+ All Categories
Home > Documents > Calculus Once Again - David Santos

Calculus Once Again - David Santos

Date post: 03-Jun-2018
Category:
Upload: fisniklimani
View: 215 times
Download: 0 times
Share this document with a friend

of 194

Transcript
  • 8/11/2019 Calculus Once Again - David Santos

    1/194

    ceagain

    Calc

    ul

    ,onc

    e

    culu

    s,

    s,on

    ulus

    ,

    s,on

    u

    once

    ag

    ,oc

    eagain

    ,oce

    ag

    Calcu

    lus,

    oea

    ga

    culu

    Calc

    once

    a

    Calc

    u

    ulus

    ,o

    ainCa

    s,

    eagai

    ulus

    ,

    nce

    a

    Calc

    ulu

    once

    nC

    nce

    nCa

    n

    Calcu

    lus,

    agai

    nce

    a

    culu

    ,onc

    e

    Calcu

    ceaga

    ceagain

    C

    s,once

    ai

    ulus

    ,o

    gan

    alcul

    ceagai

    ,onc

    e

    lcu

    s,on

    Calcu

    once

    again

    C

    us,onc

    eagai

    ulus

    ,ce

    ag

    Cal

    lus,

    oe

    ag

    Calc

    ,on

    lculus

    ,o ce

    cea

    s,once

    aga

    ulus

    ,

    ain

    lculu

    gain

    ulus

    ,oce

    agai

    culu

    once

    Calc

    ulus

    ,on

    ainC

    ,onc

    e

    a

    us,on

    culu

    s

    ceagain

    lc

    once

    Calc

    ,onc

    Calc

    once

    aa

    culu

    s,onc

    e

    alculu

    cea

    Cal

    s,oce

    ag

    Calc

    u

    nce

    David A. SANTOS

    [email protected]

    January 2, 2010 Version

    mailto:[email protected]:[email protected]
  • 8/11/2019 Calculus Once Again - David Santos

    2/194

    ii

    Copyright 2007 David Anthony SANTOS. Permission is granted to copy, distribute and/or modify this docu-

    ment under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by

    the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A

    copy of the license is included in the section entitled GNU Free Documentation License.

  • 8/11/2019 Calculus Once Again - David Santos

    3/194

    GNU Free Documentation LicenseVersion 1.2, November2002

    Copyright 2000,2001,2002 Free Software Foundation,Inc.

    51 FranklinSt, Fifth Floor, Boston,MA 02110-1301 USA

    Everyone is permitted tocopy and distribute verbatim copies of this license document,but changing it is notallowed.

    Preamble

    The purpose of this L icense is to make a manual, textbook, or other functional and useful document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either

    commerciallyor noncommercially. Secondarily,this License preservesfor the author and publisher a way to getcredit for their work, while not being consideredresponsiblefor modifications made by others.

    This License is a kind of copyleft, which means that derivative works of the document mustthemselvesbe free in the same sense. It complementsthe GNU GeneralPublic License,which is a copyleft licensedesigned for free software.

    Wehave designedthis License in orderto useit for manualsfor free software,because freesoftware needsfree documentation: afree programshould come withmanuals providing thesame freedomsthat the software does. But this License

    is not limited to software manuals;it can be used for any textual work, regardlessof subject matter or whether it is published as a printed book. We recommend this Licenseprincipally for works whose purpose is instruction or reference.

    1. APPLICABILITY AND DEFINITIONSThis License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,

    unlimited in duration, to use that work under the conditions stated herein. The Document, below, refers to any such manual or work. Any member of the public is a licensee,and is addressedas you. You accept the license if you copy, modify

    or distribute the work in a way requiring permission under copyright law.

    A Modified Version of the Documentmeans any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translatedinto another language.

    A Secondary Section is a named appendix or a front-matter section of the Document that deals exclusivelywith the relationshipof the publishers or authors of the Documentto the Documents overallsubject (or to related matters) and

    contains nothing that could fall directly within that overall subject. (Thus, if the Documentis in part a textbookof mathematics, a SecondarySection may not explain any mathematics.) The relationshipcould be a matter of historical connection

    with the subjector with related matters,or of legal, commercial,philosophical, ethical or political position regarding them.

    The Invariant Sections are certain Secondary Sectionswhose titles are designated,as being those of InvariantSections, in the noticethat says that the Documentis released under this License. If a section doesnot fit the above definition

    of Secondarythen it is not allowed tobe designatedas Invariant. The Documentmay contain zero Invariant Sections. If the Document does notidentify any Invariant Sectionsthen there are none.

    The Cover Texts are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a

    Back-CoverText may be at most 25 words.

    A Transparent copy of the Documentmeans a machine-readablecopy, representedin a format whose specification is available tothe general public, that is suitable for revising the document straightforwardlywith generic texteditors or

    (for images composed of pixels)generic paintprograms or (for drawings)some widely availabledrawing editor,and that is suitablefor inputto text formatters or for automatic translationto a variety of formats suitable for inputto textformatters.

    A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparentif used for any

    substantialamount of text. A copy that is not Transparent is called Opaque.

    Examplesof suitable formats for Transparentcopies include plain ASCII without markup, Texinfoinput format, LaTeX input format, SGML or XML using a publiclyavailable DTD, and standard-conformingsimple HTML, PostScript or PDF

    designed for human modification. Examples of transparentimage formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the

    DTD and/orprocessing tools are notgenerally available,and the machine-generatedHTML, PostScript or PDF produced by some word processors for output purposes only.

    The TitlePage means,for a printed book, the title page itself, plus such following pages as are neededto hold, legibly,the material this License requires to appear in the title page. For works in formats which do not have any title page as

    such, Title Pagemeans the textnear the most prominent appearanceof the works title, precedingthe beginning of the body of the text.

    A section Entitled XYZ means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name

    mentionedbelow,such as Acknowledgements, Dedications, Endorsements, or History.) To Preservethe Title of sucha section when you modify the Documentmeans that itremains asection Entitled XYZ according tothis definition.

    The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards

    disclaiming warranties: any other implication that these Warranty Disclaimersmay have is void and has no effect on the meaning of this License.

    2. VERBATIM COPYINGYou may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced

    in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept

    compensation in exchange for copies. If you distribute a largeenough number of copies you must also follow the conditions in section 3.

    Youmay also lend copies,under the same conditions stated above,and you may publiclydisplay copies.

    3. COPYING IN QUANTITYIf you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Documents licensenotice requires Cover Texts,you must enclose the copies in covers that carry,

    clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full

    title with all words of the title equallyprominent andvisible. You may add other material on the covers in addition. Copying with changeslimited to the covers,as long as they preserve the title ofthe Document and satisfythese conditions, can be

    treated as verbatim copying in other respects.

    If the required textsfor either cover are too voluminous tofit legibly,you should put the first oneslisted (as many as fit reasonably)on the actual cover,and continue the restonto adjacentpages.

    Ifyou publishor distributeOpaquecopies of theDocumentnumberingmorethan 100, youmusteitherincludea machine-readableTransparentcopy alongwitheachOpaque copy,or stateinor with eachOpaquecopya computer-network

    location from which the generalnetwork-using public has access to download using public-standard networkprotocols a complete Transparentcopy of the Document, free of addedmaterial. If you use the latter option, you must take reasonablyprudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparentcopy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or

    through your agents or retailers)of that edition to the public.

    It is requested,but not required,that you contact the authors of the Document wellbefore redistributing any largenumber of copies, to give them achance to provide you with an updated version of the Document.

    4. MODIFICATIONSYou may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under preciselythis License, with the Modified Version filling the role of the

    Document,thus licensing distribution and modification of the Modified Version to whoever possessesa copy of it. In addition,you must do these things in the Modified Version:

    A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same

    title as a previous version if the original publisher of that version gives permission.

    B. List on the Title Page, as authors, one or more personsor entities responsiblefor authorship of the modifications in the Modified Version, together with at leastfive of the principal authors of the Document (all of its principal authors,

    if it has fewer than five), unlessthey release you fromthis requirement.

    C. State on the Titlepage the name of the publisher of the Modified Version,as the publisher.

    iii

  • 8/11/2019 Calculus Once Again - David Santos

    4/194

    iv

    D. Preserveall the copyright notices of the Document.

    E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

    F. Include,immediately after the copyright notices,a licensenotice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendumbelow.

