+ All Categories
Home > Documents > CALCULUS II

CALCULUS II

Date post: 03-Jan-2016
Category:
Upload: rhoslyn-bronwen
View: 34 times
Download: 0 times
Share this document with a friend
Description:
CALCULUS II. Chapter 10. 10.1 Sequences. A sequence can be thought as a list of numbers written in a definite order. Examples. http://www.youtube.com/watch?v=Kxh7yJC9Jr0. Limit of a sequence. Consider the sequence If we plot some values we get this graph. Limit of a sequence. - PowerPoint PPT Presentation
Popular Tags:
74
CALCULUS II Chapter 10
Transcript
Page 1: CALCULUS II

CALCULUS II

Chapter 10

Page 2: CALCULUS II

10.1 Sequences

• A sequence can be thought as a list of numbers written in a definite order

,,,,,, 4321 naaaaa

na

Page 3: CALCULUS II

Examples

,3,,3,2,1,03

,3

11,,

27

4,9

3,3

2

3

11

,1

,,4

3,3

2,2

1

1

3

nn

nn

n

n

n

n

n

n

n

n

n

Page 4: CALCULUS II

http://www.youtube.com/watch?v=Kxh7yJC9Jr0

Page 5: CALCULUS II

Limit of a sequence

• Consider the sequence• If we plot some values we get this graph

1n

n

Page 6: CALCULUS II

Limit of a sequence

• Consider the sequence

12

1

nn

n

Page 7: CALCULUS II

Limit of a sequence

• Since a sequence is a collection of numbers, we could have a random collection

Page 8: CALCULUS II

Limit of a sequence

• Consider the Fibonacci sequence

1,1, 2111 aaaaa nnn

Page 9: CALCULUS II

Limit of a sequence

Page 10: CALCULUS II

Limit of a sequence (Definition 1)

• A sequence has the limit if we can make the terms as close as we like by taking n sufficiently large.

• We write

na Lna

nasLaorLa nnnlim

Page 11: CALCULUS II

Limit of a sequence (Definition 2)

• A sequence has the limit if for every there is a corresponding integer N such

that

• We write

na L

nasLaorLa nnnlim

0

NnwheneverLan ,

Page 12: CALCULUS II

Convergence/Divergence

• If exists we say that the sequence converges.– Note that for the sequence to converge, the limit

must be finite

• If the sequence does not converge we will say that it diverges– Note that a sequence diverges if it approaches to

infinity or if the sequence does not approach to anything

nna

lim

Page 13: CALCULUS II

Divergence to infinity

• means that for every positive number M there is an integer N such that

• means that for every positive number M there is an integer N such that

n

nalim

NnwheneverMan ,

n

nalim

NnwheneverMan ,

Page 14: CALCULUS II

The limit laws

• If and are convergent sequences and c is a constant, then na nb

ccacac

baba

nn

nn

n

nn

nn

nnn

lim,limlim

limlimlim

Page 15: CALCULUS II

The limit laws

00,limlim

0lim,lim

limlim

limlimlim

np

nn

pn

n

nn

nn

nn

n

n

n

nn

nn

nnn

aandpifaa

bifb

a

b

a

baba

Page 16: CALCULUS II

L’Hopital and sequences

• Theorem: If and , when n is an integer, then

• L’Hopital: Suppose that and are differentiable and that near a. Also suppose that we have an indeterminate form of type . Then

Lxfx

)(lim nanf )(Lan

n

lim

)(xf )(xg0)(' xg

or0

0

)(

)(lim

)(

)(lim

xg

xf

xg

xfaxax

Page 17: CALCULUS II

More Theorems

• Squeeze thm: Let be sequences such that for some M, for and . Then

• Continuity: If is continuous and the limit exists, then

• Bounded monotonic sequences converge: if for all n, and

nnn cba ,,

nnn cab Mn Lcb n

nn

n

limlim Lan

n

lim

)(xf

Lann

lim )()lim()(lim Lfafaf nn

nn

1 nn aa Man

Page 18: CALCULUS II

Examples

!

