+ All Categories
Home > Documents > Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by...

Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by...

Date post: 13-Dec-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
16
American Mineralogist, Volume 68, pages 398413, 1983 Calorimetric investigationof the excess entropy of mixing in analbite-sanidine solid solutions:lack of evidence for Na,K short-rangeorder and implications for two-fbldsparthermometry H. T. HesBr-roN. Jn. U.S Geological Survey, 959 National Center Reston, Virginia 22092 Guv L. Hovrs Department of Geology, Lafayette College Easton, Pennsylvania 18042 BnucB S. HprrlrNcwAy AND Rrcnano A. RouB U.S. Geological Survey, 959 National Center Reston, Virginia 22092 Abstract Heat capacities (5-380 K) have been measured by adiabatic calorimetry for five highly disorderedalkali feldspars(AbeeOr1, Ab65Or15, Ab55Ora5, Ab25Ory5, and AblOree).Positive heat capacity deviations from a linear combination of the end-memberheat capacities, which are present mostly at very low temperatures, result in an excess entropy for intermediate compositions. The excess entropy at 298.15 K is well described by the symmetric expression Sids : Xebxo,(10.3-+0.3 J/mol.K). For practical calculations, the entropy and enthalpy of mixing can be regardedas temperature-independent above room temperature. The excessentropy and volume of mixing have been combined with solvus determina- tions to obtain a calculatedenthalpy of mixing. Because the measured enthalpies of mixing are essentially coincident with those calculatedfrom the solvus determinations,no short- range order for the alkali site could be inferred. The new data for the alkali feldspars have been combinedwith recent data for plagioclase feldspars to derive an expressionfor the two-feldspar thermometerthat is consistentwith present knowledge of the thermodynamicsof these solid solutions. ,* _ (xdff(lssto + tzoro xA[ + 0.364p -_(x:h2e8230 - 3ssz0 x1b) 10.3 (x6FF + 8.31431n {rxftl'q- xltl i t xf,'b ) where the mole fractions refer to the ternary system and P is in bars. Temperatures calculated from this expression tend to be higher than those calculated from previous formulations. Introduction necessityfor such terms has been demonstratedconclu- sively, through calculations based on phase-equilibrium, Inmostdiscussionsof themixingpropertiesof minera- data for pyrope-grossular garnets(Hensen et al., 195\ logic solid solutions, the heat capacity is implicitly as- and for alkali feldspar (e.g., Thompson and Waldbaum, sumedto vary linearly with composition. As a result, the 1968; Thompson and Hovis, 1979). mixing properties at constant pressureare defined entire- Haselton and Westrum (1979) showed that the heat Iy by entropy and enthalpy terms that are temperature capacitiesof pyrope-grossular garnets are nonlinear with independent. For many solutions ofgeologic interest, the respect to composition at temperaturesbelow about 120 inclusion of temperature-dependent terms is not required K. Theseheat-capacity deviationsfrom a linear combina- for the representation of available data; however, the tion of the end-member heat capacities result in an excess 0003-004v83/0304-0398$02.00 39E
Transcript
Page 1: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

American Mineralogist, Volume 68, pages 398413, 1983

Calorimetric investigation of the excess entropy of mixing inanalbite-sanidine solid solutions: lack of evidence for Na,K

short-range order and implications for two-fbldspar thermometry

H. T. HesBr-roN. Jn.

U.S Geological Survey, 959 National CenterReston, Virginia 22092

Guv L. Hovrs

Department of Geology, Lafayette CollegeEaston, Pennsylvania 18042

BnucB S. HprrlrNcwAy AND Rrcnano A. RouB

U.S. Geological Survey, 959 National CenterReston, Virginia 22092

Abstract

Heat capacities (5-380 K) have been measured by adiabatic calorimetry for five highlydisordered alkali feldspars (AbeeOr1, Ab65Or15, Ab55Ora5, Ab25Ory5, and AblOree). Positiveheat capacity deviations from a linear combination of the end-member heat capacities,which are present mostly at very low temperatures, result in an excess entropy forintermediate compositions. The excess entropy at 298.15 K is well described by thesymmetric expression Sids : Xebxo,(10.3-+0.3 J/mol.K). For practical calculations, theentropy and enthalpy of mixing can be regarded as temperature-independent above roomtemperature.

The excess entropy and volume of mixing have been combined with solvus determina-tions to obtain a calculated enthalpy of mixing. Because the measured enthalpies of mixingare essentially coincident with those calculated from the solvus determinations, no short-range order for the alkali site could be inferred.

The new data for the alkali feldspars have been combined with recent data for plagioclasefeldspars to derive an expression for the two-feldspar thermometer that is consistent withpresent knowledge of the thermodynamics of these solid solutions.

,* _ (xdff(lssto + tzoro xA[ + 0.364p -_(x:h2e8230 - 3ssz0 x1b)

10.3 (x6FF + 8.31431n {rxftl'q- xltl

it xf,'b )

where the mole fractions refer to the ternary system and P is in bars. Temperaturescalculated from this expression tend to be higher than those calculated from previousformulations.

Introduction necessity for such terms has been demonstrated conclu-sively, through calculations based on phase-equilibrium,

Inmostdiscussionsof themixingpropertiesof minera- data for pyrope-grossular garnets (Hensen et al., 195\logic solid solutions, the heat capacity is implicitly as- and for alkali feldspar (e.g., Thompson and Waldbaum,sumed to vary linearly with composition. As a result, the 1968; Thompson and Hovis, 1979).mixing properties at constant pressure are defined entire- Haselton and Westrum (1979) showed that the heatIy by entropy and enthalpy terms that are temperature capacities of pyrope-grossular garnets are nonlinear withindependent. For many solutions ofgeologic interest, the respect to composition at temperatures below about 120inclusion of temperature-dependent terms is not required K. These heat-capacity deviations from a linear combina-for the representation of available data; however, the tion of the end-member heat capacities result in an excess0003-004v83/0304-0398$02.00 39E

Page 2: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

entropy of mixing. For this garnetjoin, the excess entro-py and enthalpy of mixing can be assumed to be constantat higher temperatures, because there the heat-capacitydeviations are most probably negligible. When volumeterms were added to the temperature-dependent activityexpressions derived from calorimetry, the results of Hen-sen et al. (1975) were easily reproduced in calculations.

Recently, Thompson and Hovis (1979) refined theearlier calculations (Thompson and Waldbaum, 1968) ofexcess entropy parameters for high structural state alkalifeldspars by combining measured enthalpies (Hovis andWaldbaum, 1977) and volumes of mixing (Hovis, 1977)with phase-equilibrium data (Orville, 1963; Iiyama, 1965,1966; Delbove, l97l; and Traetteberg and Flood, 1972).Their calculations indicate that an excess entropy ofmixing, which is greatest for potassic compositions, isnecessary to make the available thermodynamic data self-consistent. The maximum magnitude of the predictedexcess entropy is approximately half of the expectedconfigurational entropy of mixing; clearly, it cannot beneglected in phase-equilibrium calculations.

Thompson and Waldbaum (1969a) noted that, althoughshort-range order (SRO) could be an important source ofdeviations from the ideal configurational entropy of mix-ing, the principal source ofan excess entropy is probablyvibrational. If the vibrational contributions are signifi-cant, as they appear to be in the alkali feldspars, they canbe measured quite readily and precisely by modern low-temperature adiabatic calorimetry. The contributions canbe positive or negative; they are expected, if present,only at low temperatures, because the effects of structureon the heat capacities generally diminish as temperatureincreases.

