+ All Categories
Home > Documents > Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview...

Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview...

Date post: 31-Aug-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
33
Calculus I - Lecture 1 - Review Lecture Notes: http://www.math.ksu.edu/˜gerald/math220d/ Course Syllabus: http://www.math.ksu.edu/math220/spring-2014/indexs14.html Gerald Hoehn (based on notes by T. Cochran) January 22, 2014
Transcript
Page 1: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Calculus I - Lecture 1 - Review

Lecture Notes:http://www.math.ksu.edu/˜gerald/math220d/

Course Syllabus:http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

January 22, 2014

Page 2: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Overview

CALCULUSI Derivatives

I Integrals

I) Differential Calculus (Derivatives): rates of change; speed;slope of a graph; minimum and maximum of functions.

Derivatives measure instantanous changes.

II) Integral Calculus: Integrals measure the accumulation of somequantity; the total distance an object has travelled; area under acurve; volume of a region.

An integral can be thought of as a sum of infinitesimal pieces.

Page 3: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Overview

CALCULUSI Derivatives

I Integrals

I) Differential Calculus (Derivatives): rates of change; speed;slope of a graph; minimum and maximum of functions.

Derivatives measure instantanous changes.

II) Integral Calculus: Integrals measure the accumulation of somequantity; the total distance an object has travelled; area under acurve; volume of a region.

An integral can be thought of as a sum of infinitesimal pieces.

Page 4: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Overview

CALCULUSI Derivatives

I Integrals

I) Differential Calculus (Derivatives): rates of change; speed;slope of a graph; minimum and maximum of functions.

Derivatives measure instantanous changes.

II) Integral Calculus: Integrals measure the accumulation of somequantity; the total distance an object has travelled; area under acurve; volume of a region.

An integral can be thought of as a sum of infinitesimal pieces.

Page 5: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Example Derivatives

Example: An apple is observed to drop from a branch 50 ft. abovethe ground.Question: At what speed is it travelling when it is 10 ft. above theground?

∆s = change in position∆t = change in in time, to fall ∆sAverage speed = ∆s

∆t

Speed at instant 10 ft. above = lim∆t−→0

∆s∆t = ds

dt

Instantanous Speed.

Page 6: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Example Integrals

Example: Find the area between the curves y = f (x) andy = g(x) over the interval [a, b].

Total Area ≈ sum of areas of slices = A1 + A2 + A3 + · · ·+ An.

Total Area = lim∆x−→0

(A1 + · · ·+ An) =

∫ b

a(g(x)− f (x)) dx

Definite Integral.

Page 7: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Example Integrals

Example: Find the area between the curves y = f (x) andy = g(x) over the interval [a, b].

Total Area ≈ sum of areas of slices = A1 + A2 + A3 + · · ·+ An.

Total Area = lim∆x−→0

(A1 + · · ·+ An) =

∫ b

a(g(x)− f (x)) dx

Definite Integral.

Page 8: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Example Integrals

Example: Find the area between the curves y = f (x) andy = g(x) over the interval [a, b].

Total Area ≈ sum of areas of slices = A1 + A2 + A3 + · · ·+ An.

Total Area = lim∆x−→0

(A1 + · · ·+ An) =

∫ b

a(g(x)− f (x)) dx

Definite Integral.

Page 9: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Success in Calc I begins with a solid foundation inAlgebra and Trigonometry!

We will review some of the most important concepts.

Page 10: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Equations of Lines

First degree equation in x , y .

1. Point-Slope Form: y − y0 = m(x − x0) ⇔ y−y0x−x0

= m

2. Slope-Intercept Form: y = mx + b (b is y-intercept)

3. Standard Form: Ax + By = C

Facts:

I Parallel lines have the same slope.

I The slope of a perpendicular line is − 1m (negative-reciprocal).

Page 11: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Equations of Circles

2nd degree equation in x , y .

(x − h)2 + (y − k)2 = r2 (by Pythagorean Theorem)

Page 12: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Example: Find the equation of the line tangent to the circlex2 + y2 = 25 at the point (3, 4) in slope-intercept form.

Solution:

slope red line = ∆y∆x = 4−0

3−0 = 43

m = slope tangent line = −34

pt.-slope: y − y0 = m(x − x0)y − 4 = −3

4 (x − 3)

⇒ y = −34x + 9

4 + 4 = −34x + 25

4 .

Page 13: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Example: Find the equation of the line tangent to the circlex2 + y2 = 25 at the point (3, 4) in slope-intercept form.

Solution:

slope red line = ∆y∆x = 4−0

3−0 = 43

m = slope tangent line = −34

pt.-slope: y − y0 = m(x − x0)y − 4 = −3

4 (x − 3)

⇒ y = −34x + 9

4 + 4 = −34x + 25

4 .

Page 14: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Example: Find the equation of the line tangent to the circlex2 + y2 = 25 at the point (3, 4) in slope-intercept form.