    G. Preservein that licensenotice the full lists ofInvariant Sectionsand required Cover Textsgiven in the Documents licensenotice.

    H. Include an unalteredcopy of this License.

    I. Preservethe section Entitled History, Preserve its Title, and add to it an item stating at leastthe title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled History in the

    Document,create one stating the title, year,authors, and publisher of the Documentas given on its Title Page, then add an item describingthe Modified Version as stated in the previous sentence.

    J. Preservethe network location, if any, given in the Document for public access to a Transparentcopy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may beplacedin the History section. You may omit anetwork location for awork that was publishedat least four yearsbefore the Documentitself, or if the original publisher of the version it refersto gives permission.

    K. For anysection Entitled Acknowledgementsor Dedications, Preservethe Title of the section,and preservein the section all the substance and tone of each of the contributor acknowledgementsand/or dedications given therein.

    L. Preserveall the Invariant Sectionsof the Document, unalteredin their textand in their titles. Sectionnumbers or the equivalentare not consideredpart of the section titles.

    M. Deleteany section EntitledEndorsements. Such a section may notbe included in the Modified Version.

    N. Do not retitle any existingsection to be EntitledEndorsements or to conflictin title with any Invariant Section.

    O. Preserveany WarrantyDisclaimers.

    If the Modified Version includesnew front-matter sections or appendices that qualify as Secondary Sectionsand contain no material copied from the Document, you may at your option designate some or all of these sections as invariant.

    To dothis, add their titles to the listof Invariant Sectionsin the Modified Versionslicense notice. These titles mustbe distinct from any other section titles.

    You may add a section Entitled Endorsements, provided it contains nothing but endorsements of your Modified Version by various partiesfor example, statements of peer review or that the texthas been approved by an organization as

    the authoritative definition of astandard.

    Youmay add a passageof up to five words as aFront-Cover Text,and a passageof up to 25 words as aBack-Cover Text,to the endof the listof Cover Texts in the ModifiedVersion. Onlyone passage of Front-CoverTextand one of Back-Cover

    Textmay be added by (or through arrangementsmade by) any one entity. If the Documentalready includesa cover textfor the same cover,previously added byyou or by arrangementmade by the same entity you are acting on behalfof, you may

    not add another;but you may replace the old one,on explicit permission fromthe previous publisher that addedthe old one.

    The author(s) and publisher(s) of the Document donot by this Licensegive permission to use their names for publicity for or to assert or imply endorsementof any Modified Version.

    5. COMBINING DOCUMENTSYou may combine the Document with other documents released under this License,under the terms defined in section 4 above for modified versions,provided that you include in the combination all of the Invariant Sections of all of theoriginal documents, unmodified,and list them all as Invariant Sectionsof your combined work in its licensenotice, and that you preserve all their Warranty Disclaimers.

    The combined workneed only contain onecopy of this License,and multiple identicalInvariant Sections may be replaced with asingle copy. If there are multiple Invariant Sectionswith the samename but differentcontents, make the title

    of eachsuch section uniqueby addingat the end of it, in parentheses,the name of the original author or publisher ofthat section ifknown, or elsea unique number. Makethe same adjustment to the sectiontitles in the list of Invariant Sectionsin

    the licensenotice of the combined work.

    In the combination, you must combine any sections Entitled History in the various original documents, forming one section Entitled History; likewise combine any sections Entitled Acknowledgements, and any sections Entitled

    Dedications. You must deleteall sectionsEntitled Endorsements.

    6. COLLECTIONS OF DOCUMENTSYou may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection,

    provided that you followthe rules of this License for verbatimcopying of each of the documents in all other respects.

    You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding

    verbatimcopying of that document.

    7. AGGREGATION WITH INDEPENDENT WORKSA compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an aggregate if the copyright resulting from the compilation

    is not used to limit the legal rights of the compilations users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves

    derivative works of the Document.If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Documents Cover Texts may be placed on covers that bracket the Document

    within the aggregate, or the electronicequivalent of covers if the Document is in electronicform. Otherwise they must appear on printed coversthat bracket the whole aggregate.

    8. TRANSLATIONTranslationis considereda kind ofmodification, soyou may distribute translationsof the Document underthe terms ofsection 4. ReplacingInvariant Sectionswith translationsrequires specialpermission from their copyright holders,but

    you may includetranslations of someor all Invariant Sectionsin addition to the originalversions of theseInvariant Sections. You may includea translationof this License, and allthe license noticesin the Document, andany WarrantyDisclaimers,

    providedthatyoualso includethe original Englishversionofthis Licenseand the original versionsofthosenoticesand disclaimers. In caseofa disagreementbetweenthe translationand the original versionof thisLicenseora noticeor disclaimer,

    the original versionwill prevail.

    If a section in the Document is Entitled Acknowledgements, Dedications, or History, the requirement (section 4) to Preserveits Title (section 1) will typically require changing the actual title.

    9. TERMINATIONYoumay not copy,modify, sublicense,or distribute the Documentexcept as expresslyprovided for underthis License. Any other attempt tocopy, modify, sublicenseor distribute the Documentis void, and will automatically terminate your

    rights underthis License. However,parties who have received copies,or rights, from you under this Licensewill not have their licensesterminated so long as suchparties remain in full compliance.

    10. FUTURE REVISIONS OF THIS LICENSETheFree SoftwareFoundationmay publishnew,revisedversionsof the GNU FreeDocumentation Licensefromtime totime. Suchnewversionswillbe similarin spirit tothe presentversion,butmay differ in detailto addressnew problems

    or concerns. Seehttp://www.gnu.org/copyleft/.

    Each versionof the Licenseis givena distinguishingversion number. If the Documents pecifies thata particular numberedversion of this Licenseor any later versionapplies to it, youhave the option offollowingthe terms and conditions

    either of that specifiedversion or of any later versionthat has been published (not as adraft) by the Free Software Foundation. If the Documentdoes not specify aversion number of this License,you may choose anyversion ever published (notas

    a draft) by the Free Software Foundation.

    Que a quien robe este libro, o lo tome prestado y no lo devuelva, se le convierta en una serpiente en las

    manos y lo venza. Que sea golpeado por la parlisis y todos sus miembros arruinados. Que languidezca

    de dolor gritando por piedad, y que no haya coto a su agona hasta la ltima disolucin. Que las polillas

    roan sus entraas y, cuando llegue al final de su castigo, que arda en las llamas del Infierno para siempre.

    -Maldicin annima contra los ladrones de libros en el monasterio de San Pedro, Barcelona.

  • 8/11/2019 Calculus Once Again - David Santos

    5/194

    Contents

    GNU Free Documentation License iii

    1. APPLICABILITY AND DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

    2. VERBATIM COPYING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

    3. COPYING IN QUANTITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

    4. MODIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

    5. COMBINING DOCUMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

    6. COLLECTIONS OF DOCUMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

    7. AGGREGATION WITH INDEPENDENT WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

    8. TRANSLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

    9. TERMINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

    10. FUTURE REVISIONS OF THIS LICENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

    Preface viii

    1 Preliminaries 1

    1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.2 Numerical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.2.1 Injective and Surjective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.2.2 Algebra of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.2.3 Inverse Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.2.4 Inverse Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    1.3 Countability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    1.4 Groups and Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    1.5 Addition and Multiplication in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    1.6 Order Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    1.6.1 Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    1.7 Classical Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    1.7.1 Triangle Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    1.7.2 Bernoullis Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    1.7.3 Rearrangement Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    1.7.4 Arithmetic Mean-Geometric Mean Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    1.7.5 Cauchy-Bunyakovsky-Schwarz Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    1.7.6 Minkowskis Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    1.8 Completeness Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    1.8.1 Greatest Integer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    v

  • 8/11/2019 Calculus Once Again - David Santos

    6/194

    vi CONTENTS

    2 TopologyofR 34

    2.1 Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    2.2 Dense Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    2.3 Open and Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    2.4 Interior, Boundary, and Closure of a Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    2.5 Connected Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    2.6 Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    2.7 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    2.8 Lebesgue Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    2.9 The Cantor Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    3 Sequences 47