With regard to SRO in the alkali distribution, Thomp-son and Hovis (1979) noted that this effect could onlydecrease the entropy of mixing because of the non-random configuration. They suggested that short-rangeordering might be identified through phase-equilibriumcalculations once the excess entropy attributable to vibra-tional contributions had been quantified. In practice,however, because of the slope of the function relatingconfigurational entropy to order, the energy efect associ-ated with small amounts of ordering from a disorderedconfiguration will be very difrcult to detect unambig-uously.

The environment of the Na ion in highly disorderedalkali feldspars has features that affect interpretationsrelating heat capacities to structure. In analbite, the AVSifeldspar framework collapses about the alkali site, pro-ducing triclinic symmetry, because the Na ion is appar-ently too small to maintain a more symmetric site. At 35to 40 mole percent KAlSi3O8, the structure becomesmonoclinic (Hovis, 1980; Kroll et al.,1980).In a rigorousthermodynamic description of high structural state alkalifeldspar solid solutions, terms describing the symmetrychange should be included. At present, however, phaseequilibrium data are not sufficiently precise to permit ameaningful quantitative formulation. At very high tem-

399

peratures, topochemically monoclinic albite becomessymmetrically monoclinic (Okamura and Ghose, 1975;Kroll et a/., 1980), but most applications to geologicalproblems and the most useful phase-equilibrium data arefor triclinic albite.

The mode of residence of Na on the alkali site may alsoaffect the entropy. The results of several X-ray diffractionstudies (Ribbe et al., 1969; Prewitt et al., 1976) indicatethat the Na ion in analbite may vibrate about two or morenodes, which are probably determined by the occupancyofthe adjacent tetrahedral sites (Brown and Fenn, 1979).Alternatively, the X-ray data could result from an unex-pectedly large vibrational amplitude about a single node.From structural refinements at a variety of temperatures,Prewitt et al. (1976) have provided good evidence for thespace average, but whether the number of nodes presentis 2 or 4 is still unknown (Brown and Fenn, 1979; Prewittet al., 1976). An X-ray structure refinement of AbazOrss(Fenn and Brown, 1977) provides some evidence for theexistence of multiple nodes for the Na ion in Or-rich (Ab= NaAlSi:Or, Or : KAlSi3Os) solid solutions. Unlike theNa ion, the K ion apparently is centrally located in thealkali site; no indication of multiple nodes has beenfound. Both the change of symmetry and the probableexistence of multiple nodes suggest that the vibrationsrelated to the Na ion may result in unexpectedly largecontributions to the heat capacity at temperatures lessthan 298 K.

A prodigious amount of work has been published on thesolvus relations of high-structural-state alkali feldsparsolid solutions since the initial study by Tuttle and Bowen(195E). Luth (1974) and Parsons (1978) have discussed theattempts by Orville (1963), Luth and Tuttle (1966), Seck(1972), Goldsmith and Newton (1974), Smith and Parsons(1974), and others to locate the binodal solvus directly ata variety of pressures up to 15 kbar. Many determinationsof the distribution coefficients of Na and K between alkalifeldspars and aqueous alkali halide solutions or fusedalkali chlorides are available (Orville, 1963;Iiyama, 1965,1966; Delbove, l97l; Traetteberg and Flood, 1972; La-gache and Weisbrod, 1977; and Merkel and Blencoe,1980). Volumes of mixing for high alkali feldspar, pre-pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have been measured byDonnay and Donnay (1952), Orville (1967), Luth and

Querol-Sufl€ (1970), and Hovis (1977). Hovis and Wald-baum (1977) measured enthalpies of mixing for an alkaliexchange series prepared from AVSi disordered Ameliaalbite. Low-temperature (15-375 K) heat capacities foranalbite and sanidine prepared from Amelia albite havebeen measured (Openshaw et al., 1976). Heat capacitiesfrom 320 to 1000 K have been measured by diferentialscanning calorimetry on the same samples (Hemingwayet al., l98l). The heat capacities ofanalbite and sanidineare the same within analytical error (0.2 percent to 380 K,I percent from 380 to 1000 K) at temperatures above-220K.

X-ray evidence of AVSi ordering is cited in some of the

HASELTON ET AL,: CALORIMETRIC INVESTIGATION OF ANALBITE_SANIDINE

Page 3: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE-SANIDINE

phase equilibrium studies mentioned above. Knowledgeof the mixing properties of low structural state alkalifeldspars is necessary for assessing this additional vari-able. The low feldspar solvus has been located indepen-dently by Bachinski and Miiller (1971) and Delbove (1975)using ion exchange in fused alkali halides and homogeni-zation-unmixing techniques. Enthalpies of mixing weremeasured for a low alkali feldspar series by Waldbaumand Robie (1971). Volumes of mixing have been given byOrville (1967), Waldbaum and Robie (1971), and Hovisand Peckins (1978).

In the present work, low-temperature heat capacities(5-380 K) have been measured for a series of five highstructural state alkali feldspars. The excess entropy aris-ing from excess heat capacities has been quantified andhas been combined with phase-equilibrium data to exam-ine the possibility of short-range order in the alkali site.The evaluation leads to mixing expressions for high alkalifeldspars that, together with recent measurements forplagioclase feldspars (Newton et al., 1980), permit areformulation of the two-feldspar thermometer.

Experimental

Samples

Two of the samples, AbeeOrl and AblOree, are identicalto samples used for low-temperature heat-capacity mea-surements by Openshaw et al. (1976). These sampleswere derived from clear cleavage fragments of low albitefrom the Rutherford Mine, Amelia County, Virginia. Theanalbite was prepared by heating the low albite at 1325 Kfor 755 hours. The sanidine was obtained by ion-exchang-ing a second analbite sample in fused KCI at ll38 K for3l-40 hours. The measurements on these samples wererepeated to improve the internal consistency of thisstudy. Also, Openshaw et al. (1976) had encountereddifrculties at the lowest temperatures with the particularcalorimeter and adiabatic shield combination used fortheir set of measurements.

Table l. Cell parameters of calorimetric samples

o.7

o 7

o 0 7

o 7

o 7

1 4

1 2

1 0' t .286 1_290 1 294

Number in paren theses ls one s tandard dev ia t ion in tems o f the leas ts i g n i f i c a n t f i g u r e .

1 2ge r . 302

c , n m

Fig. L b vs. c cell parameters. The three intermediatecompositions are represented by squares. The parametersmeasured by Openshaw et al. (1976) for analbite and sanidine areindicated by circles. The solid line connects the preferredparameters for disordered analbite and sanidine as chosen byStewart and Wright (1974), the dashed line indicatesapproximately 90% disorder.

The Abs5Or15 was prepared by homogenizing appropri-ate amounts of analbite and sanidine at one atmosphereaccording to methods described by Hovis (1977). Briefly,the mixed powders were pressed into platinum cruciblesand heated in air for approximately 420 hours at 920"C.After low-temperature measurements were completed onthis sample, additional sanidine was added to a portion ofthe Abs5Or15 to yield a bulk composition of Ab55Ora5.Again after homogenization and measurements, Ab25Ory5was prepared similarly from the AbssOras. Because of thelarge quantity of material needed at each composition(-35 g), the feldspar powders were remixed every 2 daysin order to promote chemical homogeneity.