Solution:

slope red line = ∆y∆x = 4−0

3−0 = 43

m = slope tangent line = −34

pt.-slope: y − y0 = m(x − x0)y − 4 = −3

4 (x − 3)

⇒ y = −34x + 9

4 + 4 = −34x + 25

4 .

Page 15: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Example: Find the equation of the line tangent to the circlex2 + y2 = 25 at the point (3, 4) in slope-intercept form.

Solution:

slope red line = ∆y∆x = 4−0

3−0 = 43

m = slope tangent line = −34

pt.-slope: y − y0 = m(x − x0)y − 4 = −3

4 (x − 3)

⇒ y = −34x + 9

4 + 4 = −34x + 25

4 .

Page 16: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Example: Find the equation of the line tangent to the circlex2 + y2 = 25 at the point (3, 4) in slope-intercept form.

Solution:

slope red line = ∆y∆x = 4−0

3−0 = 43

m = slope tangent line = −34

pt.-slope: y − y0 = m(x − x0)

y − 4 = −34 (x − 3)

⇒ y = −34x + 9

4 + 4 = −34x + 25

4 .

Page 17: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Example: Find the equation of the line tangent to the circlex2 + y2 = 25 at the point (3, 4) in slope-intercept form.

Solution:

slope red line = ∆y∆x = 4−0

3−0 = 43

m = slope tangent line = −34

pt.-slope: y − y0 = m(x − x0)y − 4 = −3

4 (x − 3)

⇒ y = −34x + 9

4 + 4 = −34x + 25

4 .

Page 18: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Example: Find the equation of the line tangent to the circlex2 + y2 = 25 at the point (3, 4) in slope-intercept form.

Solution:

slope red line = ∆y∆x = 4−0

3−0 = 43

m = slope tangent line = −34

pt.-slope: y − y0 = m(x − x0)y − 4 = −3

4 (x − 3)

⇒ y = −34x + 9

4 + 4 = −34x + 25

4 .

Page 19: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Equations of Parabolas

2nd degree equation in x or y .

1. Vertex-Point Form: y = a(x − h)2 + k , a > 0: ∪, a < 0: ∩.2. Standard Form: y = ax2 + bx + c

x-intercepts: These are the solutions of the quadratic equationax2 + bx + c = 0. (*)

Quadratic Formula: The solutions of (*) are

x =−b ±

√b2 − 4ac

2a(a 6= 0).

Fact: If b2 − 4ac < 0 then (*) has no real solutions, that is, theparabola has no x-intercepts.

Page 20: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Equations of Parabolas

2nd degree equation in x or y .

1. Vertex-Point Form: y = a(x − h)2 + k , a > 0: ∪, a < 0: ∩.2. Standard Form: y = ax2 + bx + c

x-intercepts: These are the solutions of the quadratic equationax2 + bx + c = 0. (*)

Quadratic Formula: The solutions of (*) are

x =−b ±

√b2 − 4ac

2a(a 6= 0).

Fact: If b2 − 4ac < 0 then (*) has no real solutions, that is, theparabola has no x-intercepts.

Page 21: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Trigonometric Functions2π radians = 360◦ θ = theta

sin(θ) = y -coord. of point on unit circlecos(θ) = x-coord. of point on unit circletan(θ) = sin θ

cos θ , cot(θ) = cos θsin θ

sec(θ) = 1cos θ , csc(θ) = 1

sin θ

Pythagorean relation: sin2 θ + cos2 θ = 1

Example:sin( 3

2π) = −1, cos( 32π) = 0

tan( 32π) = −1

0 (undefined!), cot( 32π) = 0

−1 = 0

Page 22: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Trigonometric Functions2π radians = 360◦ θ = theta

sin(θ) = y -coord. of point on unit circlecos(θ) = x-coord. of point on unit circletan(θ) = sin θ

cos θ , cot(θ) = cos θsin θ

sec(θ) = 1cos θ , csc(θ) = 1

sin θ

Pythagorean relation: sin2 θ + cos2 θ = 1

Example:sin( 3

2π) = −1, cos( 32π) = 0

tan( 32π) = −1

0 (undefined!), cot( 32π) = 0

−1 = 0

Page 23: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Standard angles

I)sin(π4 ) = opp.

hyp. = 1√2

=√

22

cos(π4 ) = adj.hyp. = 1√

2=

√2

2

II)

sin(π6 ) = opp.hyp. = 1

2

cos(π6 ) = adj.hyp. =

√3

2

sin(π3 ) =√

32

cos(π3 ) = 12

Example: If tan θ = 43 and sin θ > 0, find cos θ.

Solution:

tan θ = opp.adj. = 4

3

cos θ = adj.hyp. = 3

5

sin θ = opp.hyp. = 4

5 .

