+ All Categories
Home > Documents > Calculus III - Florida International...

Calculus III - Florida International...

Date post: 01-May-2018
Category:
Upload: trinhthien
View: 218 times
Download: 2 times
Share this document with a friend
116
Calculus III Philippe Rukimbira Department of Mathematics Florida International University PR (FIU) MAC 2313 1 / 104
Transcript
Page 1: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Calculus III

Philippe Rukimbira

Department of MathematicsFlorida International University

PR (FIU) MAC 2313 1 / 104

Page 2: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

13.3 Partial Derivatives

Example:f (x , y) = (x2 + 2xy)5

The partial derivative of f with respect to x is:

∂f∂x

(x , y) = 5(x2 + 2xy)4(2x + 2y).

What is ∂f∂y ?

The answer is:5(x2 + 2xy)4(2x).

PR (FIU) MAC 2313 2 / 104

Page 3: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

13.3 Partial Derivatives

Example:f (x , y) = (x2 + 2xy)5

The partial derivative of f with respect to x is:

∂f∂x

(x , y) = 5(x2 + 2xy)4(2x + 2y).

What is ∂f∂y ?

The answer is:5(x2 + 2xy)4(2x).

PR (FIU) MAC 2313 2 / 104

Page 4: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

The second order partial derivative of f with respect to y is:

∂2f∂y2 (x , y) = 40(x2 + 2xy)3(2x)(2x).

∂2f∂x∂y = ∂

∂x ( ∂∂y f )

= ∂∂x (10x(x2 + 2xy)4)

= 10(x2 + 2xy)4 + 40x(x2 + 2xy)3(2x)

= 20(x2 + 2xy)3(5x2 + xy)

PR (FIU) MAC 2313 3 / 104

Page 5: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

What is∂2f∂x2 ?

PR (FIU) MAC 2313 4 / 104

Page 6: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

13.4 Differentiability, Differentials and local linearity

Denote by ∆f = f (x0 + ∆x , y0 + ∆y)− f9X0,Y0).

f is said to be differentiable at (x0, y0) if:

∆f =∂f∂x

(x0, y0)∆x +∂f∂y

(x0, y0) + ε1∆x + ε2∆y

wherelim

(∆x ,∆y)→(0,0)ε1 = 0 = lim

(∆x ,∆y)→(0,0)ε2.

PR (FIU) MAC 2313 5 / 104

Page 7: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example

f (x , y) = x2 + y2, at (x0, y0) = (2,3).

∆f = f (2 + ∆x ,3 + ∆y)− f (2,3)

= (2 + ∆x)2 + (3 + ∆y)2 − 4− 9= 4 + 4∆x + (∆x)2 + 9 + 6∆y + (∆y)2 − 4− 9= 4∆x + 6∆y + (∆x)2 + ∆y)2.

PR (FIU) MAC 2313 6 / 104

Page 8: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Let ε1 = ∆x , ε2 = ∆

lim(∆x ,∆y)→(0,0)

ε1 = 0; lim(∆x ,∆y)→(0,0)

ε2 = 0

∂f∂x

(2,3) = 4, and∂f∂y

(2,3) = 6

as expected!

PR (FIU) MAC 2313 7 / 104

Page 9: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

If all first order partial derivatives of f exist and are continuous at apoint, then f is differentiable at that point.

Differentials:

∆f ' fx (x0, y0)∆x + fy (x0, y0)∆y

(∆f ' fx ∆x + fy ∆y + fz∆z)

these are approximations for ∆f

PR (FIU) MAC 2313 8 / 104

Page 10: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

If z = f (x , y), then the differential dz of f is

dz = fx (x0, y0)dx + fy (x0, y0)dy .

The same way,dw = fxdx + fydy + fzdz.

dz or dw are called the Total differentials of f at (x0, y0).

dz = df is an approximation for ∆z = ∆f .

PR (FIU) MAC 2313 9 / 104

Page 11: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Use dz to approximate ∆z where z = xy2, from its value at (0.5,1.0)

to its value at (0.503,1.004).

Definition (Linear Approximation)

L(x , y) = f (x0, y0) + fx (x0, y0) + fy (x0, y0)dy

Or

L(x , y) = f (x0, y0) + fx (x0, y0)(x − x0) + fy (x0, y0)(y − y0).

L(x , y)

is known as the local linear approximation for f (x , y) at the point(x0, y0).

PR (FIU) MAC 2313 10 / 104

Page 12: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example

f (x , y) =√

x2 + y2

Find L(x , y) at (1,2). The formula is similar for functions of threevariables f (x , y , z).

PR (FIU) MAC 2313 11 / 104

Page 13: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

13.5 The Chain Rules: Chain Rule number 1

z = f (x(t), y(t))

dzdt

=∂f∂x

dxdt

+∂f∂y

dydt.

Example:

z = ln(2x2 + y), x(t) =√

t , y(t) = t23 .

dzdt = 1

2x2y 4x dxdt + 1

2x2+ydydt

= 1

2t+t23

4√

t 12√

t+ 1

2t+t23

23 t−

13

= 2

2t+t23

+ 2

3[2t2+t23 ]t

13

PR (FIU) MAC 2313 12 / 104

Page 14: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

The Chain Rules: Chain Rule number 2

z = f (x(u, v), y(u, v))

∂z∂u

=∂f∂x

∂x∂u

+∂f∂y

∂y∂u

∂z∂v

=∂f∂x

∂x∂v

+∂f∂y

∂y∂v

Example:z = 8x2y − 2x + 3y , x = uv , y = u − v

∂z∂u = ∂z

∂x∂x∂u + ∂z

∂y∂y∂u

= (16xy − 2)v + (8x2 + 3)(−v)

= (16uv(u − v)− 2)v − v(8u2v2 + 3)

= 16u2v2 − 24uv3 − 5vPR (FIU) MAC 2313 13 / 104

Page 15: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Compute∂z∂v.