Cell parameters for the three intermediate composi-tions (Table 1) were refined from powder-diffraction databy using the least-squares program LCLSQ (Burnham,1962) as modified by Blasi (1979). The diffraction datawere collected with a powder diffractometer at a scanspeed of 0.25o 20 min- I with CuKa radiation. Silicon of a: 0.543054 nm (Parrish, 1960) was used as an internalstandard. Also listed are the cell parameters for analbite(7001) and sanidine (71105-71108) as determined by Open-shaw et al. (1976). The four sets of parameters that werepresented for sanidine by Openshaw et al. have beenaveraged, and the standard deviations listed for sanidinereflect this averaging. The cell parameters are in goodagreement with previous determinations (e.9., Hovis,1977). Nl these samples are highly disordered in thetetrahedral sites as demonstrated by a plot of & against c.(Figure l). The solid line connects the limiting values forhigh structural state alkali feldspars chosen by Stewartand Wright (1974); the dashed line for t10 * t1m : 0.55indicates approximately 90Vo ltVSi disorder. Despite themultiple homogenizations, the distribution of the ions onthe tetrahedral sites of the solid solutions is essentiallyidentical to the ion distributions in the analbite andsanidine.

Samp'le # 7001 8001X 0 " 0 . 0 1 0 . 1 5

8034 71105-80 . 7 5 0 . 9 9

80080 . 4 5

a (nn ) 0 .8177 (s ) 0 ,8232 (3 )

b ( nn ) 1 .286e (3 ) r . 2s21 (21

c ( n m ) 0 . i l l 2 ( 3 ) 0 . 7 1 3 1 ( 1 )

" (" ) 93.46(3) 92.s5(2)

6 ( " ) 116 .51 (2 ) 116 .36 (2 )

r ( ' ) s0 .26 (4 ) e0 .0e (3 )

v (nm31 0 .66s1 (3 ) 0 .67s7 (z )

0 . 8 3 6 7 ( 1 ) o . 8 4 e e ( 1 ) 0 . 8 6 0 6 ( 1 )

1 . 2 9 9 3 ( 1 ) 1 . 3 0 2 1 ( l ) 1 . 3 0 2 6 ( 3 )

0 . 7 1 6 r ( 1 ) 0 . 7 1 7 0 ( 1 ) 0 . 7 i 8 1 ( r )

90 .00 90 .00 90 .00

1 1 6 . 1 3 ( 1 ) 1 1 6 . 0 0 ( 1 ) r 1 6 . 0 r ( 1 )

90.00 90.00 90.00

0 . 6 e 8 e ( l ) 0 . 7 r 3 2 ( 1 ) 0 , 7 2 3 s ( 3 )

Page 4: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE-SANIDINE

Table 2. Analyses of Abs5Or15, Ab55Ora5, and Ab25Or75*

401

Sanple Analyzed bul.k t{unber ofcompos i t lon** ana lyses

The bulk chemical compositions for the analbite andsanidine, listed by Openshaw et al. (1976, Table l), areAbe6.aOr1.2An6 a and Ab6.6Oree.2Ans.2. Analyses per-formed by N. Suhr of The Pennsylvania State Universityof the intermediate compositions are listed in Table 2. Tocheck the homogeneity of the three intermediate compo-sitions, we analyzed 22 to 27 grains from each sample byelectron microprobe. The analyses (Table 2) indicatesome heterogeneity, and the means deviate from thenominal compositions. These results are not unexpecteddespite the relatively sharp X-ray diffraction peaks. Devi-ations of the means from the stated compositions proba-bly reflect the method by which these samples weresynthesized. When samples are very fine-grained, analy-sis of the rims is diffcult; hence, the analyses are morerepresentative of the core compositions. Additionally, thesanidine starting material is finer grained than is theanalbite from which it was produced. This size reductionresults from the alkali exchange process. Because of thesequence of sample preparation, subsequent samples arericher in potassium, and we would therefore expect thatthe smallest grains and the rims of the larger grains wouldbe potassium-rich relative to the cores of the largergrains. Compositional heterogeneity decreases the ob-served excess heat capacities, but the observed heatcapacities suggest that range of heterogeneity in thesesamples is not an important source of error. For investi-gations in which only a very limited amount of heteroge-neity can be tolerated, sintering of alkali feldspar powdersat I atmosphere may not produce sufficiently homoge-neous samples.

Due to the method of synthesis, the concentrations ofadditional components in the intermediate compositionsshould be similar to the concentrations found in theanalbite and sanidine. Our electron probe analyses showapproximately the same CaAl2Si2Os (An) concentrationas in the end-members. Waldbaum and Robie (1971)obtained emission spectrographic analyses for other ele-ments on another sample of Amelia albite. Their resultsindicate that concentrations of additional elements aretoo small to be a significant source of error.

Calorimetry

The adiabatically shielded, low-temperature calorime-ter and data-aquisition system have been described in

detail (Robie and Hemingway,1972; Robie er al., 1976).This calorimetric system was used for the measurementson analbite, sanidine, and Abs5Orl5 and for some of themeasurements on AbssOra5. Additional measurementswere made on the Ab55Ora5 with the control and data-acquisition system modified for automatic operation.Although no changes were made to the cryostat andcalorimeter, several electronic components were re-placed, therefore, measurements were completed on theAb55Ora5 with both systems before the sample was re-moved from the calorimeter. The two data sets areidentical within the precision of measurement, demon-strating that internal consistency was maintained despitethe changes in the measurement system. After automa-tion, the measurement precision was essentially un-changed at the lowest temperatures but decreased slightlyabove 55 K. All heat capacity data for the Ab25Ory5sample were collected with the automated system.

The sample weights in vacuo were 43.5737 g analbite,29.0809 g sanidine, 33.0201 g Ab35Or15, 32.9870 e

Table 3. Experimental heat capacities for analbite

reDp . " . 1 : : i . ,

r eop . " . ; : : 1 . ,

r e ' p . . . ; : : i . ,

K J / ( D o r . K ) K J / ( o o r . ( ) K J / ( n o l . K )

Standardd e v i a t l o n

Range

Abg5Or15 84 .9

Ab550145 56.0

Ab250r75 26.7

27 90 .8

22 57 .8

25 26.8

3 . 3 9 8 . 1 - 8 2 . 3

8 , 4 8 4 . 5 - 5 0 . 3

2 . 0 3 3 . 5 - 2 4 . 5

* C o n p o s i t i o n s a r € e x p r e s s e d i n t e m s o f t h e m o l e c u l a r D e r c e n t a q e o fl laAl Si rOn.**Analys6s"performed

by N. Suhr of The pennsylvania State uniyersi ty.

