+ All Categories
Home > Documents > Calculus With Nilsquares

Calculus With Nilsquares

Date post: 09-Jan-2016
Category:
Upload: curtis-helms
View: 11 times
Download: 0 times
Share this document with a friend
Description:
Calculus With Nilsquares
59
7/17/2019 Calculus With Nilsquares http://slidepdf.com/reader/full/calculus-with-nilsquares 1/59 Calculus with Infinitesimals Mathematics for Christian Youth Curtis Silas Helms III California Meta-Learning Institute July 2012 CS Helms (CMI)  Christian Math  JUL 2012 1 / 58
Transcript
Page 1: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 1/59

Calculus with InfinitesimalsMathematics for Christian Youth

Curtis Silas Helms III

California Meta-Learning Institute

July 2012

CS Helms (CMI)   Christian Math   JUL 2012 1 / 58

Page 2: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 2/59

Table of Contents

CS Helms (CMI)   Christian Math   JUL 2012 2 / 58

Page 3: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 3/59

References

Bell, John L.

A Primer of Infinitesimal Analysis.

Cambridge University Press, 1998.Ayers, F. and Mendelson, E.

Calculus (Fifth Edition).

McGraw Hill, 2009.

CS Helms (CMI)   Christian Math   JUL 2012 3 / 58

Page 4: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 4/59

Smooth Infinitesimal Analysis

The intuitive notion of an infinitesimal was introduced by Gottfried Leibnizand Issac Newton in the late 1600’s. When calculus was transformed into

a purely mathematical science, infinitesimals were rejected in favor of the

, δ approach.

In recent years an approach to calculus has been introduced upon theaxiom that there exists quantities ε which, while not necessarily zero, are

nevertheless so small that ε2 = 0. Quantities in this class are called

nilsquare infinitesimals.

Smooth infinitesimal analysis, (SIA), is the name for a rigorous framework

of mathematical analysis which emerged in the 1970’s. In SIA, nilsquare

infinitesimals replace the use of limits for defining the basic notions of

calculus.

CS Helms (CMI)   Christian Math   JUL 2012 4 / 58

Page 5: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 5/59

Chord vs. Tangent

Let us consider the problem of constructing the tangent to a curve at a

given point P. If we are given a curve and  two  points P and  Q on that

curve, it is a simple matter to draw the line, or  chord, passing through

those points.

As Q approaches P, from either side, the chord  PQ produces a better andbetter approximation to the tangent line at  P.

However, according to the traditional definition of a tangent line, the chord

PQ will never become the tangent line, regardless of the distance

between points P and  Q.

Consequently, the tangent line of a curve at  P  is a mystical concept that is

very difficult to define without an appeal to advanced mathematics.

CS Helms (CMI)   Christian Math   JUL 2012 5 / 58

Page 6: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 6/59

Chord vs. Tangent

Qtangent

chord

Figure : Chord vs. Tangent

CS Helms (CMI)   Christian Math   JUL 2012 6 / 58

Page 7: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 7/59

Slope of A Chord

As an example, let us determine the slope of the tangent at the point

P = ( x0, y0) on the parabola y  = x2. Let Q be the point ( x0 + ∆ x, y0 + ∆ y), where

∆ x, ∆ y are small increments in x0, y0  respectively. The slope of the chord  PQ isgiven by the equation

∆ y

∆ x=

  ( x0 + ∆ x)2 − x20

∆ x=

  x20 + 2 x0∆ x + (∆ x)2 − x2

0

∆ x= 2 x0 + ∆ x.