Page 24: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Standard angles

I)sin(π4 ) = opp.

hyp. = 1√2

=√

22

cos(π4 ) = adj.hyp. = 1√

2=

√2

2

II)

sin(π6 ) = opp.hyp. = 1

2

cos(π6 ) = adj.hyp. =

√3

2

sin(π3 ) =√

32

cos(π3 ) = 12

Example: If tan θ = 43 and sin θ > 0, find cos θ.

Solution:

tan θ = opp.adj. = 4

3

cos θ = adj.hyp. = 3

5

sin θ = opp.hyp. = 4

5 .

Page 25: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Standard angles

I)sin(π4 ) = opp.

hyp. = 1√2

=√

22

cos(π4 ) = adj.hyp. = 1√

2=

√2

2

II)

sin(π6 ) = opp.hyp. = 1

2

cos(π6 ) = adj.hyp. =

√3

2

sin(π3 ) =√

32

cos(π3 ) = 12

Example: If tan θ = 43 and sin θ > 0, find cos θ.

Solution:

tan θ = opp.adj. = 4

3

cos θ = adj.hyp. = 3

5

sin θ = opp.hyp. = 4

5 .

Page 26: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Standard angles

I)sin(π4 ) = opp.

hyp. = 1√2

=√

22

cos(π4 ) = adj.hyp. = 1√

2=

√2

2

II)

sin(π6 ) = opp.hyp. = 1

2

cos(π6 ) = adj.hyp. =

√3

2

sin(π3 ) =√

32

cos(π3 ) = 12

Example: If tan θ = 43 and sin θ > 0, find cos θ.

Solution:

tan θ = opp.adj. = 4

3

cos θ = adj.hyp. = 3

5

sin θ = opp.hyp. = 4

5 .

Page 27: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Exponential and Natural Logarithm Functions

e = 2.718281828 . . . = natural log base

ex = exponential function (with base e)

ln(x) = loge(x) = natural logarithm

Facts:

I ln(x) is only defined for x > 0

I ln(xy) = ln x + ln y , x , y > 0

I ln(x s) = s ln x

I ln(ex) = x , for all x ⇒I e ln x = x , for x > 0 ⇒ ex and ln x are inverse functions

Page 28: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Exponential and Natural Logarithm Functions

e = 2.718281828 . . . = natural log base

ex = exponential function (with base e)

ln(x) = loge(x) = natural logarithm

Facts:

I ln(x) is only defined for x > 0

I ln(xy) = ln x + ln y , x , y > 0

I ln(x s) = s ln x

I ln(ex) = x , for all x ⇒I e ln x = x , for x > 0 ⇒ ex and ln x are inverse functions

Page 29: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Exponential and Natural Logarithm Functions

e = 2.718281828 . . . = natural log base

ex = exponential function (with base e)

ln(x) = loge(x) = natural logarithm

Facts:

I ln(x) is only defined for x > 0

I ln(xy) = ln x + ln y , x , y > 0

I ln(x s) = s ln x

I ln(ex) = x , for all x ⇒I e ln x = x , for x > 0 ⇒ ex and ln x are inverse functions

Page 30: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Exponential and Natural Logarithm Functions

e = 2.718281828 . . . = natural log base

ex = exponential function (with base e)

ln(x) = loge(x) = natural logarithm

Facts:

I ln(x) is only defined for x > 0

I ln(xy) = ln x + ln y , x , y > 0

I ln(x s) = s ln x

I ln(ex) = x , for all x ⇒I e ln x = x , for x > 0 ⇒ ex and ln x are inverse functions

Page 31: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Exponential and Natural Logarithm Functions

e = 2.718281828 . . . = natural log base

ex = exponential function (with base e)

ln(x) = loge(x) = natural logarithm

Facts:

I ln(x) is only defined for x > 0

I ln(xy) = ln x + ln y , x , y > 0

I ln(x s) = s ln x

I ln(ex) = x , for all x ⇒

I e ln x = x , for x > 0 ⇒ ex and ln x are inverse functions

Page 32: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Exponential and Natural Logarithm Functions

e = 2.718281828 . . . = natural log base

ex = exponential function (with base e)

ln(x) = loge(x) = natural logarithm

Facts:

I ln(x) is only defined for x > 0

I ln(xy) = ln x + ln y , x , y > 0

I ln(x s) = s ln x

I ln(ex) = x , for all x ⇒I e ln x = x , for x > 0

⇒ ex and ln x are inverse functions

Page 33: Calculus I - Lecture 1 - Review - eserved@d = *@let@token ...gerald/math220d/lec1.pdfOverview CALCULUS I Derivatives I Integrals I) Di erential Calculus (Derivatives): rates of change;

Exponential and Natural Logarithm Functions

e = 2.718281828 . . . = natural log base

ex = exponential function (with base e)

ln(x) = loge(x) = natural logarithm

Facts:

I ln(x) is only defined for x > 0

I ln(xy) = ln x + ln y , x , y > 0

I ln(x s) = s ln x

I ln(ex) = x , for all x ⇒I e ln x = x , for x > 0 ⇒ ex and ln x are inverse functions


Recommended