S e r l e a I

2 9 9 . 9 0 2 0 5 . 33 0 2 . 5 9 2 0 6 . 53 0 7 . 3 3 2 0 8 . 63 r 3 . r 5 2 1 r . 0

s e r l e a 2

5 . 7 7 0 . O 7 7 45 . 5 3 0 . L 2 0 77 . 3 t 0 . 1 8 3 68 . 2 2 0 . 2 7 4 79 . 2 3 0 , 4 2 9 0

1 0 . 2 8 0 . 6 2 7 61 1 . 3 9 0 . 8 9 8 81 2 . 6 r t . 2 5 51 3 . 9 3 1 . 7 3 8I 5 . 3 3 2 . 3 4 91 6 . 8 4 3 . t O 21 8 . 5 3 4 . 0 8 12 0 . L 4 5 . r 3 52 t , 9 5 6 . 3 9 72 4 . 4 9 4 . 3 4 62 7 . 4 3 r O . 7 7

S e r l e s 3

s e r i e a 4

2 6 . 7 2 1 0 . 1 72 9 . 7 9 1 2 . 8 43 2 . 9 3 1 5 . 7 63 6 . 5 0 1 9 . 2 04 0 . 0 r 2 2 . 6 54 3 . 3 4 2 6 , O 24 6 . 6 7 2 9 . 3 25 0 . 8 9 3 3 . 7 9

S e r l e 6 5

5 8 . 9 1 4 2 . O 36 5 . l 0 4 8 . 0 87 r . 6 1 5 4 . 4 87 7 . 6 7 6 0 . 4 28 3 . 1 8 6 5 . 7 64 4 . 7 5 7 t . o 49 5 , 0 5 7 6 , 8 7

r o l . 5 8 a 2 . 7 6l 0 7 . 7 l 8 8 . 1 41 1 3 . 5 3 9 3 . r 8r r 9 . r 0 9 7 . 8 81 2 3 . 8 6 1 0 1 . 8l 2 8 . O O L O 5 . 2r 3 2 . 6 6 1 0 8 . 9

s e r L e a 7

l 7 0 . l l t 3 6 , 2t 7 5 . 4 3 1 3 9 . 8t 8 0 . 7 2 l 4 3 . 3r 8 6 . 0 8 1 4 6 . 71 9 1 . 5 3 1 5 0 . 2r 9 6 . 9 1 1 5 3 . 52 0 2 . 2 5 t 5 6 . 72 0 7 , 6 9 1 5 9 . 82 t 3 . 2 2 1 6 3 . 02 t 8 . 7 4 1 6 6 , 12 2 4 . 2 3 t 6 9 . 22 2 9 . 6 8 t 7 2 . 1

S e r l e a I

2 3 4 . 5 0 l 7 4 . 72 3 9 . 7 3 L 7 7 . 52 4 4 . 9 9 r 8 0 . 22 5 0 . 3 3 1 8 2 . 92 5 5 . 7 7 1 8 5 . 52 6 t . 2 9 1 8 8 . 22 6 7 , L a r 9 1 . 02 7 3 . 9 r L 9 4 , 22 8 L , 0 4 r 9 7 . 32 8 8 . 2 5 2 0 0 , 62 9 5 . 7 4 2 0 3 . 83 0 3 . 4 4 2 0 6 . 93 1 1 . 0 5 2 1 0 . 0

S e r l e E 9

2 9 6 . 3 4 2 0 4 . O3 0 3 . 6 7 2 0 7 . l3 1 1 . 0 8 2 r 0 . 13 1 8 . 5 8 2 1 3 . 03 2 6 . 0 9 2 L 6 . O3 3 3 , 6 4 2 1 8 . 93 4 1 . 1 6 2 2 r . 63 4 8 . 6 6 2 2 4 . 23 5 6 , 2 3 2 2 6 . 43 6 3 . 7 8 2 2 9 . 33 7 t . 3 2 2 3 1 . 8

5 3 . 2 I 3 6 . 2 4 S e r l . a 65 8 . 7 6 4 t . 8 26 5 . 2 9 4 8 . 1 9 1 3 7 . 8 3 l l 3 . O7 3 . O 4 5 5 . 8 2 L 4 3 . 2 t l l 7 . O

L 4 8 . 6 2 1 2 1 . 11 5 4 . 0 7 r 2 5 . r1 5 9 . 5 2 t 2 8 . 91 6 4 . 9 2 t 3 2 , 7

Page 5: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

402 HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE-SANIDINE

Table 4. Experimental heat capacities for analbite65sanidiner5

r e D P . . " 1 : : i . , r e r p .

K J / ( r o l . K ) K

H e a t - H e a tc a p a c l t y r e D P '

c d p a c l t y

J / ( u o l ' K ) K J / ( n o 1 . R )

but it was not observed in this study. The monoclinicstructure may be quenched at low temperatures or thetransition may have no obvious heat-capacity signature.

Table 5. Experimental heat capacities for analbite55sanidinea5

S e r l e s I

3 0 7 . 2 3 2 0 9 . 53 r 4 . r 7 2 t 2 . 33 2 1 . 1 3 2 r 5 . 1

S e r l e a 2

S e r l € a 7

2 0 8 . 9 8 r 6 1 . 32 1 4 . 8 1 1 6 4 . 72 2 0 . 8 0 1 6 8 . O2 2 6 , 9 5 l 7 l . 32 3 3 . 1 9 t 7 4 . 7

S e r l e s I

2 3 9 . 2 6 t 7 7 . 92 4 5 . r 8 l 8 1 . 02 5 1 , 0 8 1 8 4 . 02 5 7 . O 5 1 8 6 . 92 6 3 . O 4 r 8 9 . 72 6 9 . 0 1 t 9 2 . 6

S € r l e s 9

2 7 5 . 3 4 1 9 5 . 52 8 2 . 3 0 r 9 8 . 72 8 9 , 2 8 2 0 r . 92 9 6 . 3 1 2 0 4 , 93 0 3 . 3 9 2 0 7 . 73 1 0 . 5 4 2 I O . 73 1 7 . 6 7 2 1 3 . 53 2 4 . 7 6 2 t 6 . 43 3 1 . 8 0 2 r 9 . r3 3 9 . 0 r 2 2 L . 73 4 6 , 4 2 2 2 4 . 43 5 3 . 8 6 2 2 7 . O

S e r l e 6 I O

3 6 1 . 3 3 2 2 9 . 53 6 8 . 4 4 2 3 2 . 1

re rp . " . l l l i . ,

reDp.

k J / ( D o l ' ( ) K

B e a tc a p a c l t y r e o P !

J / ( o o 1 . K ) K

5 . 4 7 0 . 0 0 4 25 . 8 1 0 . 0 1 6 2 5 6 . 4 96 . 3 0 0 . 0 4 3 9 6 1 . 7 36 . 9 2 0 . 1 0 7 r 6 6 . 9 47 . 7 3 0 . 1 7 0 5 7 1 . 9 88 . 5 9 0 . 2 9 7 3 7 6 . 7 29 . 3 9 0 . 4 3 8 9 8 1 . 5 4

r o . 2 0 0 . 5 0 4 3 8 6 . 6 11 1 . 1 5 0 . 8 4 8 7 9 1 . 6 51 2 . 1 6 r . 1 5 2 9 6 . 5 91 3 . 3 3 1 . 5 5 9 1 0 1 . 4 8I 4 . 6 6 2 . t 2 4 1 0 6 . 4 31 6 . 1 7 2 . 8 5 0 r l r . 4 0