CS Helms (CMI)   Christian Math   JUL 2012 7 / 58

Page 8: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 8/59

Slope of a Chord

 y =  x2

P

Q

∆ x

∆ y

 y

 x

Figure : Slope PQ  vs Tangent at P

CS Helms (CMI)   Christian Math   JUL 2012 8 / 58

Page 9: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 9/59

Basic Limits Defined

DefinitionIf there exists an r  > 0 such that, for all   > r ,

lim x→a±

 f ( x) = L ⇔

0 <| x − a  |<  1

| f ( x) −  L  |<  1

  (1)

andlim

 x→a f ( x) = L ⇔   lim

 x→a± f ( x) = L.   (2)

Definition

 f   is continuous at  x = a when

lim x→a

 f ( x) = f (a).   (3)

CS Helms (CMI)   Christian Math   JUL 2012 9 / 58

Page 10: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 10/59

Slope and Derivative of a Function

Definition

The function y = f ( x) is said to have a gradient at  x = x0  when f   is continuousat x = x0, and

lim∆ x→0

∆ y

∆ x=

  f ( x0 + ∆ x) −  f ( x0)

∆ x

  exists.

The numerical value of this limit is called the  slope of  f   at x0.

Definition

If a gradient for f ( x) exists at each point of its domain, then these gradientsare a function of  x. This function is called the derivative of  f  with respect to  x,

and is variously written  f   ( x), y , y x, or  dy/dx.

The process of calculating derivatives is called differentiation.

CS Helms (CMI)   Christian Math   JUL 2012 10 / 58

Page 11: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 11/59

Taylor Theory of Derivatives

If we calculate ∆ y/∆ x for various functions  y = f ( x), we obtain in every case:

(i) the derivative f  

( x),(ii) a term of the form  A∆ x, where ∆ x = 0.

Accordingly, we have, for any value of  x, an equation of the form

∆ y

∆ x= f   ( x) +  A∆ x

If we multiply this equation by  ∆ x, we obtain

∆ y = f   ( x)∆ x + A(∆ x)2 (4)

Now if it were possible to take  ∆ x so small (yet not necessarily equal to 0)

that (∆ x)2 = 0, then the above equation would assume the simple form

dy = f   ( x) dx   (5)

CS Helms (CMI)   Christian Math   JUL 2012 11 / 58

Page 12: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 12/59

Derivative Equation

We shall call a quantity having the property that its square is zero an

infinitesimal. In SIA, “enough” infinitesimals are present to ensure that

equation (5) holds nontrivially for all functions f   : R

→R. If we replace dx  by an

arbitrary infinitesimal ε in,

dy =  f ( x + dx) −  f ( x) = f   ( x) dx

we obtain

dy =  f ( x + ε) −  f ( x) = f   ( x) ε   (6)

which is called the Derivative Equation.

CS Helms (CMI)   Christian Math   JUL 2012 12 / 58

Page 13: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 13/59

Infinitesimals Defined

Definition

We shall use ∆ to denote the set of infinitesimals

∆ ≡  x ∈ R : x2 = 0

  (7)

Axiom

SIA is constructed to ensure that  ∆  is nondegenerate. In other words,

∆ is not necessarily equal to  {0}.   (8)

Properties of Infinitesimals

1 0 ∈ ∆.

2 When ε ∈ ∆, εk ∈ ∆.

3 Given k = 0, then kf ( x) = k ε implies f ( x) = ε.

4 Given dx

∈∆, then dy =  f   ( x) dx implies dy

∈∆.

CS Helms (CMI)   Christian Math   JUL 2012 13 / 58

Page 14: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 14/59

Principle of Infinitesimal Affiness

All curves in ∆ are affine (microstraight); meaning “always linear.” This means

that ∆  cannot be bent or broken , it is subject only to translation and rotation,

yet is not identical with a point.