    3.1 Limit of a Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    3.2 Convergence of Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    3.3 Classical Limits of Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    3.4 Averages of Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623.5 Orders of Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    3.6 Cauchy Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    3.7 Topology of sequences. Limit Superior and Limit Inferior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    4 Series 70

    4.1 Convergence and Divergence of Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    4.2 Convergence and Divergence of Series of Positive Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    4.3 Summation by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    4.4 Absolute Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    5 Real Functions of One Real Variable 85

    5.1 Limits of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    5.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    5.3 Algebraic Operations with Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    5.4 Monotonicity and Inverse Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    5.5 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    5.5.1 Graphs of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    5.6 Classical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965.6.1 Affine Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    5.6.2 Quadratic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    5.6.3 Polynomial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    5.6.4 Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    5.6.5 Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    5.6.6 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    5.6.7 Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    5.7 Continuity of Some Standard Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    5.7.1 Continuity Polynomial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

  • 8/11/2019 Calculus Once Again - David Santos

    7/194

    CONTENTS vii

    5.7.2 Continuity of the Exponential and Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    5.7.3 Continuity of the Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    5.8 Inequalities Obtained by Continuity Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    5.9 Intermediate Value Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    5.10 Variation of a Function and Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    5.11 Classical Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    6 Differentiable Functions 113

    6.1 Derivative at a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    6.2 Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    6.3 Rolles Theorem and the Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    6.4 Extrema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    6.5 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

    6.6 Inequalities Obtained Through Differentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    6.7 Asymptotic Preponderance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

    6.8 Asymptotic Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    6.9 Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    7 Integrable Functions 143

    7.1 The Area Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

    7.3 Riemann-Stieltjes Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    7.4 Eulers Summation Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    8 Sequences and Series of Functions 160

    8.1 Pointwise Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    8.2 Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    8.3 Integrals and Derivatives of Sequences of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    8.4 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    8.5 Maclaurin Expansions to know by inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

    8.6 Comparison Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

    8.7 Taylor Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

    8.8 Abels Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

    Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

    A Answers and Hints 163

    Answers and Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

  • 8/11/2019 Calculus Once Again - David Santos

    8/194

    Preface

    For many years I have been lucky enough to have students ask for more: more challenging problems, more illuminating

    proofs to different theorems, a deeper look at various topics, etc. To those students I normally recommend the books in

    the bibliography. Some of the same students have complained of not finding the books or wanting to buy them, but being

    impecunious, not being able to afford to buy them. Hence I have decided to make this compilation.

    Here we take a semi-rigorous tour through Calculus. We dont construct the real numbers, but we examine closer the

    real number axioms and some of the basic theorems of Calculus. We also consider some Olympiad-level problems whose

    solution can be obtained through Calculus.

    The reader is assumed to be familiar with proofs using mathematical induction, proofs by contradiction, and the me-chanics of differentiation and integration.

    David A. SANTOS

    [email protected]

    viii

    mailto:[email protected]:[email protected]
  • 8/11/2019 Calculus Once Again - David Santos

    9/194

    Chapter 1

    Preliminaries

    Why bother? We will use the language of set theory throughout these notes. There are various elementary

    results that pop up in later proofs, among them, the De Morgan Laws and the Monotonicity Reversing of Com-

    plementation Rule.

    The concept of a functionlies at the core of mathematics. We will give a brief overview here of some basic

    properties of functions.

    1.1 Sets

    This section contains some of the set notation to be used throughout these notes. The one-directional arrow= readsimplies and the two-directional arrow reads if and only if.

    1 Definition We will accept the notion ofsetas a primitive notion, that is, a notion that cannot be defined in terms of more

    elementary notions. By asetwe will understand a well-defined collection of objects, which we will call the elementsof the

    set. If the elementxbelongs to the set Swe will writex S, and in the contrary case we will write x S.1 Thecardinalityofa set is the number of elements the set has. It can either be finite or infinite. We will denote the cardinality of the set Sby

    card(S).

    Some sets are used so often that merit special notation. We will denote by

    N= {0,1,2,3,...}

    the set of natural numbers, by

    Z= {. . . ,3,2,1,0,1,2,3,... }2

    byQ the set of rational numbers3, byR the real numbers, and byC the set of complex numbers. We will occasionally also use

    Z= {. . . ,3,2,,0,, 2, 3, . . . }, etc.

    We will also denote the empty set, that is, the set having no elements by.

    2 Definition Theunionof two sets Aand Bis the set

    AB= {x: (xA)or(x B)}.

    This is read Aunion B. See figure 1.1.Theintersectionof two sets Aand Bis

    AB= {x: (x A)and(x B)}.1 Georg Cantor(1845-1918), the creator of set theory, said A set is any collection into a whole of definite, distinguishable objects, calledelements, of our

    intuition or thought.2Z for the German wordZhlenmeaning integer.

    3Q for quotients.

    1

  • 8/11/2019 Calculus Once Again - David Santos

    10/194

    Sets

    A B

    Figure 1.1: AB

    A B

    Figure 1.2: AB

    A B

    Figure 1.3: A\ B

    This is read AintersectionB. See figure 1.2.Theset differenceof two sets Aand Bis

    A\ B= {x: (x A)and(x B)}.

    This is read Aset minus B. See figure1.3.

    3 Definition Two sets Aand Bare disjointifAB=.

    4 Example Write A Bas the disjoint union of three sets.

    Solution: Observe that

    AB= (A\ B) (AB) (B\A),

    and that the sets on the dextral side are disjoint.

    5 Definition AsubsetBof a setAis a subcollection ofA, and we denote this byB A. 4 This means thatx B= x A.

    andAare always subsets of any setA.

    Observe that

    A= B (A B) and (BA).

    We use this observation on the next theorem.

    6T HEOREM(De Morgan Laws) LetA, B,Cbe sets. Then

    A\ (BC) = (A\ B) (A\ C), A\ (BC) = (A\ B) (A\ C).

    Proof: We have

    x A\ (BC) x A and x (B or C) (x A) and ((x B) and (x C)) (x A and x B) and (x A and x C) (x A\ B) and (x A\ C)

    x

    (A\ B)

    (A\ C).

    Also,

    x A\ (BC) x A and x (B and C) (x A) and ((x B) or (x C)) (x A and x B) or (xA and x C) (x A\ B) or (xA\ C) x (A\ B) (A\ C)

    4There seems not to be an agreement here by authors. Some use the notation or instead of. Some see in the notation the exclusion of equality.In these notes, we will always use the notation , and if we wished to exclude equality we will write .

    2

  • 8/11/2019 Calculus Once Again - David Santos

    11/194

    Chapter 1

    7T HEOREM(Monotonicity Reversing of Complementation) LetA, B,Xbe sets. Then

    AB X\ BX\ A.

    Proof: We haveAB (x A)= ( x B)

    (x B)= (x A) (xX and x B)= ( xX and x A) X\ BX\ A.

    8 Definition LetA1,A2, . . . ,An, be sets. TheCartesian Productof thesensets is defined and denoted by

    A1 A2 An= {(a1, a2, . . . , an) : akAk},

    that is, the set of all ordered n-tuples whose elements belong to the given sets.

    In the particular case when all theAkare equal to a setA, we write

    A1

    A2

    An=

    An.

    Ifa Aandb Awe write(a,b) A2.

    9 Example The Cartesian product is not necessarily commutative. For example,(

    2,1) RZ but(

    2,1) ZR. SinceRZ has an element that ZR does not, RZ=ZR.

    10 Example Prove that ifXX= Y Y thenX= Y.

    Solution: LetxX. Then(x, x) XX, which gives(x, x) Y Y, soyY. HenceX Y.

    Similarly, if y Y then(y,y) Y Y, which gives(y,y) XX, soyX. HenceY X.

    ThusX Y andY X givesX= Y.

    Homework

    Problem 1.1.1 For a fixednN putAn= {nk: kN}.1. FindA2 A3.

    2. Find

    n=1An.

    3. Find

    n=1An.

    Problem 1.1.2 Prove the following properties of the empty set:

    A=, A=A.

    Problem 1.1.3 Prove the following commutative laws:

    AB=BA, AB=BA.

    Problem 1.1.4 Prove by means of set inclusion the following dis-

    tributive law:

    (AB)C= (AC) (BC).

    Problem 1.1.5 Prove the following associative laws:

    A (BC) = (AB)C, A (BC) = (AB)C.