1 1 6 . 3 8S e r l e s 3 1 2 I . 4 2

t 2 6 . 5 4r 5 . 7 9 2 . 6 5 11 7 . 7 O 3 . 5 8 6 S e r l e s1 9 . 6 2 4 . 9 2 92 1 . 3 1 6 . 1 3 5 1 3 r . 8 72 3 . 2 2 7 . 5 9 9 r 3 7 . 4 62 5 . 6 7 9 . 6 2 2 1 4 3 . t O2 8 . 3 7 l 2 . o l r 4 8 . a 23 r . 3 4 1 4 . 7 9 1 5 4 . s 53 4 . 5 7 1 7 . 9 8 1 6 0 . 2 53 8 . 2 0 2 r . 6 5 1 6 5 . 8 84 2 . 3 r 2 5 . 8 3 t 7 r . 4 44 6 , 8 5 3 0 . 4 5 t 7 7 . O 25 L . 2 2 3 5 , O 2 r 8 2 . 5 45 5 . 9 r 3 9 . 8 9 L 8 7 . 6 7

L 9 2 . 7 7r 9 8 . 1 92 0 3 . 7 0

S e r l e s t

3 0 0 . 7 2 2 0 6 . 33 0 7 . 4 2 2 0 9 . 3

S e r l e a 2

r 0 7 . 6 3 9 0 . 7 6r l l . 4 4 9 1 . 9 91 1 5 . 4 6 9 7 . 3 3r 2 0 . 0 1 1 0 1 . 1

S e r l e s 3

5 r . 8 1 3 8 . 1 45 5 . 7 9 4 r . 9 96 0 . 5 6 4 6 . 9 26 5 . 2 7 5 I . 6 07 0 . 3 E 5 6 . 7 67 5 . 5 7 6 t . 7 28 0 . 7 0 6 6 , 5 34 5 . 5 2 7 r . t 09 0 . 0 8 7 5 . 3 59 4 . 6 2 7 9 . 3 79 9 , 0 9 8 3 , 4 8

r 0 3 . 5 0 8 8 . 1 2

S € r i e 6 4

r o 9 . 9 2 9 2 . 7 1t L A . 2 4 9 6 . 2 2r r 8 . 6 6 9 9 . E 5r 2 2 . A 9 1 0 3 . 4t 2 7 . O O t 0 6 . 7t 3 l . t t r o 9 . 81 3 5 . r 8 r r 3 . 2r 3 9 . 2 3 r t 6 . 0L 4 3 . 2 5 I 1 9 . 31 4 7 . 9 0 r 2 2 . 51 5 3 , 0 2 t 2 6 . 1t 5 7 . 7 9 t 2 9 . 5L 6 2 . 6 6 t 3 2 . 71 6 7 . 8 3 t 3 6 . 2

S e r i e s 5

S e r l e s 7

2 2 0 . 1 6 t 6 7 . 92 2 5 . t 4 r 7 0 . 72 3 0 . 0 8 1 7 3 . 4

S e r l e 6 8

2 2 0 . 4 2 1 6 4 . 4? 2 5 . 7 7 L 7 0 . 72 3 0 . 6 9 1 7 3 . 62 3 5 . 6 2 r 7 6 , 12 4 0 . 5 4 t 7 8 . 72 4 5 . 4 4 1 8 1 . 42 5 0 . 3 2 1 8 3 . 82 5 5 . 1 9 r 8 5 . 82 6 0 . O 4 r 8 8 . I2 6 4 . 9 2 I 9 0 . 72 6 9 . 8 3 r 9 2 . 92 1 4 . 7 3 1 9 4 . 62 7 9 . 6 2 1 9 7 . 22 8 4 . 5 0 r 9 9 . 52 8 9 . 3 5 2 0 2 . 12 9 4 . 1 9 2 0 3 . 92 9 9 . O 2 2 0 5 . 73 0 3 . 8 5 2 0 1 . 1t 0 8 . 6 6 2 0 9 . 63 1 3 . 4 5 2 1 1 . 53 1 8 . 2 4 2 I 3 . 83 2 3 , O 2 2 r 5 , 2

S e r I e E 9

1 0 0 . 7 2 2 0 6 . 33 0 7 . 8 2 2 0 9 . 3

S e r l e s l 0

s e r l e B 1 2

5 . 2 5 0 . 0 4 3 65 . 7 2 0 . 0 5 3 56 . L 2 0 . 0 5 1 06 . { 1 0 . 0 9 4 25 . 6 4 0 . 1 2 4 06 . 9 4 0 . 1 2 3 I7 . 2 9 0 . 1 6 5 27 . 7 r 0 . 2 1 6 38 . 3 3 0 . 2 5 4 24 . 9 2 0 , 3 4 0 19 . 6 4 0 . 4 8 E 2

1 0 . 5 3 0 . 6 E 6 61 1 . 5 8 0 . 9 8 5 5t 2 . 7 8 1 . 3 3 51 4 . 1 5 1 . 8 9 01 5 . 7 0 2 . 6 3 1L 7 . 4 3 3 . 6 3 8L 9 . 3 7 4 . 9 7 |2 r . 5 5 6 . 6 4 92 3 . 9 9 L 7 4 32 6 . 7 2 1 1 . 2 E2 9 . 7 5 1 4 . 3 03 3 . 1 5 t 7 . 7 83 7 . 2 3 2 2 . 2 74 0 . 9 1 2 5 . 2 24 4 . 0 0 2 9 . 5 81 7 . 8 8 3 3 , 4 55 3 , 0 4 3 9 . 1 25 8 . s 7 4 4 . 8 0

s e t l e 6 1 3

3 r 1 . 7 7 2 t O . 73 1 6 . 4 0 2 t 2 , 23 2 1 . 5 6 2 t 4 . 63 2 7 . 1 4 2 1 6 . 63 3 2 . 5 7 2 1 6 . 83 3 7 . 9 9 2 2 0 . 63 4 3 . 4 1 2 2 2 . 93 4 8 . 8 7 2 2 4 . 9

s e r l e 6 1 4

3 3 7 . 3 9 2 2 0 . 73 4 3 . 3 6 2 2 3 . O

S e r l e B

5 7 , 9 16 t , 4 66 5 . 7 L7 0 . 1 4

S e r l e a

4 2 . O L4 5 . 5 64 9 . 7 65 4 . r 1

)4 0 . 5 84 5 . 8 35 0 . 9 75 5 , 9 46 0 . 6 06 5 . 2 77 0 , 1 37 4 . 8 07 9 . 3 08 3 . 5 58 8 . O 09 2 , 3 09 6 . 5 3

1 0 0 . 71 0 4 . 9

b

1 0 9 . 21 1 3 . 51 r 7 . 8L 2 2 , Lt 2 6 . 21 3 0 , 3t 3 4 , 2r 3 8 . 0t 4 L , 7t 4 5 . 2r 4 8 . 51 5 1 . 71 5 5 . 0r 5 8 , 3

H e a t

c e p e c i t y

J / ( n o l . K )

r r 9 . 5 41 2 6 . t 91 o 1 . 6 3l l r . 4 41 r 5 . 4 61 2 0 . 0 t

r 0 0 . 6t 0 5 . 0

9 0 , 7 6

9 7 . 3 3l 0 r . lAb55Ora5, and 30.3261 g Ab25O95. Approximately 4 x 10-5

moles of dry He gas were added after evacuating thecalorimeter to aid thermal equilibration. At temperaturesgreater than 10 K, the fraction of the total heat capacityattributable to the sample was between 40Vo and 60Vo.The formula weights of 262.225 g/mol for NaAlSi3O3 and278-333 g/mol for KAlSi3Os are based on the 1975 valuesfor the atomic weights (Commission on Atomic Weights,1976). Temperatures are referred to the InternationalPractical Temperature Scale of 1968 Gprs-68).