∆  ∆ + x0

image under f   of ∆  + x0

 x

 y   y =  f ( x)

Figure :  Microstraight Portion of Curve

CS Helms (CMI)   Christian Math   JUL 2012 14 / 58

P i i l f I fi i i l C ll i

Page 15: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 15/59

Principle of Infinitesimal Cancellation

Axiom

(εa =  εb) ⇒   (a = b)   (9)

Corollary(εa = 0) ⇒   (a = 0)   (10)

Lemma

aεb + cε

  =   ab

ε   where b = 0.   (11)

CS Helms (CMI)   Christian Math   JUL 2012 15 / 58

P f f C ll ti L

Page 16: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 16/59

Proof for Cancellation Lemma

Proof.

b + cε  =

  aε

b + cε ·  b − cε

b − cε

=  abε − acε2

b2 − c2ε2

=  abε

b2

=  a

CS Helms (CMI)   Christian Math   JUL 2012 16 / 58

I t l

Page 17: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 17/59

Intervals

Definition

On R we define:

The relation (a ≤ b) ≡  ¬(b < a),The open interval (a, b) ≡  { x : a < x < b},

The closed interval [a, b ] ≡  { x : a ≤  x ≤ b}.

The half-open, half-closed, and unbounded intervals are defined similarly.

CS Helms (CMI)   Christian Math   JUL 2012 17 / 58

St ti P i t d C t t F ti

Page 18: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 18/59

Stationary Points and Constant Functions

Definition

A stationary point, a ∈ R of a function f   : R→ R is defined to be one in whose

vicinity “infinitesimal variations” fail to change the value of  f , that is for all  ε,

 f (a + ε) = f (a). Starting with the Derivative Equation we have:

ε f   (a) = f (a + ε) −  f (a)

= f (a) −  f (a)

= 0

 f   (a) = 0

Definition

If A ⊆ R is any closed interval on R, or R itself, and f   : A → R satisfies

 f   (a) = 0 for all a ∈  A, then f   is a constant function on  A.

CS Helms (CMI)   Christian Math   JUL 2012 18 / 58

Constant Rule

Page 19: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 19/59

Constant Rule 

Theorem

 y = k  ⇒   y = 0   where  k ∈ R.   (12)

Proof.

dy =  k ( x + ε)0 − kx0

= k  − k 

 y

= 0

CS Helms (CMI)   Christian Math   JUL 2012 19 / 58

Power Rule

Page 20: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 20/59

Power Rule 

Theorem

 y = xn ⇒   y = nxn−1 where  n ∈ N.   (13)

Proof.

ε y = ( x + ε)n − xn

=

ni=0

n

i

 xn−iεi − xn

= xn

+ nxn−1

ε − xn

= nxn−1ε

 y = nxn−1

CS Helms (CMI)   Christian Math   JUL 2012 20 / 58

Sum Rule

Page 21: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 21/59

Sum Rule 

Theorem

 y = u + v ⇒   y = u + v (14)

Proof.

ε y = (u + v)( x + ε) − (u + v)

= u( x + ε) +  v( x + ε) −  u − v

= u + εu + v + εv − u − v

= ε(u + v )

 y = u + v

CS Helms (CMI)   Christian Math   JUL 2012 21 / 58

Constant Sum Rule

Page 22: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 22/59

Constant Sum Rule 

Theorem

 y = ku ⇒   y = ku where  k ∈ R.   (15)

Proof.

ε y = (ku)( x + ε) −  ku

= ku( x + ε) −  ku

= k (u + εu ) −  ku

= ku

 + εku

− ku

= εku

 y = ku

CS Helms (CMI)   Christian Math   JUL 2012 22 / 58

Product Rule

Page 23: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 23/59

Product Rule 

Theorem

 y = uv ⇒   y = vu + uv (16)

Proof.

ε y = (uv)( x + ε) −  uv

= u( x + ε)v( x + ε) −  uv

= (u + εu )(v + εv ) −  uv

= uv + εu v + εuv + ε2u v − uv

= ε(u v + uv )

 y = vu + uv

CS Helms (CMI)   Christian Math   JUL 2012 23 / 58

Quotient Rule

Page 24: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 24/59

Quotient Rule 

Theorem

 y =  u

v⇒   y

=  vu − uv

v2   where  v = 0.   (17)

Proof.