    Problem 1.1.6 Prove that

    AB=A A B.

    Problem 1.1.7 Prove that

    AB=A BA.

    Problem 1.1.8 Prove that

    A B= ACBC.

    Problem 1.1.9 Prove that

    A B and C B= ACB.

    3

  • 8/11/2019 Calculus Once Again - David Santos

    12/194

    Numerical Functions

    Problem 1.1.10 Prove the following distributive laws:

    A (BC) = (AB) (AC), A (BC) = (AB) (AC).

    Problem 1.1.11 Is there any difference between the sets,{}and{{}}? Explain.

    Problem 1.1.12 Is the Cartesian product associative? Explain.

    Problem 1.1.13 LetA,B, andCbe sets. Shew that

    A (B\ C) = (AB) \ (AC).

    Problem 1.1.14 Provethat a setwithNN elements has exactly2Nsubsets.

    1.2 Numerical Functions

    11 Definition By a(numerical) functionf :Domf Targetfwe mean the collection of the following ingredients:

    anamefor the function. Usually we use the letter f.

    a set of real number inputs called thedomainof the function. The domain offis denoted byDomfR.

    aninput parameter, also calledindependent variableor dummy variable. We usually denote a typical input by the

    letterx.

    a set ofpossible real number outputs of the function, called the target setof the function. The target set offis denoted

    byTargetfR. anassignment ruleor formula, assigning toevery inputa uniqueoutput. This assignment rule for fis usually de-

    noted byx f(x). The output ofxunder fis also referred to as theimage ofxunderf, and is denoted byf(x).

    The notation5

    f : Dom

    f Targetf

    x f(x)read the function f, with domainDom

    f, target setTarget

    f, and assignment rule f mappingx to f(x) conveys all

    the above ingredients.

    Oftentimes we will only need to mention theassignment rule of a function, without mentioning its domain or target set.In such instances we will sloppily say the function f or more commonly, the functionx f(x), e.g., the square functionx x2.6

    12 Definition TheimageImf

    of a function fis its set of actual outputs. In other words,

    Imf= {f(a) : a Domf}.

    Observe that we always haveImf Targetf. For a setA, we also define

    f(A) = {f(a) : a A}.

    13THEOREM Letf :X Ybe a function and letAX, A X. Then

    1. AA= f(A) f(A)2. f(AA) =f(A)f(A)

    3. f(AA) f(A)f(A)

    4. f(A) \f(A) f(A\A)

    Proof:

    5Notice the difference in the arrows. The straight arrow is used to mean that a certain set is associated with another set, whereas the arrow (readmaps to) is used to denote that an input becomes a certain output.

    6This corresponds to the even sloppier American usage the functionf(x) = x2.

    4

  • 8/11/2019 Calculus Once Again - David Santos

    13/194

    Chapter 1

    1. x A= x Aand hencef(x) f(A)= f(x) f(A)= f(A) f(A)2. SinceA AA andA AA, we have f(A) f(AA)and f(A) f(AA), by part (1) and thus

    f(A) f(A) f(AA). Moreover, if yf(AA), thenx AAsuch thaty=f(x). Then eitherxAand sof(x) f(A)orx Aand sof x f(A). Either way, f(x) f(A)f(A)and

    yf(AA)= y f(A)f(A)= f(AA) f(A) f(A).

    Hence

    f(AA) =f(A) f(A).3. Lety f(AA). Thenx AA such that f(x) = y. Thus we have bothx A= f(x) f(A)and

    x A= f(x) f(A). Thereforef(x) f(A)f(A)and we conclude that f(AA) f(A) f(A).4. Letyf(A) \f(A). Thenyf(A)andyf(A). ThusxAsuch that f(x) = y. Sincey f(A), then

    x A. Thereforex A\Aand finally, y f(A\A). This means that f(A) \f(A) f(A\A)as claimed.

    1.2.1 Injective and Surjective Functions

    14 Definition A function is injectiveor one-to-onewhenever two different values of its domain generate two different values

    in its image. A function issurjectiveor ontoif every element of its target set is hit, that is, the target set is the same as the

    image of the function. A function isbijectiveif it is both injective and surjective.

    15 Example The function

    a: R R

    x x2

    is neither injective nor surjective.

    The function

    b: R

    0 ;+

    x x2

    is surjective but not injective.

    The function

    c:

    0 ;+ R

    x x2

    is injective but not surjective.

    The function

    d:

    0 ;+

    0 ;+

    x x2

    is a bijection.

    A bijection between two sets essentially tells us that the two sets have the same size. We will make this statement more

    precise now for finite sets.

    16THEOREM Letf :A Bbe a function, and letAand Bbe finite. Iff is injective, then card(A) card(B). Iff is surjectivethencard(B) card(A). Iffis bijective, thencard(A) = card(B).

    Proof: Putn= card(A), A= {x1, x2, . . . , xn}andm= card(B), B= {y1,y2, . . . ,ym}.

    Iffwere injective thenf(x1),f(x2),. . . ,f(xn)are all distinct, and among theyk. Hencen m.

    If fwere surjective then eachykis hit, and for each, there is anxi with f(xi) = yk. Thus there are at leastmdifferent images, and son m.

    5

  • 8/11/2019 Calculus Once Again - David Santos

    14/194

    Numerical Functions

    1.2.2 Algebra of Functions

    17 Definition Let f : Domf Targetfand g : Domg Targetg. ThenDomf g= Domf Domgand the

    sum (respectively, difference) function f+ g (respectively, f g) is given by

    f g: Domf Domg Targetf g

    x f(x) g(x) .

    In other words, ifxbelongs both to the domain off andg, then

    (f g)(x) =f(x) g(x).

    18 Definition Let f : Domf Targetfand g: Domg Targetg. Then Dom f g = Domf Domgand the

    product function f gis given by

    f g: Dom

    f Domg Targetf g

    x f(x) g(x) .

    In other words, ifxbelongs both to the domain off andg, then

    (f g)(x) =f(x) g(x).

    19 Definition Letg: Domg Targetgbe a function. Thesupportofg, denoted bysuppgis the set of elements inDomgwheregdoes not vanish, that issupp

    g= {x Domg : g(x) = 0}.

    20 Definition Let f : Domf Targetfand g: Domg Targetf. ThenDomf

    g

    = Domf suppgand the

    quotient function f

    gis given by

    f

    g:

    Domfsuppg Targetf/g

    x f(x)g(x)

    .

    In other words, ifxbelongs both to the domain off andgandg(x)=

    0, then f

    g(x)

    = f(x)

    g(x).

    21 Definition Let f : Domf Targetf,g: Domg Targetg and let U= {x Domg : g(x) Domf}. We define

    thecompositionfunction off andgas

    f g: U Targetf g

    x f(g(x)) . (1.1)

    We readf gas f composed withg.

    1.2.3 Inverse Image

    22 Definition LetXand Ybe subsets ofR and let f :X Ybe a function. Let BY. Theinverse image ofBbyfis the set

    f1(B) = {xX: f(x) B}.

    IfB= {b} consists of only one element, we write, abusing notation, f1({b})= f1(b). It is clear that f1(Y)=X andf1() =.

    23 Example Let

    f : {2,1,0,1,3} {0,1,4,5,9}

    x x2 .

    Then f1({0, 1}) = {0,1, 1}, f1(1) = {1,1}, f1(5) =, f1(4) = 2, f1(0) = 0, etc. Notice that we have abused notationin all but the first example.

    6

  • 8/11/2019 Calculus Once Again - David Santos

    15/194

    Chapter 1

    24THEOREM Letf :X Ybe a function and let BY, B Y. Then

    1. BB= f1(B) f1(B)

    2. f1(B B) = f1(B)f1(B)

    3. f1(B B) = f1(B)f1(B)

    4. f1(B) \f(B) =f1(B\ B)

    Proof:

    1. Assumexf1(B). Then there isy B B such that f(x) =y. Butyis also inB soxf1(B). Thusf1(B) f1(B).

    2. SinceB B BandB B B, we havef1(B) f1(B B)and f1(B) f1(B B), by part (1).Thusf1(B)f1(B) f1(BB). Now, letxf1(BB). There isy BBsuch thatf(x) =y. Eithery BandsoyB= xf1(B) ory Band soy B= x f1(B). Either way, x f1(B)f1(B).Thusf1(B B) f1(B)f1(B). We conclude thatf1(BB) =f1(B) f1(B).