Results

The heat-capacity measurements for the five alkali-feldspar compositions are listed in chronological order inTables 3-7. These measurements have been corrected forcurvature but not for the compositional deviation fromthe alkali feldspar binary caused by the small amount ofAn component. No anomalous heat capacity behaviorwas observed for any of the samples. The temperature ofthe monoclinic-to-triclinic transition for topochemicallymonoclinic alkali feldspars decreases with increasing Orcontent. The transition is projected to occur at approxi-mately 200 K in the Ab55Ora5 sample (Kroll er al., 1980),

S e r l € 6 I I7 9 . 2 0 6 5 , 2 48 3 . 4 9 6 9 . 4 0 5 . 6 78 7 . 6 1 7 2 . 9 8 6 . 2 19 t . 7 2 7 6 . 9 6 6 . 9 49 6 . 8 2 8 1 . 5 1 7 . 7 2

l o 2 . 0 6 E 5 . 9 3 8 . 5 01 0 7 . 7 4 9 0 , 9 6 9 . 5 01 I 3 . 4 0 9 5 , 6 5 r 0 . 6 31 1 9 . 0 3 r 0 0 , 3 r r . 7 9r 2 4 . 6 3 r O 4 . 6 1 3 . 1 01 3 0 . 1 8 1 0 9 . O 1 4 . 5 11 3 5 . 6 9 1 1 3 . 6 t 6 . 1 91 4 1 . 1 7 t 1 7 . 1 L 7 . 9 9t 4 6 . 6 2 L z L . 7 t 9 . 9 51 5 2 . O 4 r 2 5 . 7 2 2 . O 5t 5 7 . 4 3 r 2 9 , 5 2 4 . 3 2t 6 2 . 7 9 1 3 3 . 0 2 6 . 8 5r 6 E . 1 2 r 3 6 . 4 2 9 . 6 91 7 3 , 4 2 r 3 9 . 9 3 2 . 4 61 7 8 . 6 9 1 4 3 , 3 3 6 . 4 31 8 3 . 9 5 1 4 6 . 5 4 0 , 4 3

4 4 . 8 1s e r l e s 6 1 9 . 6 3

1 6 9 . 5 1 r 5 0 . 3t 9 4 , 6 7 I 5 3 . 6t 9 9 . 7 1 1 5 6 . 52 0 4 . A 5 r 5 9 . 32 0 9 . 9 9 1 6 2 . 22 r 5 . 1 2 r 6 5 . l

0 . 0 4 8 00 . 0 6 6 3 s e r l e . 1 5o . 1 2 2 00 . 2 0 0 1 1 9 . 7 8 6 5 . 6 30 . 3 0 2 9 A 4 . 5 9 1 0 . 2 7o . 4 3 2 4 E 9 . 4 0 7 4 . 7 20 . 7 0 4 1 9 4 . 3 5 7 9 . r 91 , O 2 2L . 4 7 2 S e r l € 6 l 62 . O 4 92 . 9 0 5 1 4 5 . 6 3 1 2 0 . 93 . 9 9 5 1 5 1 . 6 5 1 2 5 . 25 . 4 0 87 , 0 6 5 s e r l e s l 79 . 0 4 5

r r . 4 r 2 t 6 . 2 4 1 5 5 , 71 4 , 2 3 2 2 2 . 2 r 1 6 9 . 0l 7 , 5 6 2 2 a . 2 0 1 7 2 . 32 1 , 4 I 2 3 4 . 2 2 1 7 5 . 52 5 . 7 13 0 . 3 E s e r l e e 1 83 5 . 5 0

2 6 3 . O 9 L E 9 , 72 6 9 . L r 1 9 2 . 72 7 5 . L 5 t 9 5 . 22 E l . l 5 1 9 8 . 0

s e r l e a 1 9

3 4 7 . 6 5 2 2 4 . 53 5 4 . 7 2 2 2 6 . 93 6 I . 7 5 2 2 9 . 4J 6 8 . 7 6 2 3 1 . 53 7 s . 7 3 2 3 7 . 9

Page 6: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE-SANIDINE

Table 6. Experimental heat capacities for analbite25sanidineT5

403

re 'p ' . " l i l i . , te .p ' " .1 : : i . ,

renp. " " f i l i . ,

K J / ( n o r ' K ) R J / ( o o l . K ) K J / ( u o l . K )

framework. If this linkage is energetically unfavorable,AVSi short-range order may reduce this assumed configu-rational contribution to the zero-point entropy. The idealzero point entropy attributable to the alkali ions is-R(Xa6lnXa6 * X6.lnXe.) where X66 and X6, are themole fractions of NaAlSi3Os and KAlSi3O8.

Calculations based on phase-equilibrium studies of thereaction albite = jadeite + quartz (Holland, 1980; andHemingway et al., l98l) indicate no evidence that exis-tence of multiple nodes for the Na ion requires theinclusion of still another zero-point configurational entro-py term. By extension, configurational entropy contribu-tions associated with Na nodes in high alkali-feldsparsolid solutions (Fenn and Brown, 1977) are not expected.Further, the activation energy for the movement of theNa ion between nodes on a given alkali site must berelatively small. If the activation energy is small, thisdisordering would result in a measurable heat capacity.Either the heat capacity due to the disordering of alkaliions on the nodes is spread over a large temperaturerange, or the occupation of a specific node must be

Table 7. Experimental heat capacities for sanidine

rcDp . " " f i l i . ,

r e rp .

K J / ( D o l . K ) K

S e r l e s I

5 . 9 5 0 . 0 9 7 66 . 1 0 0 . 1 l o l6 . 3 5 0 . 1 0 5 36 . 9 3 0 . r 4 7 47 , 3 4 0 , 1 6 0 37 . 8 7 0 . 1 9 3 6E . 4 9 0 , 2 5 2 59 , t 7 0 . 3 4 0 6

1 o . 0 0 0 . 4 7 9 6r r . 0 0 0 . 6 9 8 61 3 . 3 8 r . 3 9 6L 4 . 8 2 1 . 9 8 4t 6 . 4 2 2 . 7 7 11 8 . 2 1 3 . 8 4 62 0 . 2 2 5 . 2 6 92 2 . 4 7 7 , O 5 72 4 . 9 9 9 . 3 0 92 7 . 8 3 1 2 . 0 63 1 . 0 1 1 5 . 4 03 4 . 5 7 1 9 . 3 53 8 . 5 4 2 4 . L 54 2 . 9 7 2 8 , 9 4

S c r l e a 2

4 6 . 5 6 3 2 , 7 25 1 . 5 9 3 8 . 2 05 5 . 7 9 4 2 . 6 06 0 . 8 9 4 8 . 0 56 7 . 0 1 5 4 . 3 87 3 , 0 0 6 0 . 2 87 9 . O 7 5 5 . 3 48 5 . t r 7 2 . O 79 1 . 0 8 7 7 . 4 69 7 . 0 1 8 2 . 6 A

1 0 2 . 8 5 8 7 . 3 01 0 8 . 6 3 9 2 , 6 71 1 4 . 3 5 9 7 , 4 51 2 0 . 0 2 1 0 2 . 0t 2 5 . 6 5 t O 6 . 7