ε y =   u( x + ε)v( x + ε)

  −  uv

=  u + εu

v + εv −

 u

v

=  (vu − uv )ε

v2 + εvv

=  vu − uv

v2  ε

 y =  vu − uv

v2

CS Helms (CMI)   Christian Math   JUL 2012 24 / 58

Chain Rule

Page 25: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 25/59

Chain Rule 

Theorem

 y =  f (g) ⇒   y x  = f   (g)g (18)

Proof.

dy = f (g( x + dx)) −  f (g( x))

= f (g( x) +  g ( x) dx) −  f (g( x))

= f (g( x)) +  f   (g( x))g ( x) dx − f (g( x))   g ( x) dx ∈ ∆

dy = f   (g( x))g ( x) dx   uncancelled

dy = f   (u) du   u =  g( x) → du = g ( x) dx

 y x  = f   (g)g

CS Helms (CMI)   Christian Math   JUL 2012 25 / 58

Theorem Inverse Function Rule

Page 26: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 26/59

Theorem Inverse Function Rule 

Theorem

Let  f (g) = x. Then where  f , g are defined,

 f (g) = x

 ⇒  f   (g)g = 1   (19)

Proof.

 f (g) = x

 f   (g)g = ( x)

 f   (g)g = 1

CS Helms (CMI)   Christian Math   JUL 2012 26 / 58

Theorem Root Rule

Page 27: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 27/59

Theorem Root Rule 

Theorem

 y = x1/n ⇒   y

= (1/n) x(1−n)/n

(20)

Proof.

 y =  x1/n

 yn = x

nyn−1 y = 1

 y =  1

nyn−1

 y = (1/n) y1−n

 y = (1/n) x1/n

1−n

 y = (1/n) x(1−n)/n

CS Helms (CMI)   Christian Math   JUL 2012 27 / 58

Corollary to Root Rule

Page 28: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 28/59

Corollary to Root Rule 

Theorem

 y = xm/n ⇒   y

= (m/n) x(m−n)/n

(21)

Proof.

 y = xm/n

 y = x1/n

m

 y = m x1/n

m−1 x1/n

 y = mx(m−1)/n(1/n) x(1−n)/n

 y = (m/n) x

m−

1n   + 1−

nn

 y = (m/n) x(m−n)/n

CS Helms (CMI)   Christian Math   JUL 2012 28 / 58

Sine and Cosine

Page 29: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 29/59

Sine and Cosine

We shall assume the presence inR

of the familiar sine and cosine functions;sin  : R→ R and cos : R→ R. As usual, if  a, b, c are sides of a right-angle

triangle with base angle  θ  (measured in radians), we have

a = c cos θ   b = c sin θ

We assume the familiar relations

sin0 = 0 cos 0 =  1

sin2 θ + cos2 θ = 1

sin(θ + φ) = sin θ cos φ + sin φ cos θ

cos(θ + φ) = cos θ cos φ − sin θ sin φ

CS Helms (CMI)   Christian Math   JUL 2012 29 / 58

Value of sin ε

Page 30: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 30/59

Theorem

sin ε =

 ε   (22)

Proof.

By Trigonometry, arc AB  = θ AB  radians on a unit circle. Setting θ AB  = ε yields

arc AB  = ε hence, arc AB ∈ ∆. Since all curves in  ∆ are affine, we have

arc AB  = sin ε.In other words,

θ AB  = arc AB  = sin ε = ε

CS Helms (CMI)   Christian Math   JUL 2012 30 / 58

Value of cos ε

Page 31: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 31/59

Theorem

cos ε = 1   (23)

Proof.

sin2 ε + cos2 ε =  1

ε2 + cos2 ε =  1

cos2 ε =  1

cos ε =  1

CS Helms (CMI)   Christian Math   JUL 2012 31 / 58

Derivative of sin x

Page 32: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 32/59

Theorem

 y = sin x ⇒   y = cos x   (24)

Proof.

ε y = sin( x + ε) −  sin( x)

= sin x cos ε + sin ε cos x − sin x

= ε cos x

 y = cos x

CS Helms (CMI)   Christian Math   JUL 2012 32 / 58

Derivative of cos x

Page 33: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 33/59

Theorem

 y = cos x ⇒   y = − sin x   (25)

Proof.