    3. Letx

    f1(B

    B). Then

    y

    B

    Bsuch thatf(x)

    =y. Thus we have bothy

    B

    =x

    f1(B)andy

    B= xf1(B). Thereforex f1(B)f1(B) and we conclude thatf1(BB) f1(B)f1(B).Now, letx f1(B) f1(B). Thenx f1(B) andx f1(B). Then f(x) B and f(x) B. Thusf(x) B B and soxf1(B B). Hence f1(B) f1(B) f1(B B)also, and we conclude thatf1(B) f1(B) =f1(BB).

    4. Letx f1(B) \f1(B). Thenx f1(B) andx f1(B). Thus f(x) Band f(x) B. Thus f(x) B\ Band thereforexf1(B\ B), giving f1(B) \f1(B) f1(B\ B). Now, letxf1(B\ B). Thenf(x) B\ B, which means that f(x) B but f(x) B. Thusx f1(B) butx f1(B), which givesxf1(B) \f1(B)and sof1(B\ B) f1(B) \f1(B). This establishes the desired equality.

    25THEOREM Letf :X

    Ybe a function. Let A

    BX

    Y. Then

    1. A (f1 f)(A)

    2. (f f1)(B)B

    Proof: We have

    1. Letx A. Theny Ysuch thaty=f(x). Thusy f(A). Thereforex f1(f(A)).2. y (f f1)(B). Thenx f1(B)such thatf(x) =y. Thusx f1(y). Hencef(x) B. Thereforey B.

    1.2.4 Inverse Function

    26 Definition LetA BR2. A functionF: A Bis said to beinvertibleif there exists a function F1 (called theinverseofF) such that FF1 = IdBand F1 F= IdA. Here Id Sis the identity on the set Sfunction with ruleId S(x) = x.

    The central question is now: given a functionF: A B, when isF1 : BAa function? The answer is given in the nexttheorem.

    27THEOREM LetABR2. A functionf :A Bis invertible if and only if it is a bijection. That is, f1 : BAis a functionif and only iffis bijective.

    7

  • 8/11/2019 Calculus Once Again - David Santos

    16/194

    Numerical Functions

    Proof: Assume first thatfis invertible. Then there is a functionf1 : BAsuch that

    f f1 = Id B and f1 f= IdA. (1.2)

    Let us prove thatf is injective and surjective. Lets, tbe in the domain offand such thatf(s) = f(t). Applyingf1 to both sides of this equality we get(f1 f)(s) = (f1 f)(t). By the definition of inverse function,(f1 f)(s) = sand(f1 f)(t) = t. Thuss= t.Hencef(s) =f(t)= s= timplying thatf is injective. To prove thatf is surjective we must shew that for everyb

    f(A)

    a

    Asuch thatf(a)

    =b.We takea

    =f1(b) (observe that

    f1(b) A). Then f(a) = f(f1(b)) = (f f1)(b) = bby definition of inverse function. This shews that f issurjective. We conclude that iff is invertible then it is also a bijection.

    Assume now that fis a bijection. For everyb Bthere exists a uniqueasuch thatf(a) = b. This makes the ruleg: BAgiven byg(b) = aa function. It is clear thatg f= IdAand f g= Id B.We may thus take f1 = g.This concludes the proof.

    Homework

    Problem 1.2.1 Find all functions with domain{a,b}and target set

    {c,d}.

    Problem 1.2.2 Let A, B be finite sets with card (A)= n andcard (B) = m. Provethat

    The number of functions fromAtoBismn.

    Ifn m, the number of injective functions from A toB ism(m1)(m2) (mn+1). Ifn> mthere are no injectivefunctions fromAtoB.

    Problem 1.2.3 LetAandBbe two finite sets withcard (A) = nandcard (B) = m. Ifn< mprove that there are no surjections fromAtoB. Ifn mprove that the number of surjective functions fromAtoBis

    mnm1(m1)n+m

    2(m2)nm

    3(m3)n++(1)m1 m

    m1(1)n.Problem 1.2.4 Leth: RR be given byh(1x) = 2x. Findh(3x).

    Problem 1.2.5 Consider the polynomial

    (1 x2 + x4)2003 = a0 +a1x+a2x2 + + a8012x8012.

    Find

    a0

    a0 + a1 +a2 + + a8012 a0 a1 +a2 a3 + a8011 +a8012 a0 + a2 +a4 + + a8010 +a8012 a1 + a3 + + a8009 +a8011

    Problem 1.2.6 Letf :RR, be a function such thatx]0;+[,

    [f(x3 +1)]

    x = 5,find the value of

    f

    27+y3

    y3

    27y

    fory]0;+[.

    Problem 1.2.7 Let f satisfy f(n+ 1)= (1)n+1n 2f(n),n 1Iff(1) = f(1001)find

    f(1)+f(2) +f(3) + +f(1000).

    Problem 1.2.8 Iff(a)f(b) = f(a+b) a,bR andf(x) > 0 xR, findf(0). Also, findf(a)andf(2a)in terms off(a).

    Problem 1.2.9 Prove thatf :R\ {1} R\ {1}

    x x1x+1

    is a bijection

    andfindf1.

    Problem 1.2.10 Letf[1] (x) =f(x) = x+1,f[n+1] =f f[n],n 1.Find a closed formula forf[n]

    Problem 1.2.11 Let f, g :

    0 ;1 R be functions. Demonstrate

    that there exist(a,b)

    0 ; 12

    such that1

    4f(a)+g(b)ab.

    Problem 1.2.12 Demonstrate that there is no function f : R \

    {1/2} R such that

    xR\ {1/2}= f(x)f

    x12x1

    = x2 +x+1

    Problem 1.2.13 Find all functionsf :R\ {1,0} R such that

    xR\ {1,0}= f(x)+f 1x+1 = 3x+2.Problem 1.2.14 Let f[1] (x)= f(x)=2x,f[n+1] = f f[n],n 1.Find a closed formula forf[n]

    Problem 1.2.15 Find all functionsg: RR that satisfyg(x+y) +g(xy) = 2x2 +2y2.

    Problem 1.2.16 Find all the functions f : R R that satisfyf(x y) =y f(x).

    8

  • 8/11/2019 Calculus Once Again - David Santos

    17/194

    Chapter 1

    Problem 1.2.17 Find all functionsf :R\ {0} Rfor which

    f(x)+2f

    1

    x

    = x.

    Problem 1.2.18 Find all functionsf :R\ {1} R such that

    (f(x))2

    f

    1x1+x= 64x.

    Problem 1.2.19 Letf[1] = fbe given byf(x) = 11x. Find

    (i)f[2] (x) = (ff)(x),(ii)f[3] (x) = (fff)(x), and(iii)f[69] = (ff ff)

    69compositions with itself

    (x).

    Problem 1.2.20 Let f : A

    B andg :B

    C be functions. Shew

    that(i) ifgf is injective, thenf is injective. (ii) if gf is surjective,thengis surjective.

    1.3 Countability

    28 Definition A set Xis countable if either it is finite or if there is a bijection f : X N, that is, the set X has as manyelements as N.

    Any countable set can be thus enumerated a sequence

    x1, x2, x3, . . . .

    Thus the strictly positive integers can be enumerated as customarily:

    1,2,3,....

    Another possible enumeration7 is the following

    3, 5, 7, 9, . .. , , 2 3, 2 5, 2 7, 2 9, .. . , 22 3,22 5, 22 7, 22 9,. .. , .. .24, 23,22,2,1,

    that is, we start with the odd integers in increasing order, then 2times the odd integers,22 times the odd integers, etc., and

    at the end we put the powers of2in decreasing order.

    29LEMMA Any subsetX N is countable.

    Proof: IfXis finite, then there is nothing to prove. If Xis infinite, we can arrange the elements ofX increasing

    order, say,

    x1 < x2 < x3

  • 8/11/2019 Calculus Once Again - David Santos

    18/194

    Groups and Fields

    Proof: One can take, as a bijection between the two sets, for example,f :ZN,

    f(x) =

    2x+ 1 ifx 02x ifx< 0.