S e r l e s 2

r 3 r . 2 4 l l l . 4r 3 6 . 7 8 1 1 5 . 71 4 2 . 2 9 1 1 9 . 41 4 7 . 7 7 t 2 3 . 4r 5 3 . 2 r r 2 7 . 41 5 8 . 6 2 1 3 1 . O1 6 4 . 0 1 1 3 4 . 9r 8 0 . 0 2 1 4 5 . 5

S e r l e a 3

r 8 5 . 3 3 1 4 8 . 7r 9 5 . E 7 1 5 5 . O2 0 0 . 8 8 1 5 7 . 12 1 0 , 9 1 t 6 3 . 22 r 5 . 9 0 t 6 6 . 2? 2 0 . 9 3 r 5 9 . 32 2 5 . 9 6 t 7 2 . 22 3 0 . 9 9 1 7 4 . 32 3 6 . 0 1 t 7 7 . L2 4 r , 0 2 1 7 9 . 42 L 6 . O t t a 2 . l2 5 1 . 0 0 1 8 5 . 02 5 5 . 9 7 t 8 7 . 22 6 0 . 9 2 r 8 9 . 42 6 5 . 9 r 1 9 1 . 82 7 0 , 9 t 1 9 3 . 92 7 5 . 9 0 I 9 6 . 02 8 0 . E 8 r 9 8 . 52 4 5 . 8 4 2 0 0 . 02 9 0 . 7 8 2 0 2 . 42 9 5 . 7 2 2 0 4 . 53 0 0 . 6 4 2 0 6 . 93 0 5 . 5 5 2 0 8 . 93 1 0 . 4 5 2 1 0 . 93 l 5 . 3 4 2 L 2 . 53 2 0 . 2 2 2 r 4 . 7

S e r l e a 4

1 2 4 . 5 9 2 1 5 . 8329 .42 2 t7 . 8334 ,23 2 r9 . s3 3 9 , 0 5 2 2 r . 73 4 3 . 9 1 2 2 3 . 33 4 8 . 7 8 2 2 5 . 6158 .52 229 .O3 6 3 . 3 8 2 2 9 . 83 6 4 , 2 2 2 3 t . 73 7 3 . 0 4 2 3 2 . 43 7 7 . 8 5 2 3 4 . 4

S e r i e a 5

t 6 9 . 3 2 1 3 8 . 11 7 4 . 7 0 1 4 r . 91 7 9 . 8 9 1 4 5 . 1r 8 5 . 0 6 1 4 8 . 51 9 0 . 3 3 1 5 1 . 32 0 0 . 8 2 t 5 7 , 62 0 6 . 0 4 1 6 0 , 62 t t . 2 5 t 6 3 . 22 t 6 . 4 4 1 5 6 , I2 2 t . 6 t 1 5 9 . 32 2 6 , 7 7 t 7 2 . 2z t t . 9 3 t 7 4 . 82 3 7 , O 8 L 7 7 . E2 4 2 . 2 2 1 8 0 . 2

S e r l e s 6

3 3 5 . 0 4 2 2 0 . 43 3 9 . 8 r 2 2 t , l3 t 4 . 6 4 2 2 3 . 43 4 9 . 4 9 2 2 5 . 33 5 4 . 3 5 2 2 6 . 93 5 9 . 2 1 2 2 9 . O3 5 4 . 0 6 2 3 0 . 83 6 8 . 9 r 2 3 1 . 83 7 3 , 7 5 2 3 3 . 63 7 8 . 5 6 2 3 5 . 7

I l e a tc a p a c I t y

J / ( o o l ' l ( )

- E e r tI E D D .' c a p a c l E y

x J / ( e o 1 . K )

3 0 0 . 1 0 2 0 6 . o 2 3 3 . 0 33 0 5 . 8 2 2 0 4 . 43 1 2 . 6 6 2 1 1 . 1 S e r l e a3 2 0 . 0 9 2 r 4 . 1

t 7 7 . O 2S e r l e s 2 1 8 2 . 4 4

1 8 7 . 9 1

S e r l e s I

5 1 . 9 0 3 9 . 3 35 6 . t 2 4 3 . 8 86 0 . 6 4 4 8 . 5 06 5 . l 3 5 2 . 9 56 9 . 9 5 5 7 . 6 17 4 . 9 4 6 2 . 5 37 9 . 9 6 6 7 , 3 68 5 . 0 3 7 2 . O 99 0 . 1 o 7 6 , 7 59 5 . 2 r 5 t . 2 7

l o o . 3 l 8 5 . 7 11 0 5 . 3 7 8 9 . 9 81 1 0 . 4 2 9 1 . 2 2r I 5 . 5 0 9 8 . 1 2r 2 0 . 5 0 t o 2 . 6r 2 5 . 7 0 1 0 6 . 6L 2 2 , L 6 t 0 3 . Et 2 7 . 4 4 1 0 8 . 01 3 2 , 9 1 t t 2 . 21 3 8 . 5 4 1 1 6 . 5t 4 4 . 1 2 1 2 0 . 51 4 9 . 6 4 1 2 4 . 51 5 5 . 2 0 r 2 8 . 3

S e r t e a 3

1 6 0 . 7 5 t 3 2 . O1 6 6 . 3 2 I 3 5 . 8t 7 l . 8 5 r 3 9 . 6

4 S e r l e s 9

1 7 5 . 0 3 3 1 . 4 1 2 t 8 . 33 3 8 . 9 5 2 2 t . O

4 3 4 6 , 4 E 2 2 3 . 63 5 4 . 0 3 2 2 6 . 3

t 4 2 . 8f 4 6 . 3 S e r l e s l OL 4 9 . 7

S e r l e s

For the measurements on sanidine, Ab55Ora5, ottdAb25O95, the scatter in the Co data is larger than expect-ed below -12 K. Because of the fine grain size of thesamples other than analbite, the scatter may be related tohelium adsorption. Though the scatter affects the accura-cy ofthe heat-capacity values at the lowest temperatures,the error in S2epSe is <0.01Vo, which is too small toinfluence our conclusions.

The heat-capacity data were extended smoothly to 0 Kbymeansof aplot of ColTvs. T2. Smoothedvaluesof Co,(Sr - So), (H'r - HilT and -(Gr - HdlT at selectedtemperatures are given in Tables 8-12. Their estimatedaccuracy is 0.2Vo. The tabulated entropies do not includezero-point contributions arising from the "frozen-in"disorder of the Al and Si in the tetrahedral sites and thedisorder of Na and K in the alkali site. If a totallydisordered Al,Si tetrahedral distribution is assumed, thenthe zero-point entropy attributable to AVSi disorder is 56= -4R(0.751n0.75 + 0.251n0.25) : 18.70 J/mol'K for eachof the five compositions. We should note that total Al,Sidisorder requires that Al-GAl linkages be present in the

r 9 3 . 4 2 1 5 3 . 01 9 8 . 9 5 1 5 6 . 32 0 5 . 2 t r 5 9 . 92 1 2 . 1 8 1 6 3 . 82 t 9 . 1 2 r 6 t . 62 2 6 . O 7 1 7 1 . 3

S e r l e s 5

2 3 9 . O 8 1 7 E . 22 4 6 . 0 1 1 8 r . 7

s e E l e e 6

2 5 3 . 0 3 1 8 5 . 12 6 0 . 0 5 1 8 8 . 42 6 7 . O s l 9 l . 7

S e r t e a 7

2 7 3 . 9 5 1 9 4 . 82 8 0 . 8 9 1 9 7 . 92 8 7 . E 8 2 0 1 . 02 9 4 . 9 r 2 0 4 . O