10limlim

lnlimlim

2

1lim

8

1lim7lim5lim

1limlim!

lim4

220lim

limln

lim1

lim1

4lim

2

1

22

1

1

3

2

2

2

ne

n

n

nn

n

n

nnen

n

n

nn

n

n

n

n

n

n

n

n

nnnn

n

n

n

n

n

n

n

n

n

n

n

n

nnnn

nnnn

Page 19: CALCULUS II

http://www.youtube.com/watch?v=9K1xx6wfN-U

Page 20: CALCULUS II

10.2 Infinite Series

• Is the summation of all elements in a sequence.

• Remember the difference: Sequence is a collection of numbers, a Series is its summation.

n

nn aaaaa 321

1

Page 21: CALCULUS II

http://www.youtube.com/watch?v=haK3oC0L_a8

Page 22: CALCULUS II

Visual proof of convergence

• It seems difficult to understand how it is possible that a sum of infinite numbers could be finite. Let’s see an example

nn

n

nn

n

2

1

16

1

8

1

4

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

4321

Page 23: CALCULUS II

12

1

16

1

8

1

4

1

2

1

2

1

1

n

nn

Page 24: CALCULUS II

Convergence/Divergence

• We say that an infinite series converges if the sum is finite, otherwise we will say that it diverges.

• To define properly the concepts of convergence and divergence, we need to introduce the concept of partial sum

N

N

nnN aaaaaS

3211

Page 25: CALCULUS II

Convergence/Divergence

• The partial sum is the finite sum of the first terms.

• converges to if and we write:

• If the sequence of partial sums diverges, we say that diverges.

thN NSN

1nna S SSN

N

lim

1n

naS

1nna

Page 26: CALCULUS II

Laws of Series

• If and both converge, then

– Note that the laws do not apply to multiplication, division nor exponentiation.

1nna

1nnb

11

111

nn

nn

nnn

nn

nn

acac

baba

Page 27: CALCULUS II

Divergence Test

• If does not converge to zero, then diverges.– Note that in many cases we will have sequences

that converge to zero but its sum diverges

na

1nna

11

2111

sin111

1nnnnn

n nnnn

Page 28: CALCULUS II

Proof Divergence Test

• If , then

1

1

1321

1321

nnn

nnn

nnn

nnn

SSa

aSS

aaaaaS

aaaaaS

1n

n Sa

n

nalim

Page 29: CALCULUS II

Geometric Series

432

0

rcrcrcrccrcn

n

Note that in this case we start counting from zero. Technically it doesn’t matter, but we have to be careful because the formula we will use starts always at n=0.

First term multiplied by r

Second term multiplied by r

Third term multiplied by r

Page 30: CALCULUS II

Geometric Series

If we multiply both sides by r we get

If we subtract (2) from (1), we get

)1(32

0

NN

N

n

nN

rcrcrcrccS

rcS

)2(1432 NN rcrcrcrcrcSr

r

rcS

rcrS

rccSrS N

NNN

NNN

1

1

11

1

1

1

Page 31: CALCULUS II

Geometric Series

• An infinite GS diverges if , otherwise 1r

1,1

1

1,1

1,10

rr

termrc

rr

rcrc

rr

crc

st

Mn

n

M

Mn

n

n

n

Page 32: CALCULUS II

Examples (not only GS)

10

11

1

1

2000

52ln

6

23

26.05

1

3

12113

nnn

nn

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

Page 33: CALCULUS II

http://www.youtube.com/watch?v=xjmy5hkZccY

Page 34: CALCULUS II

http://www.youtube.com/watch?v=C8piSCOdo1Y

Page 35: CALCULUS II
Page 36: CALCULUS II

Telescoping Series

To solve we will use the identity:

133

1

122

1

111

1

1

1

1n nn

1

11

1

1

nnnn

Page 37: CALCULUS II

Telescoping Series

11

11limlim

1

11

11

1

11

4

1

3

1

3

1

2

1

2

1

1

1

1

11

1

1

1

1 1

NS

nn

NS

NNS

nnnnS

NN

Nn

N

N

N

n

N

nN

Page 38: CALCULUS II

http://www.youtube.com/watch?v=7tDK_UjdWOs

Page 39: CALCULUS II

http://www.youtube.com/watch?v=MDYb5DnRH2c

Page 40: CALCULUS II

Harmonic Series

• Basically this implies that

TOO BIG!!!