    32THEOREM Q is countable.

    Proof: Considerf :QN givenfa

    b

    = 2|a|3b51+signum(a),

    wherea

    bis in least terms, andb> 0. By the uniqueness of the prime factorisation of an integer, fis an injection.

    The above theorem means that there as many rational numbers as natural numbers. Thus the rationals can be enumer-ated as

    q1, q2, q3, . . . ,

    33THEOREM(Cantors Diagonal Argument) R is uncountable.

    Proof: AssumeR were countable so that its complete set of elements may be enumerated, say, as in the list

    r1 = n1.d11d12d13 . . .r2 = n2.d21d22d13 . . .r3 = n3.d31d32d33 . . . ,

    where we have used decimal notation. Define the new realr= 0.d1d2d3 . . . bydi= 0ifdi i= 0 anddi= 1 ifdi i= 0. This is real number (as it is a decimal), but it differs fromriin theith decimal place. It follows that thelist is incomplete and the reals are uncountable.

    34THEOREM The interval 1 ; 1 is uncountable.Proof: Observe that the mapf :

    1 ; 1

    R given byf(x) = tan x

    2 is a bijection.

    Homework

    Problem 1.3.1 Prove that there as many numbers in[0;1]as in any

    interval[a;b]witha< b.Problem 1.3.2 Prove that there as many numbers in

    ;+

    as

    in

    0 ;+

    .

    1.4 Groups and Fields

    Here we observe the rules of the game for the operations of addition and multiplication inR.

    35 Definition LetS,Tbe sets. Abinary operationis a function

    : S S T(a,b) (a,b) .

    We usually use the infix notation a b rather than the prefix notation(a,b). IfS=Tthen we say that the binaryoperation isinternalorclosedand ifS= Tthen we say that it is external.

    10

  • 8/11/2019 Calculus Once Again - David Santos

    19/194

    Chapter 1

    36 Example Ordinary addition is a closed binary operationon thesetsN, Z,Q,R. Ordinary subtraction is a binary operation

    on these sets. It is not closed on N, since for example1 2 = 1 N, but it is closed in the remaining sets.

    37 Example The operation : RRR given bya b= 1 + a b, where is the ordinary multiplication of real numbers iscommutative but not associative. To see commutativity we have

    a b= 1+ ab= 1+ ba= b a.

    Now,

    1 (1 2) = 1 (1+ 1 2) = 1 (3) = 1+ 1 3 = 4, but (1 1) 2 = (1+1 1) 2 = 22 = 1+2 2 = 5,

    so the operation is not associative.

    38 Definition Let Gbe a non-empty set and be a binary operation on GG. Then G, is called agroupif the followingaxioms hold:

    G1: is closed, that is,(a, b) G2, a b G,

    G2:

    is associative, that is,

    (a,b,c) G3, a (b c) = (a b) c,

    G3: Ghas an identity element, that is

    e Gsuch that a G, e a= a e= a,

    G4: Every element ofGis invertible, that is

    a G, a1 Gsuch thata a1 = a1 a= e.

    From now on, we drop the sign and rather use juxtaposition for the underlying binary operation in a given group.Thus we will say a groupG rather than the more precise a groupG,.

    39 Definition A group Gis abelianif its binary operation is commutative, that is, (a, b) G2, a b= b a.

    40 Example Z,+, Q,+, R,+, C,+ are all abelian groups under addition. The identity element is 0 and the inverse ofais a.

    41 Example Q \ {0}, , R \ {0}, , C \ {0}, are all abelian groups under multiplication. The identity element is1 and theinverse ofais

    1

    a.

    42 Example Z \ {0}, is not a group. For example the element 2does not have a multiplicative inverse.

    43 Example Let V4 = {e, a,b,c} and define by the table below. e a b c e e a b c

    a a e c b

    b b c e a

    c c b a e

    It is an easy exercise to check that V4is an abelian group, called theKlein Viergruppe.

    44THEOREM Let Gbe a group. Then

    11

  • 8/11/2019 Calculus Once Again - David Santos

    20/194

    Groups and Fields

    1. There is only one identity element, the identity element is unique.

    2. The inverse of each element is unique.

    3.(a, b) G2 we have(ab)1 = b1 a1.

    Proof:

    1. Leteande be identity elements. Sinceeis an identity, e= ee. Sincee is an identity,e = ee. This givese= ee = e.

    2. Letbandbbe inverses ofa. Thene= abandba= e. This gives

    b= eb= (ba)b= b(ab) = be= b.

    3. We have

    (ab)(b1a1) = a(bb1)a1 = a(e)a1 = aa1 = e.Thusb1a1 works as a right inverse fora b. A similar calculation shews also that it works as a left inverse.Since inverses are unique, we must have

    (ab)1

    =b1a1.

    This completes the proof.

    45 Definition LetnZ and let Gbe a group. Ifa G, we define

    a0 = e,

    a|n| = a a a|n|as

    ,

    and

    a|n| = a1 a1 a1

    |n|a1s

    .

    If(m,n) Z2, then by associativity(an)(am) = (am)(an) = am+n.

    46 Definition LetFbe a set having at least two elements 0F and1F (0F= 1F) together with two binary operations (fieldmultiplication) and+ (field addition). AfieldF, ,+ is a triplet such thatF,+ is an abelian group with identity0F ,F\ {0F}, is an abelian group with identity1Fand the operations and + satisfy

    a (b+ c) = (ab) + (ac),

    that is, field multiplication distributes over field addition.

    We will continue our practice of denoting multiplication by juxtaposition, hence the sign will be dropped.

    47 Example Q, ,+, R, ,+, and C, ,+ are all fields. The multiplicative identity in each case is 1 and the additive identityis0.

    Homework

    12

  • 8/11/2019 Calculus Once Again - David Santos

    21/194

    Chapter 1

    Problem 1.4.1 Is the set of real irrationalnumbers closed under ad-

    dition? Under multiplication?

    Problem 1.4.2 Let

    S= {xZ : (a,b) Z2, x= a3 +b3 +c3 3ab c}.

    Prove thatSis closed under multiplication, that is, ifx

    Sandy

    S

    thenx yS.

    Problem 1.4.3 (Putnam, 1971) LetSbe a set and let be a binaryoperation onSsatisfying the two laws

    (x S)(x x= x),

    and

    ((x,y, z) S3)((xy) z= (y z) x).Shew that is commutative.

    Problem 1.4.4 (Putnam, 1972) LetSbe a set andlet be a binaryoperation ofSsatisfying the laws(x,y) S2

    x (xy) =y, (1.3)

    (y x) x=y. (1.4)Shew that is commutative, but not necessarily associative.

    Problem 1.4.5 OnQ]1;1[define the binary operation by

    ab= a+b1+ ab ,

    where juxtaposition means ordinary multiplication and+ is the or-dinary addition of real numbers. Prove thatQ]1;1[, is anabelian group by following these steps.

    1. Prove that is a closed binary operation onQ]1;1[.

    2. Prove that is both commutative and associative.

    3. Find an elementeQ]1;1[ suchthat(aQ]1;1[)(ea= a).

    4. Giveneas above and an arbitrary element a Q] 1;1[,solve the equationab= eforb.

    Problem 1.4.6 LetGbe a group satisfying(a G)

    a2 = e.

    Prove thatGis an abelian group.

    Problem 1.4.7 LetGbe a group where((a,b) G2)

    ((ab)3 = a3b3) and ((ab)5 = a5b5).

    Shew thatGis abelian.

    Problem 1.4.8 Suppose that in a groupGthere exists a pair(a,b) G2 satisfying

    (ab)k = akbk

    for three consecutive integersk= i,i+1,i+2.Prove thatab= ba.

    1.5 Addition and Multiplication inR

    Since R is a field, it satisfies the following list of axioms, which we list for future reference.

    48 Axiom (Arithmetical Axioms of R)R, ,+that is, the set of real numbers endowed with multiplication and addition+is a field. This entails that + and verify the following properties.