PR (FIU) MAC 2313 14 / 104

Page 16: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

13.6 Directional derivatives and gradients

Let ~u be a unit vector. There are infinitely many curves C(t) withdCdt (0) = ~u.

Let C(t) = (x(t), y(t), z(t))

Given a function f (x , y , z),

DefinitionThe directional derivative of f in the direction of ~u is by definition:

ddt

f (x(t), y(t), z(t))(0).

It is denoted by~uf .

PR (FIU) MAC 2313 15 / 104

Page 17: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

DefinitionIf f (x , y , z) is a function, the gradient of f , ∇f , is the vector defined by :

∇f =∂f∂x~i +

∂f∂y~j +

∂f∂z~k .

PR (FIU) MAC 2313 16 / 104

Page 18: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Proposition

~uf = ~u.∇f .

PR (FIU) MAC 2313 17 / 104

Page 19: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Proof

~uf = ddt f (x(t), y(t), z(t))(0)

= ∂f∂x

dxdt + ∂f

∂ydydt + ∂f

∂zdzdt

= ∂f∂x u1 + ∂f

∂y u2 + ∂f∂z u3

= ~u.∇f

PR (FIU) MAC 2313 18 / 104

Page 20: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Property (I)The component of ∇f in any given direction gives the directionalderivative in that direction.

Proof.

Let ~u be a direction (a unit vector). Then

~uf = ~u.∇f = ‖~u‖‖∇f‖ cos θ = ‖∇f‖ cos θ.

PR (FIU) MAC 2313 19 / 104

Page 21: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Property (II)At each point, the vector ∇f points in the direction of the maximum rateof increase of the function f .

Proof.

~uf = ~u.∇f

takes its maximum when ~u and ∇f are parallel, and θ = 0.

PR (FIU) MAC 2313 20 / 104

Page 22: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Property (III)The magnitude of ∇f equals the maximum rate of increase of f per unitdistance.

PR (FIU) MAC 2313 21 / 104

Page 23: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Property (IV)

Through any point (x0, y0, z0) where ∇f 6= ~O, there passes a levelsurface f (x , y , z) = f (x0, y0, z0). The vector ∇f is normal to this surfaceat the point (x0, y0, z0).

PR (FIU) MAC 2313 22 / 104

Page 24: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Proof:

Let C(t) be a curve on the level surface f (x , y , z) = f (x0, y0, z0) suchthat C(0) = (x0, y0, z0) and dC

dt (0) = ~u a unit tangent vector. On onehand,

~uf = ddt f (x(t), y(t), z(t))(0)

= ddt f (x0, y0, z0)(0)

= 0

on the other hand,~uf = ~u.∇f

So, we see that~u.∇f = 0

therefore ∇f is perpendicular to any vector tangent to the level surface;equivalently, ∇f is perpendicular to the level surface.

PR (FIU) MAC 2313 23 / 104

Page 25: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example

Given f (x , y , z) = x2 + y2 + z2, find the maximum value of the rate ofchange of f at (3,0,4).

Solution

We know the ∇f gives the direction of maximum rate of change.

∇f (3,0,4) = (2x ,2y ,2z)(3,0,4) = (6,0,8).

But also that ‖∇f‖ =√

36 + 64 = 10 gives the maximum rate ofchange.

PR (FIU) MAC 2313 24 / 104

Page 26: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

13.7 Tangent Planes and Normal Lines

TheoremLet P0 = (x0, y0, z0) be a point on the surface z = f (x , y). If f (x , y) isdifferentiable at (x0, y0), then the surface has a tangent plane at P0.This plane has equation:

∂f∂x

(x0, y0)(x − x0) +∂f∂y

(x0, y0)(y − y0)− (z − z0) = 0.

PR (FIU) MAC 2313 25 / 104

Page 27: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Proof

To prove the theorem, it is enough to show that < ∂f∂x ,

∂f∂y ,−1 > is a

normal vector to the surface. To that end, let C = (x(t), y(t), z(t)) beany curve on the surface such that C(t0) = P0. We need only to showthat < ∂f

∂x ,∂f∂y ,−1 > is perpendicular to to c, that is, perpendicular to

the tangent vector of C, which is < dxdt ,

dydt ,

dzdt > at t = t0.

Fromf (x , y)− z = 0, we get

0 = ∂f∂x

dxdt + ∂f

∂ydydt −

dzdt

= << ∂f∂x ,

∂f∂y ,−1 > . < dx

dt ,dydt ,

dzdt >

PR (FIU) MAC 2313 26 / 104

Page 28: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Proof

To prove the theorem, it is enough to show that < ∂f∂x ,

∂f∂y ,−1 > is a

normal vector to the surface. To that end, let C = (x(t), y(t), z(t)) beany curve on the surface such that C(t0) = P0. We need only to showthat < ∂f

∂x ,∂f∂y ,−1 > is perpendicular to to c, that is, perpendicular to

the tangent vector of C, which is < dxdt ,

dydt ,

dzdt > at t = t0. From

f (x , y)− z = 0, we get

0 = ∂f∂x

dxdt + ∂f

∂ydydt −

dzdt

= << ∂f∂x ,

∂f∂y ,−1 > . < dx

dt ,dydt ,

dzdt >

PR (FIU) MAC 2313 26 / 104

Page 29: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Take Notice: If f (x , y) is differentiable at x0, y0), then the vector

N =<∂f∂x

(x0, y0),∂f∂y

(x0, y0),−1 >

is a normal vector to the surface z = f (x , y) at P0 = (x0, y0, z0).

