+ All Categories
Home > Documents > Calibration of Stochastic Volatility Models using Particle - KTH

Calibration of Stochastic Volatility Models using Particle - KTH

Date post: 09-Feb-2022
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
29
INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results Calibration of Stochastic Volatility Models using Particle Markov Chain Monte Carlo Methods Jonas Hallgren 1 1 Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden BFS 2012 June 21, 2012 Sydney, Australia 1 / 29
Transcript

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

Calibration of Stochastic Volatility Modelsusing Particle Markov Chain Monte Carlo

Methods

Jonas Hallgren1

1Department of MathematicsKTH Royal Institute of Technology

Stockholm, Sweden

BFS 2012June 21, 2012

Sydney, Australia

1 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

TABLE OF CONTENTSINTRODUCTION

Financial Times SeriesModel Proposal

PARAMETER ESTIMATION

Bayesian InferenceParameter Simulation

Sequential Monte Carlo MethodsFilters and SmoothersMonte Carlo IntegrationSequential Importance Sampling

Particle MCMCParticle Marginal Metropolis HastingsUnbiased Parallel Metropolis Hastings

Simulations and ResultsEstimationsPrediction

2 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

LOGRETURNS

−4 −2 0 2 40

50

100

150

200

250Histogram of 40 years S&P 500 logreturn

1980 2000−4

−2

0

2

4logreturns

year

−3 −2 −1 0 1 2 3

0.0010.003

0.010.020.050.100.25

0.50

0.750.900.950.980.99

0.9970.999

Data

Pro

babili

ty

Normal Probability Plot

Yk = log(

Sk

Sk−1

)3 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

MODEL PROPOSAL

Yk = βe12 Xkuk, (1)

Xk = αXk−1 + σwk, (2)(uk,wk) ∼ N (0,Σ), (3)

Σ =[

1 ρρ 1

](4)

4 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

BAYESIAN INFERENCE

Bayesian inference, view the parameter as a random variableObservation:

Y | θ∗ = θ ∼ p(y | θ∗ = θ), θ∗ ∼ p(θ) (5)

Parameter posterior distribution:

p(θ | y) =p(y | θ)p(θ)∫

Θ p(y | θ′)p(dθ′)∝ p(y | θ)p(θ) (6)

Example:

p(β | α, σ, ρ, x0:n, y0:n) ∝ p(β, α, σ, ρ, x0:n, y0:n) (7)

5 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

POSTERIOR FOR β

p(β|α, σ, ρ, x0:n, y0:n) ∝ p(β, α, σ, ρ, x0:n, y0:n) (8)= p(x0:n, y0:n|β, α, ρ, σ)p(β)p(α, ρ, σ) (9)∝ p(x0:n, y0:n|β, α, ρ, σ)p(β) (10)= p(xn, yn|β, α, ρ, σ, x0:n−1, y0:n−1) (11)× p(x0:n−1, y0:n−1|β, α, ρ, σ)p(β)

= p(β)p(y0, x0|β, α, ρ, σ) (12)

×n∏

k=1

p(xk, yk|β, α, ρ, σ, xk−1)

6 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

POSTERIOR FOR β

p(x, y) =1

|β|σ2π√

1− ρ2(13)

× exp(−

[( y

βe12 x

)2+(x−αxk−1

σ

)2 − 2ρ y(x−αxk−1)

σβe12 x

]2(1− ρ2)

− 12

x)

7 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

PRIOR SELECTION

p(β) =1β2 (14)

p(α) = (α+ 1)δ−1(1− α)γ−1 (15)

p(ρ) =12

(16)

p(σ) =1

σ2σ2(t/2−1)e−

12σ2 S̃0 (17)

Example:

p(β | α, σ, ρ, x0:n, y0:n) ∝ p(x0:n, y0:n | α, β, ρ, σ)p(β) (18)

8 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

IDEA

I Simulate the parameters from the posterior distributions!

9 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

THE GIBBS SAMPLER 1

1. For the first iteration choose ξ(0) = {x(0)0:n, θ

(0)} arbitrarily2. For k = 1, 2, . . . ,N, draw random samples

2.1 x(k)0:n ∼ pX(· | θ(k−1), y0:n)

2.2 θ(k)1 ∼ pX(· | x(k)

0:n, θ(k−1), y0:n)

...θ(k)D ∼ pX(· | x(k)

0:n, θ(k)1 , θ

(k)2 , . . . , θ

(k−1)D , y0:n)

Now as N tend to infinity, the sequence {ξ(k)}Nk=0 will have pX

as its stationary distribution.New problem: How do we sample θ and x?