1

1

n n

Page 41: CALCULUS II

http://www.youtube.com/watch?v=0XIqnoJ72CU

Page 42: CALCULUS II

P-Series

• A p-series is a series of the form

• Convergence of p-series:

ppp

npn 4

1

3

1

2

1

1

11

1

1

11

1 pforDiverges

pforConverges

nnp

Page 43: CALCULUS II

Examples (not only P-series)

111

1

1

1

11

5

1

1

5

1

115

1

5

1

5

1

5

153

11

1

11

12

2

1

001.0

112

5

1

5

1555

51

11

5

6

3

45ln

11

nn

nn

n

n

n

n

n

n

n

nn

n

nnnn

nnn

n

nn

n

nnnn

n

nn

nnn

nn

n

n

n

n

nn

Page 44: CALCULUS II

Comparison Test

• Assume that there exists such that for1. If converges, then also converges.

2. If diverges, then also diverges.

– if diverges this test does not help – Also, if converges this test does not help

0M nn ba 0Mn

1nnb

1nna

1nna

1nnb

1nnb

1nna

Page 45: CALCULUS II

Limit Comparison Test

• Let and be positive sequences. Assume that the following limit exists

• If , then converges if and only if converges. (Note that L can not be infinity)

• If and converges, then converges

na nb

n

n

n b

aL

lim

0L

1nna

1nnb

0L

1nnb

1nna

Page 46: CALCULUS II

Examples

111

13

2

11

3

1

12

14

2

11

2

4ln

4

1

ln

4

11

4

1

3

12

n

n

nn

nnn

nnnn

n

n

ennn

n

n

n

nn

n

nn

nnn

n

n

Page 47: CALCULUS II

http://www.youtube.com/watch?v=xesQnFWw8f8

Page 48: CALCULUS II

http://www.youtube.com/watch?v=8eCFY82HkRA

Page 49: CALCULUS II

Absolute/Conditional Convergence

• is called absolutely convergent if converges

• Absolute convergence theorem: – If convs. Also convs.– (In words) if convs. Abs. convs.

1nna

1nna

1nna

1nna

1nna

1nna

12

1

1

2

1

n

n

n

n

n

Page 50: CALCULUS II

http://www.youtube.com/watch?v=6hOeqjoQvNw

Page 51: CALCULUS II

Leibniz Test for alternating series

• Let be:– Decreasing – Positive – Converging to 0Then,

Converges

na

0na

0nann aa 1

1

1n

nna

1

1

1

1

1

n

n

n

n

n

n

Examples

Page 52: CALCULUS II

Ratio Test

• Let be a sequence and assume that the following limit exists:

– If , then converges absolutely– If , then diverges– If , the Ratio Test is INCONCLUSIVE

na

n

n

n a

a 1lim

1

1nna

1

1

1nna

1

2

1

2

11

2

1 100

!1

2!