The line through P0 parallel to N is called the normal line to the surfaceat P0.

PR (FIU) MAC 2313 27 / 104

Page 30: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example

Find the equation for the tangent plane and the normal line to thesurface

z = 4x3y2 + 2y

at P = (1.− 2,12).

A normal vector at P is

(12x2y2,8x3y + 2,−1)(1,−2) = (48,−14,−1).

So the tangent plane has equation:

48(x − 1)− 14(y + 2)− (z − 12) = 0

and the normal line has parametric equations:

x = 1 + 48ty = −2− 14tz = 12− t

PR (FIU) MAC 2313 28 / 104

Page 31: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example

Find the equation for the tangent plane and the normal line to thesurface

z = 4x3y2 + 2y

at P = (1.− 2,12).

A normal vector at P is

(12x2y2,8x3y + 2,−1)(1,−2) = (48,−14,−1).

So the tangent plane has equation:

48(x − 1)− 14(y + 2)− (z − 12) = 0

and the normal line has parametric equations:

x = 1 + 48ty = −2− 14tz = 12− t

PR (FIU) MAC 2313 28 / 104

Page 32: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Exercise

Find a point on the surface z = 3x2 − y2 at which the tangent plane isparallel to the plane 6x + 4y − z = 5.

We need to find points where the normal to the surface is parallel to(6,4,−1). That is, we need to solve

(6x ,−2y ,−1) = k(6,4,−1)

Necessarily, k = 1, and y = −2, x = 1.

PR (FIU) MAC 2313 29 / 104

Page 33: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Exercise

Find a point on the surface z = 3x2 − y2 at which the tangent plane isparallel to the plane 6x + 4y − z = 5.

We need to find points where the normal to the surface is parallel to(6,4,−1). That is, we need to solve

(6x ,−2y ,−1) = k(6,4,−1)

Necessarily, k = 1, and y = −2, x = 1.

PR (FIU) MAC 2313 29 / 104

Page 34: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

So at (1,−2,−1), the tangent plane is parallel to 6x + 4y − z = 5.

PR (FIU) MAC 2313 30 / 104

Page 35: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

13.8 Maxima and Minima of Functions of two variables

TheoremIf f has a relative extremum at a point (x0, y0) and if the first orderpartial derivatives of f exist at this point, then

fx (x0, y0) = 0 and fy (x0, y0) = 0

A point (x0, y0) where fx (x0, y0) = 0 and fy (x0, y0) = 0 is called acritical point.

So, we will remember that local extrema occur at critical points. But notevery critical point leads to a local extremum as the last of the followingexamples shows:

PR (FIU) MAC 2313 31 / 104

Page 36: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Examples

z = f (x , y) = x2 + (y − 1)2 + 5

f (0,1) = 5 is a local minimum. Notice that both partial derivativesof f vanish at (0,1)

z = g(x , y) = −x2 − (y − 1)2 + 2

f (0,1) = 2 is a local maximum. Observe that both partialderivatives of g vanish at (0,1).

z = h(x , y) = x2 − (y − 1)2 + 10

Notice that both partial derivatives of h at (0,1) are equal to zero,but f (0,1) = 10 is neither a local maximum, nor a local minimum.A point like (0,1,h(0,1)) = (0,1,10) is called a saddle point forthe graph of h(x , y).

PR (FIU) MAC 2313 32 / 104

Page 37: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Second Order Partial Derivatives Test for LocalExtrema

TheoremLet f (x , y) be a differentiable function of 2 variables and assume (a,b)

is a critical point for f .Let A = fxx (a,b), B = fxy (a,b), C = fyy (a,b) and D = AC − B2.

1. If D > 0 and A > 0, then f (a,b) is a local minimum.

2. If D > 0 and A < 0, then f (a,b) is a local maximum.

3. If D < 0, then the graph of f has a saddle point at (a,b, f (a,b)).

4. If D = 0, the test is inconclusive!

PR (FIU) MAC 2313 33 / 104

Page 38: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Examples

1. Locate all local maxima, local minima and saddle points if any, for

f (x , y) = x3 − 3xy − y3.

2. Same forf (x , y) = y sin x

PR (FIU) MAC 2313 34 / 104

Page 39: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Absolute Extrema

To find absolute extrema on a closed bounded set R,

1. Find critical points in R

2. Find all boundary points at which the absolute extrema can occur(including corners)

3. Compare values and decide

PR (FIU) MAC 2313 35 / 104

Page 40: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example

f (x , y) = x2 − 3y2 − 2x + 6y ,

R is the rectangle with vertices (0,0), (2,0), (2,2), and (0,2).

PR (FIU) MAC 2313 36 / 104

Page 41: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

13.9 Lagrange Multipliers (Constrained Optimization)

∇f is zero at any local extremum of a continuously differentiablefunction f . Points at which ∇f = ~O are called critical points.

PR (FIU) MAC 2313 37 / 104

Page 42: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Exercise

Find the maximum value of

f (x , y , z) = x4 − 3y2 − 4z4 + 2z2

Sincelim

‖(x ,y ,z)‖→+∞f (x , y , z) = −∞

we know that f has a maximum value.

Also, since a maximum value will occur at a critical point, let us seewhat the critical points are:

PR (FIU) MAC 2313 38 / 104

Page 43: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Exercise

Find the maximum value of

f (x , y , z) = x4 − 3y2 − 4z4 + 2z2

Sincelim

‖(x ,y ,z)‖→+∞f (x , y , z) = −∞

we know that f has a maximum value.