1Geman (1984)10 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

METROPOLIS-HASTINGS SAMPLER 2

Choose θ0 arbitrarily, then for k = 1, . . . ,N1. Sample θ∗ ∼ q(· | θ(k))

2. With probability

1 ∧ p(θ∗)q(θ(k) | θ∗)p(θ(k))q(θ∗ | θ(k))

(19)

set θ(k+1) = θ∗, otherwise set θ(k+1) = θ(k)

2Metropolis et. al. (1953), Hastings (1970)11 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

SEQUENTIAL MONTE CARLO (PARTICLE FILTER)

φk , p(xk | y0:k) (20)

Propose

φk+1(ξ̃) =

∫lk(ξ, ξ̃)φk(ξ) dξ∫

φk(ξ)∫

lk(ξ, ξ̃) dξ̃ dξ(21)

12 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

OUR MODEL

In our setting:

φk+1 = p(xk+1, y0:k+1)/p(y0:k+1) (22)

∝∫

p(yk+1 | xk+1, xk, y0:k) (23)

× p(xk+1 | xk, y0:k)p(xk, y0:k) dxk

=

∫p(yk+1 | xk:k+1)p(xk+1 | xk)p(xk | y0:k)p(y0:k) dxk (24)

=

∫p(yk+1 | xk:k+1)p(xk+1 | xk)φkp(y0:k) dxk (25)

=

∫G(yk+1 | xk:k+1)Q(xk+1 | xk)φkp(y0:k) dxk (26)

13 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

SUMMARIZED

Filter:

φk+1 =

∫G(yk+1 | xk:k+1)Q(xk+1 | xk)φk dxk∫ ∫

G(yk+1 | xk:k+1)Q(xk+1 | xk)φk dxk dxk+1(27)

Smoother:

φ0:k+1|k+1 = p(x0:k+1 | y0:k+1) (28)

=

∫G(yk+1 | xk:k+1)Q(xk+1 | xk)φ0:k|k dx0:k∫ ∫

G(yk+1 | xk:k+1)Q(xk+1 | xk)φ0:k|k dx0:k dx0:k+1

14 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

MONTE CARLO INTEGRATION

We want to evaluate:

µ(f ) =

∫f (x)

dµdν

(x) ν(dx) (29)

We use the estimate:

N−1N∑

j=1

f (ξj)dµdν

(ξj)a.s.−−−−→

N→∞µ(f ) (30)

15 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

SEQUENTIAL IMPORTANCE SAMPLING

1. Sampling: for k = 0, 1, . . .Draw ξ̃1

k+1, . . . , ξ̃Nk+1 | ξ̃

10:k, . . . , ξ̃

N0:k

1.1 Compute the importance weights

ωjk+1 = ω

jkgk+1(ξ̃

jk+1) (31)

2. Resampling: Draw N particles from the N-sizedpopulation where the probability of selecting particle j is

ωjk+1∑N

s ωsk+1

(32)

3. Update the trajectory: Copy the resampled particlestrajectories and replace the ones we discarded.

16 / 29

EXAMPLE

0 50 100 150 200−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k

Xk

True X

Particle trajectories

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

RECAP

I Object: Model the priceI Need parameters

I Need X trajectories

Which we now have!

Yk = βe12 Xkuk, (33)

Xk = αXk−1 + σwk, (34)(uk,wk) ∼ N (0,Σ), (35)

Σ =[

1 ρρ 1

](36)

18 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

THE GIBBS SAMPLER

1. For the first iteration choose ξ(0) = {x(0)0:n, θ

(0)} arbitrarily2. For k = 1, 2, . . . ,N, draw random samples

2.1 x(k)0:n ∼ pX(· | θ(k−1), y0:n)

2.2 θ(k)1 ∼ pX(· | x(k)

0:n, θ(k−1), y0:n)

...θ(k)D ∼ pX(· | x(k)

