid length of Gas strut

0

50

100

150

200

250

300

350

Extended Length

Extended Length Required for 60 Degree

Perpendicular distance between Gas spring and hinge point S (K)- mm

Extended Length - mm

For 250mm Solid length of Gas strut

Centre of gravity of the Platform (CG)Hinge point of platform (S)Point of force of the spring on the fixed object (O)Max. typical stroke (X) - mmFOS = 10 %

Page 9: Calculation

1200.00  385.00  mm

10.00  mm135.00  mm

20.00  mm 23.00  mmStrut (plain & gas)

0

50

100

150

200

250

300

350

Extended Length

Extended Length Required for 60 Degree

Perpendicular distance between Gas spring and hinge point S (K)- mm

Extended Length - mm

For 250mm Solid length of Gas strut

Centre of gravity of the Platform (CG)Hinge point of platform (S)Point of force of the spring on the fixed object (O)Max. typical stroke (X) - mmFOS = 10 %

Page 10: Calculation

5390

0

50

100

150

200

250

300

350

Extended Length

Extended Length Required for 60 Degree

Perpendicular distance between Gas spring and hinge point S (K)- mm

Extended Length - mm

For 250mm Solid length of Gas strut

Page 11: Calculation
Page 12: Calculation

50055.8

105.32915

Platform Weight (G) -KgHorizontal distance between Hinge point S & CG (A) - mmPerpendicular distance between Ram and hinge point S (K)- mmForce considering FOS for Ram (F)- N

Page 13: Calculation
Page 14: Calculation

Centre of gravity of the Platform (CG)Hinge point of platform (S)Point of force of RAM on the fixed object (O)FOS = 10 %

K

CG

A

S

O

Page 15: Calculation

Push - Pull for a Hydraulic Cylinder

Enter value & click on calculate. Result will disoplayed.1 lbs = 0.45359237 kgs

Enter your Values

1 Bore Of a Cylinder (b): 452 Pound per Square Inch (PSI) 2603 Diameter of a Rod (d) 25.4

Results:1 Push Of a Hydraulic Cylinder:

641291

2 Pull Of a Hydraulic Cylinder:

437199

Page 16: Calculation

Push - Pull for a Hydraulic Cylinder

Enter value & click on calculate. Result will disoplayed.

Enter your Values

mmPSImm

Results:Push Of a Hydraulic Cylinder:

lbsKgs

Pull Of a Hydraulic Cylinder:

lbsKgs

bd

Pressure

Page 17: Calculation

d

Page 18: Calculation

Force on Anti Vibrating Mount

609 mm 391

97 Kg

500mm

97 Kg

AVM Mounting

Result: Force on Mounting

Enter your Values

CG

Page 19: Calculation
Page 20: Calculation

Force on Anti Vibrating Mount

mm

153 Kg

688

mm

500 Kg

153 Kg

AVM Mounting

Result: Force on Mounting

Enter your Values

Page 21: Calculation
Page 22: Calculation

Deformation under Compression

Maximum force on AVM (F) 1530 N

Enter your ValuesHeight of Rubber (h) 39.5 mmLoaded Area (A) 2600 mm^2

Shore hardness 55 SHYoung's Modulus or Elasticity Modulus ( E) 2.966 N/mm2

Results

Deformation under Compression 7.8 mm

Conclusion7.9 mm

AVM can be use for Above load

Transmissibility of AVMEngine RPM 2200 rpmActual Static Deflection (T) 6 mmForcing Frequency (f) 36.666667 HzNatural Frequency (f0) 6.45 HzTransmissibility 0.0319Transmissibility 3.1 %Efficiency of System 96.9 %

Ref-https://en.wikipedia.org/wiki/Shore_durometer

Applicable up to (e =0.2h)

Ref- http://www.easyflex.in/pdff/latest/Intro%20to%20Anti%20Vibration%20Mounts.pdf

Page 23: Calculation
Page 24: Calculation

Deformation under Compression

AVM can be use for Above load

Shock Load (g)below AVM Above AVM

X 4.22 0.13Y 6.34 0.2Z 4.7 0.15

Ref-https://en.wikipedia.org/wiki/Shore_durometer

http://www.easyflex.in/pdff/latest/Intro%20to%20Anti%20Vibration%20Mounts.pdf

Page 25: Calculation
Page 26: Calculation
Page 27: Calculation
Page 28: Calculation
Page 29: Calculation
Page 30: Calculation
Page 31: Calculation
Page 32: Calculation

Helical Compression Spring design

Calculation Units

Input parametersWire diameter (d)Spring mean diameter (D)Free length (L)Number of turns (N)End Type

Material PropertiesTorsional modulus of elasticity (G)

Force dataForce (P)

Spring ParametersNo. of active turns (na)No. of inactive turns (ni)Solid length (Ls)Active length (La)Inctive length (Li)Outer dia of coil (Do)Inner dia of coil (Di)

Spring strength

Spring index (c )Torsional stress due to the load P (τt)Wahl factor (Kw)Maximum shearing stress (τsmax)

Spring deflection characteristics

Spring rate / stiffness (k)Force required to close the spring (Fs)

Spring Deflection (δ)

Page 33: Calculation

Helical Compression Spring design

SI (mm)

8 mm50 mm80 mm5

Plain ground

2.07E+05 N/mm2

500 N

50

40 mm80 mm0 mm

58 mm42 mm

6.25124.34 N/mm2

1.24154.1816 N/mm2

2.95 mm169.4 N/mm6776 N Fs=

Page 34: Calculation
Page 35: Calculation

Operator Platform Pivot Design

Inputs

Platform Opening AngleTotal Weight of OPHorizontal Distance of CG from Pivot in Open conditionHorizontal C-C Distance between Hinge & pivotVertical c-c distance between hinge & pivotAngle of gas strut with horizontal

No of PivotDia of pivot pin (d)Length of pivot pinNo of mounting bracket flangesPivot plate thicknessMounting bracket flange thicknessOuter dia of pivot plate (D)Thickness of pivot pin (t)Outer dia of mounting bracket (D)Thickness of pivot pin (t1)FOS

Material PropertiesUltimate strengthShearing strength

Page 36: Calculation

Operator Platform Pivot Design

Inputs Results

60 Degree Forces500 Kg

Force Acting on Each Pivot88 mm

444 mm Force required by gas strut109 mm91.7 Degree Permissible stresses

2 Nos.25 mm55 mm2 Nos. Pin Design

20 mm Double shear 10 mm Pin dia. - design67 mm Pin Dia (d)20 mm67 mm Bending of pin10 mm Bending stress exerted 2

Pivot plate designMaterial Properties Under tension

410 N/mm2 Outer Dia of pivot plate- design210 N/mm2 Outer Dia of pivot plate (D)

Under comressionThickness of pivot pin -designThickness of pivot pin (t)

Mtg Bkt designThickness of pivot pin (t1)

Permissible tensile stress (σt)Permissible compressive stress (σc)Permissible shearing stress (τs)

Page 37: Calculation

Operator Platform Pivot Design

Results

Forces65 Kg

637.43 N188.59 N

Permissible stresses205 N/mm2

205 N/mm2105 N/mm2

Pin DesignDouble shear

2.1 mm25 mm 1

Bending of pin1.61 N/mm2 1

Pivot plate designUnder tension

25.16 mm67 mm 1

Under comression0.12 mm20 mm 1

Mtg Bkt design10 mm 1


Recommended