Also, since a maximum value will occur at a critical point, let us seewhat the critical points are:

PR (FIU) MAC 2313 38 / 104

Page 44: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

−4x3 = 0 x = 0−4y = 0 y = 0

−16z3 + 4z = 0 z = 0 or z = ±12

PR (FIU) MAC 2313 39 / 104

Page 45: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

f (0,0,0) = 0, f (0,0,12

) =14, f (0,0,−1

2) =

14

Thus, the maximum of f is 14 ; it is attained at the points (0,0,−1

2) and(0,0, 1

2).

PR (FIU) MAC 2313 40 / 104

Page 46: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Suppose g(x , y , z) is a continuously differentiable function and thesurface g(x , y , z) = 0 divides all space into two regions:

g(x , y , z) < 0 and g(x , y , z) > 0.

Problem: Maximize f (x , y , z) subject to the constraint g(x , y , z) = 0.

PR (FIU) MAC 2313 41 / 104

Page 47: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Suppose (x0, y0, z0) is a point on the surface g(x , y , z) = 0 andf (x0, y0, z0) is maximum among all points on the surface g(x , y , z) = 0.If ∇f were not perpendicular to the surface, then it would have anonzero tangential component along the surface, that would be adirection of increase for f along the surface, contradicting themaximality of f (x0, y0, z0). So the only possibility is that ∇f isproportional to ∇g, that is, for some constant λ,

∇f + λ∇g = 0.

This is a necessary condition for a constrained maximum (minimum).

PR (FIU) MAC 2313 42 / 104

Page 48: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

The parameter λ is called the Lagrange Multiplier.

Example; Find the maximum of f (x , y , z)) = −x4 − 2y2 − 4z4 + 2z2

subject to the constraint g(x , y , z) = x + y − 2 = 0

∇f = (−4x3,−4y ,4z − 16z3)

∇g = (1,1,0)

λ(1,1,0) + (−4x3,−4y ,4z − 16z3) = 0

PR (FIU) MAC 2313 43 / 104

Page 49: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

The parameter λ is called the Lagrange Multiplier.

Example; Find the maximum of f (x , y , z)) = −x4 − 2y2 − 4z4 + 2z2

subject to the constraint g(x , y , z) = x + y − 2 = 0

∇f = (−4x3,−4y ,4z − 16z3)

∇g = (1,1,0)

λ(1,1,0) + (−4x3,−4y ,4z − 16z3) = 0

PR (FIU) MAC 2313 43 / 104

Page 50: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

y = x3, z = 0 or z = ±12

and x + y = 0

x + x3 − 2 = 0, implies (x − 1)(x2 − x + 2) = 0

x = 1

PR (FIU) MAC 2313 44 / 104

Page 51: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

So the constrained extrema can be found only at

(1,1,12

), (1,1,−12

) and (1,1,0)

f (1,1,±12 = −11

4 and f (1,1,0) = −3, so the maximum is−11

4 = f (1,1,±12).

PR (FIU) MAC 2313 45 / 104

Page 52: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Generalized Lagrange Multipliers

Maximize f (x , y , z) = z, subject to x2 + y2 = 1 and 2x + 2y + z = 0.

∇f + λ1∇g1 + λ2∇g2 = 0

Complete the solution!

PR (FIU) MAC 2313 46 / 104

Page 53: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Generalized Lagrange Multipliers

Maximize f (x , y , z) = z, subject to x2 + y2 = 1 and 2x + 2y + z = 0.

∇f + λ1∇g1 + λ2∇g2 = 0

Complete the solution!

PR (FIU) MAC 2313 46 / 104

Page 54: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

14.1 Double Integrals

Motivated by the volume problem: Given the graph of a function f (x , y)

of two variables, find the volume under the graph and over someregion R in the X -Y plane.

Riemann sums are here again!

The region R is divided into subregions Rij with dimensions ∆xi by ∆yj

and area∆Aij = ∆xi ×∆yj

PR (FIU) MAC 2313 47 / 104

Page 55: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Pick (ui , vj) ∈ Rij and write the Riemann sum:

Sn =l∑

i=1

mi∑j=1

f (ui , vj)∆Aij ,

where m1 + m2 + ...+ ml = n.

The volume, if defined, should be

V = limmax(∆xi ,∆yj )→0 Sn

= limn→∞∑l

i=1∑mi

j=1 f (ui , vj)∆Aij

= liml→∞∑l

i=1 limmi→∞∑mi

j=1 f (ui , vj)∆yj∆xi

PR (FIU) MAC 2313 48 / 104

Page 56: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

When the above limit exists, it is called the double integral of f over Rand denoted by ∫ ∫

Rf (x , y)dA

wheredA = dxdy or dydx

A geometric interpretation of the double integral is that for f > 0,∫ ∫R fdA represents the volume under the graph of f , above the region

R in X ,Y plane,

ObservationIf f = 1, then the volume

∫ ∫R dA is numerically equal to the surface

area of R.

Example: Compute the double integral∫ ∫

R(30− xy)dA where R is therectangle 1 ≤ x ≤ 3, 2 ≤ y ≤ 4.

∫ 31

∫ 42 (30− xy)dydx =

∫ 31 (30y − x y2

2 )∣∣42dx

=∫ 3

1 (60− 6x)dx= (60x − 3x2)

∣∣31

= 96

PR (FIU) MAC 2313 49 / 104

Page 57: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

When the above limit exists, it is called the double integral of f over Rand denoted by ∫ ∫

Rf (x , y)dA

wheredA = dxdy or dydx

A geometric interpretation of the double integral is that for f > 0,∫ ∫R fdA represents the volume under the graph of f , above the region

R in X ,Y plane,

ObservationIf f = 1, then the volume

∫ ∫R dA is numerically equal to the surface

area of R.

Example: Compute the double integral∫ ∫

R(30− xy)dA where R is therectangle 1 ≤ x ≤ 3, 2 ≤ y ≤ 4.