ε y = cos( x + ε) − cos( x)

= cos x cos ε − sin ε sin x − cos x

= −ε sin x

 y = − sin x

CS Helms (CMI)   Christian Math   JUL 2012 33 / 58

Derivative of tan x

Page 34: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 34/59

Theorem y = tan x ⇒   y = sec2 x   (26)

Proof.

 y = (sin x/ cos x)

= ((sin x) cos x − sin x(cos x) ) / cos2 x

= (cos x cos x + sin x sin x) / cos2 x

= 1/ cos2

 x

= sec2 x

CS Helms (CMI)   Christian Math   JUL 2012 34 / 58

Derivative of sec x

Page 35: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 35/59

Theorem

 y =  sec x ⇒   y = sec x tan x   (27)

Proof.

 y = (1/ cos x)

= −(cos x) / cos2 x

= sin x/ cos2 x

= sec x tan x

CS Helms (CMI)   Christian Math   JUL 2012 35 / 58

Derivative of csc x

Page 36: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 36/59

Theorem

 y =  csc x ⇒   y = − csc x cot x   (28)

Proof.

 y = (1/ sin x)

= −(sin x) / sin2 x

= − cos x/ sin2 x

= − csc x cot x

CS Helms (CMI)   Christian Math   JUL 2012 36 / 58

Derivative of cot x

Page 37: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 37/59

Theorem

 y = cot x ⇒   y = − csc2 x   (29)

Proof.

 y = (cos x/ sin x)

= ((cos x) sin x − cos x(sin x) ) / sin2 x

= (− sin x sin x − cos x cos x) / sin2 x

= − (sin x sin x + cos x cos x) / sin2 x

= −1/ sin2 x

= − csc2 x

CS Helms (CMI)   Christian Math   JUL 2012 37 / 58

Derivative of sin−1 x

Page 38: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 38/59

Theorem

When  | x| < 1,

 y =  sin−1 x ⇒   y =   1√ 1 − x2

(30)

Proof.

 y = sin−1 x

sin y = x

(cos y) y = 1

 y

= 1/ cos y

= 1/ ± 

1 − (sin y)2

= 1/ 

1 − x2

CS Helms (CMI)   Christian Math   JUL 2012 38 / 58

Derivative of cos−1 x

Page 39: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 39/59

Theorem

When  | x| < 1,

 y = cos−1 x ⇒   y =   −1√ 1 − x2

(31)

Proof.

 y = cos−1 x

cos y = x

(− sin y) y = 1

 y = −1/ sin

 y

= −1/ ± 

1 − (cos y)2

= −1/ 

1 − x2

CS Helms (CMI)   Christian Math   JUL 2012 39 / 58

Derivative of tan−1 x

Page 40: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 40/59

Theorem

 y =  tan−1

 x ⇒   y

=

  1

1 + x2   (32)

Proof.

 y = tan−1

 x

tan y = x

(sec2 y) y = 1

 y = 1/ sec2 y

=   11 + tan2 y

=  1

1 + x2

CS Helms (CMI)   Christian Math   JUL 2012 40 / 58

Derivative of sec−1 x

Page 41: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 41/59

Theorem

When  | x| >  1,

 y =  sec−1 x ⇒   y =   1| x|√ 

 x2 − 1(33)

Proof.

 y =  sec−1 x

sec y =  x

(sec y tan y) y = 1

 y =  1

sec y tan y

=  1

(sec y) ± 

sec2 y − 1

=  1

| x|√ 

 x2 − 1

CS Helms (CMI)   Christian Math   JUL 2012 41 / 58

Derivative of csc−1 x

Page 42: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 42/59

Theorem

When  | x| >  1,

 y =  csc−1 x ⇒   y =   −1| x|√ 

 x2 − 1(34)

Proof.