    R1: + and are closed binary operations, that is,(a, b) R2, a+bR, a bR,

    R2: + and are associative binary operations, that is,(a,b,c) R3, a+ (b+c) = (a+b)+ c, a (bc) = (a b) c

    R3: + and are commutative binary operations, that is,(a,b) R2, a+ b= b+ a, ab= b a,

    R4: R has an additive identity element 0, and a multiplicative identity element 1, with 0 = 1, such thataR, 0+ a= a+ 0 = a, 1 a= a 1 = a,

    R5: Every element ofR has an additive inverse, and every element ofR\ {0} has a multiplicative inverse, that is,

    aR, (a) R such thata+ (a) = (a) + a= 0,bR\ {0}, b1 R\ {0} such that bb1 = b1 b= 1,

    13

  • 8/11/2019 Calculus Once Again - David Santos

    22/194

    Addition and Multiplication inR

    R6: + and satisfy the following distributive law:(a, b, c, ) R3, a (b+c) = a b+ a c.

    Since + and are associative inR, we may write a suma1 + a2 + + anor a producta1a2 anof real numbers withoutrisking ambiguity. We often use the following shortcut notation.

    49 Definition For real numbers aiwe define

    a1 + a2 + + an=n

    k=1ak and a1a2 an=

    nk=1

    ak.

    By convention

    kak= 0and

    k

    ak= 1.

    50THEOREM(Lagranges Identity) Letak, bkbe real numbers. Then n

    k=1akbk

    2=

    nk=1

    a2k

    n

    k=1b2k

    1k

  • 8/11/2019 Calculus Once Again - David Santos

    23/194

    Chapter 1

    Using Pascals Identity we obtain Pascals Triangle.

    00

    1

    0

    1

    1

    2

    0

    2

    1

    2

    2

    3

    0

    3

    1

    3

    2

    3

    3

    4

    0

    4

    1

    4

    2

    4

    3

    4

    4

    50 51 52 53 54 55...

    ......

    ......

    ...

    When the numerical values are substituted, the triangle then looks like this.

    1

    1 1

    1 2 1

    1 3 3 11 4 6 4 1

    1 5 10 10 5 1...

    ......

    ......

    ...

    We see from Pascals Triangle that binomial coefficients are symmetric. This symmetry is easily justified by the identityn

    k

    =

    n

    nk

    . We also notice that the binomial coefficients tend to increase until they reach the middle, and that then they

    decrease symmetrically.

    53THEOREM(Binomial Theorem) FornN,

    (x+y)n =n

    k=0

    n

    k

    xkynk.

    Proof: The theorem is obvious forn= 0 (defining(x+y)0 =1), n=1 (as(x+y)1 = x+y), andn= 2 (as

    (x+y)2 = x2 + 2x y+y2). Assumen 3. The induction hypothesis is that(x+y)n =n

    k=0

    n

    k

    xkynk.Then we

    15

  • 8/11/2019 Calculus Once Again - David Santos

    24/194

    Addition and Multiplication inR

    have(x+y)n+1 = (x+y)(x+y)n

    = (x+y)

    nk=0

    n

    k

    xkynk

    =n

    k=0

    n

    k

    xk+1ynk+

    nk=0

    n

    k

    xkynk+1

    = xn+1 +n1k=0nkxk+1ynk+

    nk=1nkxkynk+1 +yn+1

    = xn+1 +n

    k=1

    n

    k1

    xkynk+1 +

    nk=1

    n

    k

    xkynk+1 +yn+1

    = xn+1 +n

    k=1

    n

    k 1

    +

    n

    k

    xkynk+1 +yn+1

    = xn+1 +n

    k=1

    n+ 1

    k

    xkynk+1 +yn+1

    =n+1k=0

    n+ 1

    k

    xkynk+1,

    proving the theorem.

    54LEMMA IfaR,a= 1and nN \ {0}, then

    1+ a+ a2 + an1 = 1 an

    1 a .

    Proof: For, putS= 1+ a+ a2 + + an1.ThenaS= a+ a2 + + an1 + an. Thus

    S aS= (1+ a+ a2 + + an1) (a+ a2 + + an1 + an) = 1 an,

    and from(1 a)S= S aS= 1 an we obtain the result.

    55THEOREM Let nbe a strictly positive integer. Then

    yn

    xn

    = (y x)(yn

    1

    +yn

    2

    x+ +y xn

    2

    + xn

    1

    ).

    Proof: By making the substitutiona= xy

    in Lemma54we see that

    1+ xy

    +

    x

    y

    2+ +

    x

    y

    n1=

    1

    xy

    n1 xy

    we obtain 1 x

    y

    1+ x

    y+

    x

    y

    2+ +

    x

    y

    n1= 1

    x

    y

    n,

    or equivalently, 1x

    y

    1+x

    y+x

    2

    y2+ +x

    n1

    yn1

    = 1x

    n

    yn.

    Multiplying byyn both sides,

    y

    1x

    y

    yn1

    1+x

    y+x

    2

    y2+ +x

    n1

    yn1

    =yn

    1x

    n

    yn

    ,

    which is

    yn xn = (y x)(yn1 +yn2 x+ +y xn2 + xn1),yielding the result.

    16

  • 8/11/2019 Calculus Once Again - David Santos

    25/194

    Chapter 1

    56THEOREM 1+2+ +n=n(n+1)2

    .

    First Proof: Observe that

    k2 (k1)2 = 2k 1.

    From this

    1

    2

    02

    = 2 1 122 12 = 2 2 132 22 = 2 3 1...

    ......

    n2 (n1)2 = 2 n 1

    Adding both columns,

    n2 02 = 2(1+2+3+ +n) n.

    Solving for the sum,

    1+2+3+ + n= n2/2+ n/2 =n(n+1)2

    .

    Second Proof: We may utilise Gauss trick: If

    An= 1+2+3+ +n

    then

    An= n+ (n 1) + +1.

    Adding these two quantities,

    An = 1 + 2 + + n

    An = n + (n1) + + 12An = (n+ 1) + (n+1) + + (n+ 1)

    = n(n+ 1),

    since there arensummands. This givesAn=n(n+ 1)

    2 , that is,

    1+2+ +n= n(n+ 1)2

    .

    Applying Gausss trick to the general arithmetic sum

    (a) + (a+d)+ (a+ 2d) + + (a+ (n1)d)

    we obtain

    (a)+ (a+ d) + (a+2d)+ +(a+ (n 1)d) = n(2a+ (n1)d)2

    (1.5)

    57THEOREM 12 + 22 +32 + +n2 = n(n+ 1)(2n+ 1)6

    .

    Proof: Observe that

    k3 (k1)3 = 3k2 3k+ 1.

    17

  • 8/11/2019 Calculus Once Again - David Santos

    26/194

    Addition and Multiplication inR

    Hence

    13 03 = 3 12 3 1+ 123 13 = 3 22 3 2+ 133 23 = 3 32 3 3+ 1...

    ......

    n3

    (n

    1)3

    = 3

    n2

    3

    n

    +1

    Adding both columns,

    n3 03 = 3(12 + 22 +32 + +n2) 3(1+ 2+3+ +n)+ n.

    From the preceding example1 +2+3+ + n= n2/2+n/2 = n(n+ 1)2

    so

    n3 03 = 3(12 + 22 + 32 + +n2) 32

    n(n+ 1)+ n.

    Solving for the sum,

    1

    2

    + 22

    + 32

    + +n2

    =n3

    3 +1

    2 n(n+1) n

    3 .

    After simplifying we obtain

    12 +22 +32 + +n2 = n(n+ 1)(2n+ 1)6

    .

    Homework

    Problem 1.5.1 Prove that forn 1,

    2n =n

    k=0

    nk

    ; 0 =

    nk=0

    (1)kn

    k

    , 2n1 =

    0knkeven

    nk

    =

    1knkodd

    nk

    .

    Problem 1.5.2 Given that1002004008016032 has a prime factor

    p> 250000,find it.

    Problem 1.5.3 Prove that(a+b+c)2 = a2 +b2 +c2 +2ab+2bc+2ca.

    Problem 1.5.4 Leta,b,cbe real numbers. Prove that

    a3 +b3 +c3 3ab c= (a+b+c)(a2 +b2 +c2 abbcca).

    Problem 1.5.5 Prove thatn

    k

    = n

    k

    n1k1

    .

    Problem 1.5.6 Prove thatn

    k

    = n

    k n1

    k1

    n2k2

    .