∫ 31

∫ 42 (30− xy)dydx =

∫ 31 (30y − x y2

2 )∣∣42dx

=∫ 3

1 (60− 6x)dx= (60x − 3x2)

∣∣31

= 96

PR (FIU) MAC 2313 49 / 104

Page 58: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

14.2 Double Integrals over non-rectangular regions

For double integration, we identify two types of region to integrate over!The X regions and the Y regions. Some regions are of both types,looking at them from one type to the other is related to reversing theorder of integration.

PR (FIU) MAC 2313 50 / 104

Page 59: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

X-Regions

An X -region R is one that can be described by:

a ≤ x ≤ b

g(x) ≤ y ≤ h(x)

for some functions g and h and constants a and b.

A double integral over such a region can be written as :

∫ ∫R

fdA =

∫ b

a

∫ h(x)

g(x)f (x , y)dydx

Example: Compute the integral∫ ∫R

(x2 − y2)dA

where R is the region bounded by y = x and y = x2.PR (FIU) MAC 2313 51 / 104

Page 60: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

The region R is described by:

0 ≤ x ≤ 1

x2 ≤ y ≤ x

The integral is given by∫ ∫R(x2 − y2)dA =

∫ 10

∫ xx2(x2 − y2)dydx

=∫ 1

0 x2y − y3

3

∣∣y=xy=x3dx

=∫ 1

023x3 − x4 + x6

3 !dx= x4

6 −x5

5 + x7

21

∣∣10

= 16 −

15 + 1

21

PR (FIU) MAC 2313 52 / 104

Page 61: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Y-Regions

A Y -region R is one that can be described by:

c ≤ y ≤ d

h(y) ≤ x ≤ g(y)

for some constants c and d and function h and g.

An integral over such a region can be written as:

∫ ∫R

fdA =

∫ d

c

∫ g(y)

h(y)f (x , y)dxdy

PR (FIU) MAC 2313 53 / 104

Page 62: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Reversing the order of integration

Example: Evaluate ∫ 12

0

∫ 1

2xey2

dydx

Notice that the first integration is not easy!

The region R over which it is being integrated is described by:

0 ≤ x ≤ 12

2x ≤ y ≤ 1

PR (FIU) MAC 2313 54 / 104

Page 63: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

After sketching the region R, we observe that an alternate descriptionof R is

0 ≤ y ≤ 1

0 ≤ x ≤ y2

Using the alternate description of R, we see that the same integral canbe written as:

∫ 1

0

∫ y2

0ey2

dxdy

PR (FIU) MAC 2313 55 / 104

Page 64: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Now we are able to start the integration process! We have reversedthe order of integration. Finish the double integration!

PR (FIU) MAC 2313 56 / 104

Page 65: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

14.3 Double Integrals in Polar Coordinates

Consider the region R described in polar coordinates by:

α ≤ θ ≤ β

a ≤ r ≤ b

Divide the region r into subregions Rij , where each Rij is described as

θi−1 ≤ θ ≤ θi

rj−1 ≤ r ≤ rj

PropositionDenoting by ∆ri = ri − ri−1 and ∆θj = θj − θj−1, the area ∆Aij of Rij isgiven by:

∆Aij =12

(ri + ri−1)∆ri∆θj

PR (FIU) MAC 2313 57 / 104

Page 66: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Proof

∆Aij is the difference between areas of sectors with angle ∆θj andradii ri and ri−1. Therefore,

∆Aij =r2i2 ∆θj −

r2i−12 ∆θj = 1

2(r2i − r2

i−1)∆θj

= 12(ri + ri−1)(ri − ri−1)∆θj

= 12(ri + ri−1)∆ri∆θj

PR (FIU) MAC 2313 58 / 104

Page 67: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Choose r̄i = 12(ri + ri−1) and θ̄j in Rij , then

∆Aij = r̄i∆ri∆θj

and the Riemann sum associated to a function f (r , θ) and a partition Pover the region R will be

S(P, f ) =∑

j

∑i

f (r̄i , θ̄j)∆Aij =∑

i

∑j

f (r̄i , θ̄j)r̄i∆ri∆θj

By definition, the double integral∫ ∫

R fdA of f over the region R isgiven by

lim‖P‖→0

∑j

∑i

f (r̄i , θ̄j)r̄i∆ri∆θj =

∫ β

α

∫ b(θ)

a(θ)f (r , θ)rdrdθ

PR (FIU) MAC 2313 59 / 104

Page 68: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example

Evaluate the integral

∫ 1

0

∫ √4−x2

0(x2 + y2)dydx

using polar coordinates.

From the sketch, the region can be described as

0 ≤ r ≤ 2

0 ≤ θ ≤ π

2Recall: In polar coordinates dA = rdrdθ.

PR (FIU) MAC 2313 60 / 104

Page 69: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

So ∫ 20

∫√4−x2

0 (x2 + y2)dydx =∫ π

20

∫ 20 r2rdrdθ

=∫ π

20

r4

4

∣∣20dθ

=∫ π

20 4dθ

= 2π

PR (FIU) MAC 2313 61 / 104

Page 70: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example 2

The cardioid is given by

r = a(1− cos θ)

Find its enclosed surface area.

Sketch the cardioid on the X Y plane.

Its description is0 ≤ θ ≤ 2π0 ≤ r ≤ a(1− cos θ)

The surface area is given by

A = 2∫ π

0

∫ a(1−cos θ)

0rdrdθ = 3π

a2

2.

Compute the integral in details!

PR (FIU) MAC 2313 62 / 104

Page 71: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example 2

The cardioid is given by

r = a(1− cos θ)

Find its enclosed surface area.

Sketch the cardioid on the X Y plane.