 y =  csc−1 x

csc y =  x

(− csc y cot y) y = 1

 y =  −1

csc y cot y

=  −1

(csc y) ± 

csc2 y − 1

=  −1

| x|√ 

 x2 − 1

CS Helms (CMI)   Christian Math   JUL 2012 42 / 58

Derivative of cot−1 x

Page 43: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 43/59

Theorem

 y =  cot

−1

 x ⇒   y

=

  −1

 x2 + 1 (35)

Proof.

 y =  cot−1

 xcot y =  x

(− csc2 y) y = 1

 y = −1/ csc2 y

 y =   −11 + cot2 y

 y =  −1

1 + x2

CS Helms (CMI)   Christian Math   JUL 2012 43 / 58

Derivatives of exp and log

Page 44: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 44/59

Most textbooks wait until integration has been defined and explainedbefore proving the derivatives for functions  e and  ln.

Instead, we will use an axiomatic approach to enable the differentiation of

e and  ln.

The function exp x is also written as  e x

, where 2 <  e < 3. This is thenotation we will use. The following theorem is proven in the integration

section of this book.

Theorem

eε = ε  + 1   (36)

CS Helms (CMI)   Christian Math   JUL 2012 44 / 58

Derivative of e x

Page 45: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 45/59

Theorem

 y = e x ⇒   y = e x (37)

Proof.

ε y = e x+ε − e x

= e xeε − e x

= e x(ε + 1) −  e x

= e xε + e x − e x

= e xε

 y = e x

CS Helms (CMI)   Christian Math   JUL 2012 45 / 58

Derivative of ln x

Page 46: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 46/59

The book will use the notation  ln x for the natural logarithm (i.e., loge x) where,

eln | x| = x   ( x= 0)   (38)

Theorem

 y = ln x

 ⇒  y = 1/ x   ( x > 0)   (39)

Proof.

 y = ln x

e y = x

e y y = 1

 y = 1/e y

 y = 1/ x

CS Helms (CMI)   Christian Math   JUL 2012 46 / 58

Derivative of xr 

Page 47: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 47/59

We are now able to take the derivative of  y = xr , for all real numbers r .

Theorem

 y = xr  ⇒   y = rxr −1 (r ∈ R)   (40)

Proof.

ln y =  r ln x

 y / y =  r / x

 y = ry/ x

= rxr / x

= rxr −1

CS Helms (CMI)   Christian Math   JUL 2012 47 / 58

Derivative of loga x

Page 48: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 48/59

This is the definition for the general lograthim function.

loga x

  ln a

ln x

(a >  0)   (41)

Theorem

 y =  loga x

 ⇒  y =

  1

 x ln a(42)

Proof.

 y =  loga x

=

  ln x

ln a

 y =  1

ln a·  1

 x

 y =  1

 x ln a

CS Helms (CMI)   Christian Math   JUL 2012 48 / 58

Corollary for (ln x)

Page 49: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 49/59

Corollary

(ln | x|)

= 1/ x   ( x = 0)   (43)

Proof.

When x > 0,

(ln | x|)

= (ln x)

= 1/ x.

When x < 0,

(ln | x|)

=

ln(− x)

= (− x) /(− x)

= (−1)/(− x)

= 1/ x.

CS Helms (CMI)   Christian Math   JUL 2012 49 / 58

Derivative of a x

Page 50: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 50/59

The following equation is proven in the integration section of this book.

ln a x = x ln a   (44)

Theorem

 y = a x

⇒  y = a x ln a   (45)

Proof.

ln y =  ln a x

= (ln a) x

 y / y =  ln a

 y = y ln a

= a x ln a

CS Helms (CMI)   Christian Math   JUL 2012 50 / 58

Corollary for (a x)

Page 51: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 51/59

Corollary

(ln a x) = ln a   (a >  0)   (46)

Proof.