1

nnnn

n

nn

n

nnnn

n

Examples

Page 55: CALCULUS II

Root Test

• Let be a sequence and assume that the following limit exists:

– If , then converges absolutely– If , then diverges– If , the Ratio Test is INCONCLUSIVE

na

nn

naL

lim

1L

1nna

1L

1L

1nna

1

2

1

2

1

2

1 232 nnnn

n

n

nnn

n

n

Examples

Page 56: CALCULUS II

http://www.youtube.com/watch?v=vDdDLfIya0I

http://www.youtube.com/watch?v=iy8mhbZTY7g&feature=PlayList&p=21CAE1F783F4C165&index=3

Page 57: CALCULUS II

Examples

• Use this strategy to test the series in the following exams:

• Exam 1• Exam 2• Exam 3• Exam 4

Page 58: CALCULUS II

http://www.youtube.com/watch?v=DvadVYHf3pM

http://www.youtube.com/watch?v=iy8mhbZTY7g&feature=PlayList&p=21CAE1F783F4C165&index=3

Page 59: CALCULUS II

Power Series

• A power series is a series of the form:

221

00

221

00

axcaxccaxc

xcxcxccxc

n

nn

nn

n

nn

Page 60: CALCULUS II

Power Series

• Theorem: For a given power series there are 3 possibilities:

1.The series converges only when2.The series converges for all3.There is a positive number R, such that the

series converges if and diverges if

0n

nn axc

ax x

Rax

Rax

Page 61: CALCULUS II

http://www.youtube.com/watch?v=01LzAU__J-0&feature=channel

Page 62: CALCULUS II

http://www.youtube.com/watch?v=MM3BXtVu9eM&feature=response_watch

Page 63: CALCULUS II

Examples

• For what values of x do the following power series converge?

05

0 032

001

0

022

2

00

5

1

1

414

ln4

1

3

2

1

3

!2

13!

nn

nn

n n

nn

nn

nn

nn

n

n

nn

nn

nn

n

n

n

n

n

x

n

xn

n

x

n

xxn

n

x

n

x

n

xxn

Page 64: CALCULUS II

Representation of fns as PS

• From the Geometric Series formula we can deduce:

• Theorem: Term-by-term differentiation, if converges for , thenis its derivative and also converges for

11

1

0

n

n xforx

x

0n

nnxa Rx

0

1

n

nn xna

Rx

4322 54

1

23

1

5

1

1

1

31

1

xxxxx

Page 65: CALCULUS II

http://www.youtube.com/watch?v=XWGPjZK0Yzw&feature=related

Page 66: CALCULUS II

Representation of fns as PS

• Theorem: Term-by-term differentiation, if converges for , thenis its derivative and also converges for

• Theorem: Term-by-term anti-differentiation, if converges for , thenis its derivative and also converges for

0n

nnxa Rx

0

1

n

nn xna

Rx

0n

nnxa Rx

0

1

1n

n

n n

xa

Rx

xx

xx41ln1ln

21

1

1

132

Page 67: CALCULUS II

Taylor & Maclaurin Series

• Let , then

therefore ,,234)0(,23)0(,2)0(,)0(,)0( 4

)(3210 afafafafaf IV

44

33

2210

0

)( xaxaxaxaaxaxf n

nn

n

n

nk

k xn

fxf

k

fa

0

)()(

!

)0()(

!

)0(

22cossin xxx eexxxe

Examples

Page 68: CALCULUS II

http://www.youtube.com/watch?v=cjPoEZ0I5wQ&feature=related

Page 69: CALCULUS II

http://www.youtube.com/watch?v=Os8OtXFBLkY&feature=related

Page 70: CALCULUS II

http://www.youtube.com/watch?v=qPl9nr8my2Q&feature=related

Page 71: CALCULUS II

The Binomial Series

In general

terefore

21)0(121)(

1)0(11)(

)0(1)(

1)0(1)(

3

2

1

aaafxaaaxf

aafxaaxf

afxaxf

fxxf

a

a

a

a

121)0()( naaaaf n

!

121

!

)0()(

n

naaaa

n

f n

31

2

3

1

2

1

1

1

1

:

x

x

x

Examples

Page 72: CALCULUS II

http://www.youtube.com/watch?v=ocNLs4hmNtI

Page 73: CALCULUS II

http://www.youtube.com/watch?v=Jgy-MLHlzO0&feature=related

Page 74: CALCULUS II

Recommended