Its description is0 ≤ θ ≤ 2π0 ≤ r ≤ a(1− cos θ)

The surface area is given by

A = 2∫ π

0

∫ a(1−cos θ)

0rdrdθ = 3π

a2

2.

Compute the integral in details!PR (FIU) MAC 2313 62 / 104

Page 72: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

14.4 Parametric Surfaces; Surface area

A parameterized curve C is a vector valued function

r : R→ R3 : t 7→ r(t) = (x(t), y(t), z(t)).

A parameterized surface S is a vector valued function

r : R2 → R3 : (u, v) 7→ r(u, v) = (x(u, v), y(u, v), z(u, v)).

Example:r(u, v) = (u, v ,4− u2 − v2)

Eliminating u, v from the parametric equations shows that

z = 4− x2 − v2

The surface S is a piece of a paraboloid of revolution (Circularparaboloid).

PR (FIU) MAC 2313 63 / 104

Page 73: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Tangent Plane to Parameterized Surfaces

Let r(u, v) be a parameterized surface. Its tangent plane at any point isparallel to ∂r

∂u and ∂r∂v , that is, parallel to

(∂x∂u,∂y∂u,∂z∂u

) and (∂x∂v,∂y∂v,∂z∂v

).

Therefore,~N = (

∂r∂u

)× (∂r∂v

)

is a normal vector to the surface.

Definition

~n =~N‖~N‖

is called the principal normal vector.

PR (FIU) MAC 2313 64 / 104

Page 74: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

~n =∂r∂u ×

∂r∂v

‖ ∂r∂u ×

∂r∂v ‖

Example:x = uv , y = u, z = v2.

Find an equation of the tangent plane at the point where u = 2 andv = −1.

PR (FIU) MAC 2313 65 / 104

Page 75: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Surface Area of a Parameterized Surface

Let Rij be a rectangle in the subdivision od the domain ofparametrization D. Its edges are (ui , vj), ui + ∆ui , vj), (ui , vj + ∆vj) and(ui + ∆ui , vj + ∆vj). The image of Rij is denoted by σij . Its surface area∆Sij is approximated by the area of the parallelogram spanned byr(ui + ∆ui − r(ui , vj) and r(ui , vj + ∆vj)− r(ui , vj).

PR (FIU) MAC 2313 66 / 104

Page 76: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

In turn, from the Mean Value Theorem,

r(ui , vj + ∆vj − r(ui , vj) '∂r∂v

∆vj

r(ui + ∆ui , vj)− r(ui , vj) '∂r∂u

∆ui

PR (FIU) MAC 2313 67 / 104

Page 77: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Therefore,

∆Sij ' ‖∂r∂u

∆ui ×∂r∂v

∆vj‖ = ‖ ∂r∂u× ∂r∂v‖∆ui∆vj

The surface area of S is approximated by the Riemann sum

Sn =∑i,j

‖ ∂r∂u× ∂r∂v‖∆Aij

The surface area S is given by

S = limn→∞

Sij =

∫ ∫D‖ ∂r∂u× ∂r∂v‖dA.

PR (FIU) MAC 2313 68 / 104

Page 78: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

In the special case where the surface is the graph of

z = f (x , y)

then a parametrization is

r(x , y) = (x , y , f (x , y))

and the surface area S is given by

S =

∫ ∫D

√(∂f∂x

)2 + (∂f∂y

)2 + 1dA.

Example: 1. r(u, v) = (u, v ,4− u2 − v2), D = {u2 + v2 ≤ 4}.

Compute the surface area.

2. Find the surface area of the portion of the sphere x2 + y2 + z2 = 8that is cut out by the cone z =

√x2 + y2.

3. Find the surface area of the paraboloid portion z = 9− x2 − y2 thatlies between the planes z + 0 and z = 8.

PR (FIU) MAC 2313 69 / 104

Page 79: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

1.

2. The domain of parametrization is a disc of radius 2.

−2 ≤ x ≤ 2

−√

4− x2 ≤ y ≤√

4− x2

The surface area is given by

S =

∫ 2

−2

∫ √4−x2

−√

4−x2

√x2

8− x2 − y2 +y2

8− x2 − y2 + 1dydx .

We can use polar coordinates to compute this integral.

PR (FIU) MAC 2313 70 / 104

Page 80: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

∫ 2

0

∫ 2π

0

√r2

8− r2 + 1rdrdθ = (16− 8√

2)π

PR (FIU) MAC 2313 71 / 104

Page 81: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

For example 3, the domain of parametrization is an annulus 1 ≤ r ≤ 3.

S =

∫ 3

1

∫ 2π

0

√4r2 + 1rdrdθ

PR (FIU) MAC 2313 72 / 104

Page 82: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Think of the surface area S as

S =

∫S

ds

One defines the surface integral of any function f on the surface as

∫S

fdS =

∫ ∫D

f (x(u, v), y(u, v))‖ ∂r∂u× ∂r∂v‖dA

wheredA = dudv or dvdu.

Examples will be provided later!

PR (FIU) MAC 2313 73 / 104

Page 83: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

14.5 Triple Integrals

An example of a 3-dimensional region R:

The region bounded by

x = 0, y = 0, z = 0

andx + 2y + 3z = 6.

After sketching the region, it can be described as follows:

0 ≤ x ≤ 60 ≤ y ≤ 6−x

20 ≤ z ≤ 6−x−2y

3

PR (FIU) MAC 2313 74 / 104

Page 84: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

There are up to 5 more different descriptions of R. Any triple integral∫ ∫ ∫R fdV could be written as an iterated integral

∫ 6

0

∫ 6−x2

0

∫ 6−x−2y3

0f (x , y , z)dzdydx .

PR (FIU) MAC 2313 75 / 104

Page 85: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example

Find the volume integral of f (x , y , z) = x + y + z over the box boundedby x = 1, y = 2, z = 1 + x and the coordinate planes.