    Problem 1.5.7 Prove that

    nk=1

    kn

    k

    pk(1p)nk = np.

    Problem 1.5.8 Prove that

    nk=2

    k(k1)

    n

    k

    pk(1p)nk = n(n1)p2.

    Problem 1.5.9 Demonstrate that

    nk=0

    (knp)2

    n

    k

    pk(1p)nk = np(1p).

    Problem 1.5.10 LetxR\ {1}and letnN\ {0}. Prove thatn

    k=0

    2k

    x2k +1

    = 1x1

    2n+1

    x2n+1 +1

    .

    Problem 1.5.11 Consider the nk k-tuples (a1, a2, . . . ,ak) which

    can be formed by taking ai {1,2,..., n}, repetitions allowed.Demonstrate that

    ai{1,2,...,n}min(a1, a2, . . . ,ak) = 1k+2k+ +nk.

    18

  • 8/11/2019 Calculus Once Again - David Santos

    27/194

    Chapter 1

    1.6 Order Axioms

    Vocabulary Alert!We will call a numberxpositiveifx 0andstrictly positiveifx> 0. Similarly, we will call

    a numberynegativeify 0andstrictly negativeify< 0. This usage differs from most Anglo-American books,who prefer such terms asnon-negative andnon-positive.

    We assumeR endowed with a relation >which satisfies the following axioms.

    58 Axiom (Trichotomy Law) (x,y) R2 exactly one of the following holds:

    x> y, x=y, or y> x.

    59 Axiom (Transitivity of Order)(x,y, z) R3,

    if x>y and y> z then x> z.

    60 Axiom (Preservation of Inequalities by Addition) (x,y, z) R3,

    if x>y then x+ z>y+ z.

    61 Axiom (Preservation of Inequalities by Positive Factors) (x,y, z) R3,

    if x>y and z> 0 then xz>y z.

    x x.x ymeans that eithery> xory= x, etc.

    62THEOREM The square of any real number is positive, that is, a R, a2 0. In fact, ifa= 0thena2 > 0.

    Proof: Ifa= 0, then02 = 0and there is nothing to prove. Assume now thata= 0. By trichotomy, eithera> 0ora< 0. Assume first thata> 0. Applying Axiom61withx= z= aandy= 0we have

    aa

    >a0

    =a2

    >0,

    so the theorem is proved ifa> 0.

    Ifa< 0thena> 0and we apply the result just obtained:

    a> 0= (a)2 > 0= 1 a2 > 0= a2 > 0,

    so the result is true regardless the sign ofa.

    Theorem62will prove to be extremely powerful and will be the basis for many of the classical inequalities that follow.

    63THEOREM If(x,y) R2,x

    >y

    x

    y

    >0.

    Proof: This is a direct consequence of Axiom60upon takingz= y.

    64THEOREM If(x,y, a, b) R4,x> y and a b= x+ a>y+b.

    Proof: We have

    x>y= x+ a>y+ a, y+ ay+b,by Axiom60and so by Axiom59x+ a>y+ b.

    19

  • 8/11/2019 Calculus Once Again - David Santos

    28/194

    Order Axioms

    65THEOREM If(x,y, a, b) R4,x> y> 0 and a b> 0= x a> yb.

    Proof: Indeed

    x>y= x a>y a, y ayb,by Axiom61and so by Axiom59x a>yb.

    66THEOREM 1 > 0.

    Proof: By definition of R being a field0 = 1. Assume that1 < 0then12 > 0by Theorem62. But12 = 1and so1 > 0, a contradiction to our original assumption.

    67THEOREM x> 0= x< 0 and x1 > 0.

    Proof: Indeed, 1 < 0since1 = 0and assuming1 > 0would give0 = 1+1 > 1, which contradicts Theorem66.Thus

    x= 1 x< 0.Similarly, assumingx1

    1would give1 = x x1 > 1 1 = 1, a contradiction.

    1.6.1 Absolute Value

    69 Definition (The Signum (Sign) Function) Letxbe a real number. We define signum (x) =

    1 if x< 0,0 if x= 0,

    +1 if x> 0.

    70LEMMA The signum function is multiplicative, that is, if(x,y) R2

    thensignumxy= signum (x) signumy.Proof: Immediate from the definition of signum.

    71 Definition (Absolute Value) LetxR. Theabsolute valueofxis defined and denoted by

    |x| = signum (x) x.

    72THEOREM LetxR. Then

    1. |x| =

    x ifx< 0,x ifx 0.

    2. |x| 0,3. |x| = max(x,x),

    4. |x| = |x|,

    5.|x| x |x|.

    6.

    x2 = |x|

    7. |x|2 = |x2| = x2

    8. x= signum (x) |x|

    20

  • 8/11/2019 Calculus Once Again - David Santos

    29/194

    Chapter 1

    Proof: These are immediate from the definition of |x|.

    73THEOREM ((x,y) R2), x y = |x| y .Proof: We have

    x y = signumx yx y= signum (x) x signumyy= |x| y ,where we have used Lemma70. 74THEOREM Lett 0. Then

    |x| t t x t.

    Proof: Either|x| = xor |x| = x. If|x| = x,|x| t x t t 0 x t.

    If|x| = x,|x| t x t t x 0 t.

    75THEOREM If(x,y) R2, max(x,y) = x+y+xy

    2 andmin(x,y) = x+y

    xy2

    .

    Proof: Observe thatmax(x,y) + min(x,y) = x+y, since one of these quantities must be the maximum and theother the minimum, or else, they are both equal.

    Now, eitherxy= xy, and soxy, meaning thatmax(x,y)min(x,y) = xy, orxy= (xy) =yx,

    which means thaty xand somax(x,y)min(x,y) =yx. In either case we getmax(x,y)min(x,y) =xy.

    Solving now the system of equations

    max(x,y)+ min(x,y) = x+ymax(x,y)

    min(x,y)

    = xy ,formax(x,y)andmin(x,y)gives the result.Homework

    Problem 1.6.1 Letx,ybe real numbers. Then

    0 x

  • 8/11/2019 Calculus Once Again - David Santos

    30/194

    Classical Inequalities

    Proof: From5in Theorem72, by addition,

    |a| a |a|to

    |b| b |b|we obtain

    (|a|+ |b|) a+b (|a|+ |b|),

    whence the theorem follows by applying Theorem74.

    By induction, we obtain the following generalisation to nterms.

    77C OROLLARY Letx1, x2, . . . , xnbe real numbers. Then

    |x1 + x2 + + xn| |x1|+ |x2|+ + |xn| .

    Proof: We apply Theorem76n 1times|x1 + x2 + + xn| |x1|+ |x2 + xn1 + xn|

    |x1|+ |x2|+ |x3 + xn1 + xn|...

    |x1|+ |x2|+ +|xn1 + xn| |x1|+ |x2|+ +|xn1|+ |xn| .

    78C OROLLARY Let(a, b) R2. Then||a| |b|| |ab| . (1.7)

    Proof: We have

    |a| = |a b+b| |ab|+ |b|,giving

    |a| |b| |a b|.Similarly,

    |b| = |b a+ a| |b a|+ |a| = |ab|+ |a|,gives

    |b| |a| |a b| = |a b| |a| |b| .Thus

    |a b| |a| |b| |a b| ,and we now apply Theorem74.

    79THEOREM Let bi> 0for1 i n. Then

    mina1b1 ,a2b2 , . . . ,anbn a1 + a2 + + anb1 + b2 + +bn maxa1b1 ,a2b2 , . . . ,anbn .Proof: For everyk, 1 k n,

    min

    a1

    b1,a2

    b2, . . . ,

    an

    bn

    ak

    bk max

    a1

    b1,a2

    b2, . . . ,

    an

    bn

    = bkmin

    a1

    b1,a2

    b2, . . . ,

    an

    bn

    ak bkmax

    a1

    b1,a2

    b2, . . . ,

    an

    bn

    .

    Adding all these inequalities for1 k n,

    (b1 + b2 + +bn)min

    a1

    b1,a2

    b2, . . . ,

    an

    bn

    a1 + a2 + + an (b1 + b2 + +bn)max

    a1

    b1,a2

    b2, . . . ,

    an

    bn

    ,

    from wher


Recommended