(ln a x)

= ( x ln a)

= ln a

CS Helms (CMI)   Christian Math   JUL 2012 51 / 58

Working Example

Page 52: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 52/59

We can use these theorems to differentiate tough functions like this:

Example

 y = x x ( x > 0)

ln y = ln x x

ln y = x ln x

 y / y = ln x + x/ x

 y = y(ln x + 1)

 y = x x(ln x + 1)

CS Helms (CMI)   Christian Math   JUL 2012 52 / 58

Implicit Differentiation

Page 53: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 53/59

If y is difficult to isolate, you can use implicit differentiation

to calculate the equation’s derivative.

You will assume that y contains an embedded x and utilize

the sum rule to obtain the derivative.

Example

Find y , given x2 y3 = 0

ay3 + bx2 = 0   let a =  x2,  b =  y3.

3ay2 y + 2bx =  0

 y = −  2bx3ay2   = −  2 xy

2

3 x2 y3

 y = −  2

3 xy

CS Helms (CMI)   Christian Math   JUL 2012 53 / 58

u Substitution

Page 54: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 54/59

Process Steps

1 u substitution enables differentiation of complex functions.2 Replace the inner function with a dummy letter and use the chain rule.

3 Differentiate the final expression on the RHS.

4 Undo the substitution chain to obtain your final answer.

Formally Stated

 y = f (g( x))

= f (u)   u = g( x) → du = g

( x) dxdy = f   (u) du

= f   (g( x)) g ( x) dx

CS Helms (CMI)   Christian Math   JUL 2012 54 / 58

u Substitution

Page 55: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 55/59

Example

Given y =  cos3 e x2

, find y .

 y =  cos3 eu u = x2 → du = 2 x dx

= cos3 v v = eu

→dv =  eu du

= w3

w = cos v → dw = − sin v dvdy =  3w2 dw

= −3sin2 v dv

= −3sin2 eu du

= −3sin2 e x2

2 x dx

 y = −6 x sin2 e x2

CS Helms (CMI)   Christian Math   JUL 2012 55 / 58

Definite Integrals for Continuous Functions

Page 56: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 56/59

Theorem

The Existence of Definite Integrals 

All continuous functions are integrable. That is, if a function  f  is continuous on an interval  [a, b ], then its definite integral over  [a, b ] exists.

As long as  f  has no “gaps” or “jumps” on [a, b ], a definite intergral exists.

CS Helms (CMI)   Christian Math   JUL 2012 56 / 58

Definitions

Page 57: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 57/59

Infinitesimal Riemann SumWhen f  is continuous on [a, b ],

ba

 f ( x) ε ≡  f (a) +  f (a + ε) +  f (a + 2ε) · · · + f (b − ε) +  f (b)

ε.   (47)

Definite Integral

When f  is continuous on [a, b ],

 ba

 f ( x) dx ≡ba

 f ( x) ε.   (48)

CS Helms (CMI)   Christian Math   JUL 2012 57 / 58

Infinitesimal Riemann Sums Rules

Page 58: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 58/59

 a

a

 f ( x) dx = 0   Zeroing  a

b

 f ( x) dx   = −  b

a

 f ( x) dx   Negation  c

a

 f ( x) dx =  b

a

 f ( x) dx +

(49)

CS Helms (CMI)   Christian Math   JUL 2012 58 / 58

Infinitesimal Riemann Sums Rules

Page 59: Calculus With Nilsquares

7/17/2019 Calculus With Nilsquares

http://slidepdf.com/reader/full/calculus-with-nilsquares 59/59

Squeeze Rule

(b − a) · min

[a,b] f ( x)

≤ b

a

 f ( x) dx ≤

max[a,b]

 f ( x) · (b − a)

  (50)

Average Valueave( f ) =

  1

b − a

 ba

 f ( x) dx   (51)

Domination

 f ( x)≥

g( x) on  [a, b ]   =⇒  b

a

 f ( x) dx

≥  b

a

g( x) dx   (52)

CS Helms (CMI)   Christian Math   JUL 2012 59 / 58


Recommended