After sketching the region, it can be described as follows:

0 ≤ x ≤ 10 ≤ y ≤ 20 ≤ z ≤ 1 + x

PR (FIU) MAC 2313 76 / 104

Page 86: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example

Find the volume integral of f (x , y , z) = x + y + z over the box boundedby x = 1, y = 2, z = 1 + x and the coordinate planes.

After sketching the region, it can be described as follows:

0 ≤ x ≤ 10 ≤ y ≤ 20 ≤ z ≤ 1 + x

PR (FIU) MAC 2313 76 / 104

Page 87: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

The integral is written as follows:∫ 10

∫ 20

∫ 1+x0 (x + y + z)dzdydx =

∫ 10

∫ 20 (x + y)z + z2

2

∣∣1+x0 dydx

=∫ 1

0

∫ 20 (1 + x)(x + y) + (1+x)2

2 dydx=

∫ 10 (1 + x)(xy + y2

2 )∣∣20 + (1 + x)2dx

= 3∫ 1

0 (1 + x)2dx= (1 + x)3|10 = 7

PR (FIU) MAC 2313 77 / 104

Page 88: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Use a triple integral to find the volume of the solid bounded by thesurface y = x2, the plane y + z = 4 and z = 0.

After sketching, the region is described as follows:

−2 ≤ x ≤ 2x2 ≤ y ≤ 40 ≤ z ≤ 4− y

PR (FIU) MAC 2313 78 / 104

Page 89: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Use a triple integral to find the volume of the solid bounded by thesurface y = x2, the plane y + z = 4 and z = 0.

After sketching, the region is described as follows:

−2 ≤ x ≤ 2x2 ≤ y ≤ 40 ≤ z ≤ 4− y

PR (FIU) MAC 2313 78 / 104

Page 90: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

The volume is given by∫ 2−2

∫ 4x2

∫ 4−y0 dzdydx =

∫ 2−2

∫ 4x2(4− y)dydx

=∫ 2−2[4y − y2

2 ]∣∣4x2dx∫ 2

−2(8− 4x2 + x4

2 )dx= 16− 32

3 + 3210 + 16− 32

3 + 3210

PR (FIU) MAC 2313 79 / 104

Page 91: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

14.7 Change of variables in multiple integrals:Jacobians

Motivation: Recall the u substitution technique of integration.

PropositionFrom ∫ b

af (x)dx ,

make a substitution x = g(u), dx = g′(u)du.The integral becomes:∫ g−1(b)

g−1(a)f (g(u)g′(u)du =

∫ β

αf (g(u)|g′(u)|du, α < β

PR (FIU) MAC 2313 80 / 104

Page 92: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Proof

If g−1(a) < g−1(b), then g′(u) > 0 and thus, g′(u) = |g′(u)|.∫ b

af (x)dx =

∫ g−1(b)

g−1(a)f (g(u))|g′(u)|du.

If g−1(b) < g−1(a), then g′(u) < 0, thus g′(u) = −|g′(u)|.∫ b

af (x)dx = −

∫ g−1(b)

g−1(a)f (g(u))|g′(u)|du =

∫ g−1(a)

g−1(b)f (g(u))|g′(u)|du.

In each case, the integral is given by∫ β

αf (g(u))|g′(u)|du, α < β.

PR (FIU) MAC 2313 81 / 104

Page 93: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Generalization to higher dimensions

Under a reparameterization (x , y) = r(u, v), from a domain S into adomain R, a small rectangle with vertices(u0, v0), (u0 + ∆u, v0), (u0, v0 + ∆v), (u0 + ∆u, v0 + ∆v) transformsinto R, approximated by a rectangle based on r(u0, v0) and edges

a ' r(u0 + ∆u, v0)− r(u0, v0)

∆u∆u ' ∂r

∂u∆u

and similarly,

b ' ∂r∂v

∆v

The elementary surface ∆A in the x , y parameters is approximately

∆A = ∆x∆y ' ‖ ∂r∂u ∆u × ∂r

∂v ∆v‖ = ‖ ∂r∂u ×

∂r∂v ‖∆u∆v

= |det

(∂x∂u

∂y∂u

∂x∂v

∂y∂v

)∆u∆v

PR (FIU) MAC 2313 82 / 104

Page 94: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

The change of variable formula in double integrals is therefore: when(x , y) = r(u, v),∫ ∫

Rf (x , y)dAx ,y =

∫ ∫S

f (u, v)|det(∂(x , y)

∂(u, v))|dAu,v .

The determinant det(∂(x ,y)∂(u,v) ) is called the Jacobian of the coordinate

change.

PR (FIU) MAC 2313 83 / 104

Page 95: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example

Compute the integral ∫ ∫R

exydA

where R is determined by

y =12

x , y = x , y =1x, y =

2x

using the transformation:

u =yx, v = xy

PR (FIU) MAC 2313 84 / 104

Page 96: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

The domain S is described as

u =12, u = 1, v = 1, v = 2

We need the coordinates changes as

x =

√vu, y =

√uv

Then the Jacobian is∂(x , y)

∂(u, v)= − 1

2u.∫ ∫

RexydAx ,y =

∫ ∫S

ev 1|2u|

dAu,v =12

∫ 2

1

∫ 1

12

1u

ev dudv .

PR (FIU) MAC 2313 85 / 104

Page 97: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

In triple integrals, the Jacobian is a 3 by 3 determinant

det∂(x , y , z)

∂(u, v ,w).

∫ ∫ ∫R

f (x , y , z)dVx ,y ,z =

∫ ∫ ∫S

f (u, v ,w)| ∂(x , y , z)

∂(u, v ,w)dVu,v ,w .