0:n, θ(k)1 , θ

(k)2 , . . . , θ

(k−1)D , y0:n)

Now as N tend to infinity, the sequence {ξ(k)}Nk=0 will have pX

as its stationary distribution

19 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

INTRODUCTION

Financial Times SeriesModel Proposal

PARAMETER ESTIMATION

Bayesian InferenceParameter Simulation

Sequential Monte Carlo MethodsFilters and SmoothersMonte Carlo IntegrationSequential Importance Sampling

Particle MCMCParticle Marginal Metropolis HastingsUnbiased Parallel Metropolis Hastings

Simulations and ResultsEstimationsPrediction

20 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

METROPOLIS-HASTINGS SAMPLER 2

Choose θ0 arbitrarily, then for k = 1, . . . ,N1. Sample θ∗ ∼ q(· | θ(k))

2. With probability

1 ∧ p(θ∗)q(θ(k) | θ∗)p(θ(k))q(θ∗ | θ(k))

(19)

set θ(k+1) = θ∗, otherwise set θ(k+1) = θ(k)

2Metropolis et. al. (1953), Hastings (1970)21 / 29

PARTICLE MARGINAL METROPOLIS HASTINGS 3

1. Initialization, k = 0

1.1 Set θ0 arbitrarily1.2 Run an SMC algorithm targeting pθ(0)(x1:T|y1:T), sample our

first trajectory of particles ξ̃(0)1:T ∼ p̂θ(0)(·|y1:T) and denote the

marginal likelihood by p̂θ0

2. For iteration k ≥ 12.1 Sample θ∗ ∼ q(· | θk−1)2.2 Run an SMC algorithm targeting pθ∗(x1:T | y1:T), sample the

trajectory of particles as in 1.22.3 With probability

1 ∧ p̂θ∗(y1:T)p(θ∗)q(θk−1 | θ∗)

p̂θk−1(y1:T)p(θk−1)q(θ∗ | θk−1)(37)

put θk = θ∗, ξ(k)1:T = ξ∗1:T, and pθk (y1:T) = pθ∗

3Andrieu et. al. (2010)

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

UNBIASED PARALLEL METROPOLIS HASTINGS

Choose θm0 arbitrarily, then for k = 1, . . . ,N

1. For each of the C cores (where θ(k) = θmk ):

1.1 Sample θ∗ ∼ q(· | θ(k))1.2 With probability

1 ∧ p(θ∗)q(θ(k) | θ∗)

p(θ(k))q(θ∗ | θ(k))(38)

set θ(k+1) = θ∗, otherwise set θ(k+1) = θ(k)

2. Iterate through the C cores, take the first accepted sampleand put θm

k+γ equal to it. Put θmk:k+γ−1 = θm

k . Throw away allsamples after that. If no sample is accepted, θm

k:C = θmk

23 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

UNBIASED PARALLEL METROPOLIS HASTINGS

I Roughly (Acceptance rate)−1 times faster as numbers ofcores grow large

I Easy to implement

24 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

MODEL PROPOSAL

Yk = βe12 Xkuk, (1)

Xk = αXk−1 + σwk, (2)(uk,wk) ∼ N (0,Σ), (3)

Σ =[

1 ρρ 1

](4)

25 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

ESTIMATES FOR GBP/USD DATA

0.8 0.85 0.9 0.95 10

20

40

60

α0.005 0.01 0.0150

20

40

60

80

β

−0.5 0 0.5 10

20

40

60

80

ρ0.1 0.2 0.3 0.4 0.50

20

40

60

σ

26 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

SIMULATION OF S&P500

0 10 20 30 40 50 60 70 80 90 100−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Simulated

Real

27 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

PREDICTION

Dataset Model RMSE (10−3)

GBP/USD SVOL 11.706GBP/USD SVOLρ=0 11.714BIDU SVOL 20.188BIDU SVOLρ=0 20.232S&P500 SVOL 252.94S&P500 SVOLρ=0 252.93XBC/USD SVOL 5.5762XBC/USD SVOLρ=0 5.5920

28 / 29

INTRODUCTION PARAMETER ESTIMATION Sequential Monte Carlo Methods Particle MCMC Simulations and Results

Any remark, question or suggestion is welcomed!

[email protected]://www.math.kth.se/∼jhallg/

29 / 29


Recommended