Example: Find the volume of

x2 +y2

4+

z2

9= 1

using the transformation

x = u, y = 2v , z = 3w

PR (FIU) MAC 2313 86 / 104

Page 98: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

14.6 Triple Integrals in Cylindrical and SphericalCoordinates

Example: Evaluate the integral using spherical coordinates:∫ 2

0

∫ √4−y2

0

∫ √4−x2−y2

0

2z√x2 + y2

dzdxdy .

PR (FIU) MAC 2313 87 / 104

Page 99: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

15.1 Vector fields

A vector field F is a vector valued function.

F : R3 → R3.

F (x , y , z) = (F1(x , y , z),F2(x , y , z),F3(x , y , z)).

PR (FIU) MAC 2313 88 / 104

Page 100: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Examples

Given a differentiable function

f : R3 → R,

∇f is a vector field, the gradient vector field of f .

∇f : R3 → R3

(x , y , z) 7→ ∇f (x , y , z) = ( ∂f∂x ,

∂f∂y ,

∂f∂z )

PR (FIU) MAC 2313 89 / 104

Page 101: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

DefinitionA curve C(t) = (x(t), y(t), z(t)) such that c′(t) = F (C(t)) is called aflow line for the vector field F .

PR (FIU) MAC 2313 90 / 104

Page 102: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Examples

Find the equation of flow lines for F (x , y) = (−y , x).

By definition, C(t)− (x(t), y(t)) is a flow line if

dxdt = −ydydt = x

PR (FIU) MAC 2313 91 / 104

Page 103: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Examples

Find the equation of flow lines for F (x , y) = (−y , x).

By definition, C(t)− (x(t), y(t)) is a flow line if

dxdt = −ydydt = x

PR (FIU) MAC 2313 91 / 104

Page 104: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Solving the system leads to:

d2xdt2 = −dy

dt= −x

That is:

d2xdt2 + x = 0.

The solution is :x(t) = a cos t + b sin t

PR (FIU) MAC 2313 92 / 104

Page 105: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

From dydt = x , one obtains

y(t) = a sin t − b cos t + C

with C = 0 since dxdt = −y .

PR (FIU) MAC 2313 93 / 104

Page 106: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

C(t) = (a cos t + b sin t ,a sin t − b cos t)

Eliminating t shows that the flow lines are circles of radius√

a2 + b2,centered at (0,0).

PR (FIU) MAC 2313 94 / 104

Page 107: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example 2

F (x , y , z) = (x

x2 + y2 ,y

x2 + y2 ).

C(t) = (x(t), y(t))

dxdt = x

x2+y2

dydt = y

x2+y2

PR (FIU) MAC 2313 95 / 104

Page 108: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

1x2 + y2 =

1x

dxdt

=1y

dydt

1x

dxdt− 1

ydydt

= 0

ddt

(lnxy

) = 0

xy

= C

orx = Cy

The flow lines are straight lines through the origin, minus the originitself.

PR (FIU) MAC 2313 96 / 104

Page 109: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

15.2 Line Integrals

PR (FIU) MAC 2313 97 / 104

Page 110: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

15.7 The divergence Theorem

Definition of divergence as flux density

The divergence of a vector field is the measure of "flux out" of a closedsurface. The divergence or flux density of a vector field F is defined by

div ~F (x , y , z) = limvolume(σ)→0

∫σ~F . ~dS

(volume enclosed by σ)

In rectangular coordinates:

div ~F =∂F1

∂x+∂F2

∂y+∂F3

∂z

Observation:div curl ~F = 0

This can be shown directly (do the calculation!)PR (FIU) MAC 2313 98 / 104

Page 111: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

On a doubly connected region, one has the converse: If div ~G = 0,then ~G = curl ~F for some ~F .

Examples of divergence free vector fields, or solenoidal vector fields,are the magnetic fields ~B. Maxwell’s equation states exactly that:

div ~B = 0.

Another example: For a magnetic dipole (or a current loop), withconstant dipole moment ~µ,

~B = − ~µ

‖~r‖3+ 3

(~µ.~r)~r‖~r‖5

, ~r 6= ~0

Show that div ~B = 0.

PR (FIU) MAC 2313 99 / 104

Page 112: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Alternate notation:With ~∇ =< ∂∂x ,

∂∂y ,

∂∂z >

div ~F = ~∇.~F

PR (FIU) MAC 2313 100 / 104

Page 113: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

The divergence Theorem expresses the total flux as the integral of theflux density.

∫S

~F .~n dS =

∫W

div ~FdV

where S is the boundary of the region W , oriented by outer unitnormals.

PR (FIU) MAC 2313 101 / 104

Page 114: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example: Use the divergence Theorem to find the flux ofF (x , y , z) = (x2y ,−xy2, z + 2) across the surface σ of the solidbounded above by the plane z = 2x and below by the paraboloidz = x2 + y2.

PR (FIU) MAC 2313 102 / 104

Page 115: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

16.8: Stokes’ Theorem

Stokes’ Theorem expresses the total circulation of ~F as the integral ofthe circulation density:

∫σ

curl ~F .~n dS =

∫∂σ

~F . ~dr

A special case of Stokes Theorem is Green’s Theorem:

~F =< f ,g,0 >

PR (FIU) MAC 2313 103 / 104

Page 116: Calculus III - Florida International Universityfaculty.fiu.edu/~rukim/MAC2313/CalculusIII-lecture3.pdfCalculus III Philippe Rukimbira ... If all first order partial derivatives of

Example: Verify Stokes’ Theorem for

~F (x , y , z) =< x , y , z >

where σ the upper hemisphere z =√

a2 − x2 − y2 with upwardorientation.

PR (FIU) MAC 2313 104 / 104


Recommended