S e r l e s I

3 0 1 . 5 6 2 0 6 . 73 0 8 . 9 1 2 0 9 . 63 1 6 . 4 0 2 t 2 . 63 2 3 . a 9 2 r s . 5

3 6 I . 5 1 2 2 a . 83 6 9 . O 0 2 3 t . 23 7 6 . 3 5 2 3 3 . 6

S e r l e a l l

6 . 6 8 0 . O 7 0 E7 . 7 L 0 . 1 5 0 14 . 4 7 0 . 2 2 0 99 . 2 0 0 . 3 3 3 49 . 9 8 0 . 4 4 4 9

1 0 . 8 7 0 . 6 0 3 41 I . 8 9 0 . a o 2 71 3 . 0 0 1 . o 9 81 4 . 2 5 I . 5 2 81 5 . 6 6 2 . r 3 2r 7 . 2 0 2 . 9 5 81 8 . 9 0 4 . O 8 22 0 . 8 3 5 . 5 8 42 2 . 9 4 7 . 4 2 72 5 . 3 1 9 . 6 6 4

S e r l e s l 2

2 7 , 6 3 1 2 . 0 53 0 , 4 4 r 5 . 0 93 3 . 5 5 1 8 . 5 43 7 . 0 6 2 2 . 6 94 1 . 0 0 2 7 . L 84 5 . 4 0 3 2 , O 85 0 . 3 0 7 7 . 4 85 5 , 3 9 4 3 . 0 5

Page 7: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

404 HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE-SANIDINE

t " ;

K E L V I N

Table 8, Smoothed thermodvnamic functions for analbite

T E M P . E E A T E N T R O P Y E N T H A L P I G I B B S E N E R G Y

C A P A C I T Y F U N C T I O N F U N C T I O N

sanidine and analbite are the higher precision of thepresent measurements, especially at very low tempera-tures, and the overall consistency of measurements forthe series of five compositions. When the values arecorrected to end-member composition and the zero-pointentropy of 18.70 J/mol'K is included, S2es: 225.7t0.4 Jlmol'K for analbite and 232.8=0.4 J/mol.K for sanidine.The values of S2es for analbite and sanidine from Open-shaw et al. (1976) are 226.4-+0.4 and 232.9t0.4 J/mol'Krespectively. Our values for the analbite and sanidineentropies do not differ significantly from those of Open-shaw et a/., because the Co deviations of opposite signlargely cancel.

The smoothed heat-capacity deviations of the threeintermediate compositions, Abs5Or15, Ab55Ora5, andAb25Or75, compared with linear combinations of the

Table 9. Smoothed thermodynamic functions foranalbiteessanidiners

<s i -s i r <n i 'u i l r r - rc i -n i l r r

J / ( u o l ' K )

5l 0l 52 02 53 03 5{ 04 55 06 07 08 09 0

l o 0

l l o1 2 01 3 01 4 01 5 01 6 0L 7 0r 8 01 9 02 0 0

2 1 02202302402502602 7 02 8 02903 0 0

5t 01 52 0

3 03 54 04 55 06 07 0E O9 0

l o 0

1 1 01 2 01 3 01 4 0I 5 01 6 01 7 0r 8 0r 9 0200

2 t o2202302 4 02502602 7 02 8 02903 0 0

0 . 0 5 00 . 5 7 92 . r 9 55 . O 4 28 . 7 5 2

r 3 . 0 3L 7 . 7 52 2 . 5 52 7 . 6 53 2 . 8 34 1 . O 75 2 . 8 76 2 . 6 91 2 . 2 18 r . 3 5

9 0 . r 49 8 . 6 3

1 0 6 . 81 1 4 . 5L 2 2 . 1r 2 9 . tt 3 6 , 21 4 2 , 8t 4 9 , 2r 5 5 . 3

L 6 L . 21 6 5 . 8t 7 2 , 3L 7 7 . 6t 4 2 . 71 8 7 . 51 9 2 . 31 9 6 . 92 0 r . 32 0 5 . 4

o . o l 50 . 1 5 90 . 6 5 4| . 6 4 13 . 1 5 75 . t 2 17 . 4 8 3

1 0 . 1 71 3 . 1 31 5 . 3 12 3 . 2 L3 0 . 5 93 E . 2 94 6 . 2 35 4 . 3 r

6 2 . 4 87 0 . 6 97 8 . 9 18 7 . 1 r9 5 . 2 4

1 0 3 . 41 1 1 . 41 1 9 . 4r 2 7 . 31 3 5 . 1

L 1 2 . 41 5 0 . 51 5 8 . 0r 6 5 . 4t 7 2 . 81 8 0 . 1L 8 7 . 21 9 4 . 32 0 1 . 32 0 4 . 2

2 1 5 . 02 2 1 . 12 2 8 . 32 3 4 . 92 4 r . 42 4 7 . 72 5 4 , O2 6 0 . 2

1 8 9 . 52 0 6 . 9

o . o l l0 . 1 2 3o . 5 0 51 . 2 5 92 , 3 7 43 , 7 8 75 . 4 1 17 . 2 A 39 . 2 7 0

1 1 . 3 61 5 . 8 12 0 . 4 02 5 . 0 82 9 . 7 93 4 . 4 9

3 9 . 1 54 3 . 7 64 8 . 2 95 2 . 7 65 7 . 1 35 t . 1 26 5 . 6 r6 9 . 7 27 3 . 7 47 7 . 6 6

8 1 . 5 04 5 . 2 58 8 . 9 29 2 . 5 09 6 . 0 19 9 . 4 4

1 0 2 . 81 0 6 . r1 0 9 . 3L t 2 . 4

1 1 5 . 5r 1 8 . 5l2 l .4t 2 4 . 3t 2 7 . rr 2 9 , 91 3 2 . 61 3 5 . 2

1 0 3 . 8l l l . 8

0 . 0 0 40 . 0 3 60 . 1 4 80 . 3 8 80 . 7 8 31 . 3 3 72 . O 4 22 . 8 8 73 . 8 5 94 . 9 4 37 . 4 0 4

l o . r 81 3 . 2 r1 6 . 4 4L 9 . 4 2

2 3 . 3 32 6 . 9 33 0 . 6 r3 4 . 3 63 8 . r 54 r , 9 74 5 . 8 24 9 . 6 95 3 . 5 65 7 . 4 5

6 r . 3 36 5 . 2 L6 9 . 0 87 2 . 9 47 6 . 7 98 0 . 6 28 4 . 4 48 8 . 2 39 2 . 0 19 5 . 7 7

9 9 . 5 rt o 3 . 21 0 6 . 91 1 0 . 5L L 4 . 21 1 7 . 81 2 r . 41 2 5 . 0

8 5 . 6 39 5 . 0 8

T E U P . H E A TCAPAC I TY

t t P

K E L V I N

E N T H A L P Y G I B B S E N E R G IF U N C T I O N P U N C T I O N

<s i -s i l ru i -x i r r r -<c i -n i r r r

J / ( o o l ' K )

E N T R O P Y

3 1 0 2 0 9 . 73 2 0 2 L 3 . 73 3 0 2 t 7 . 53 4 0 2 2 L . 23 5 0 2 2 4 . 73 6 0 2 2 4 . 03 7 0 2 3 t . 43 8 0 2 3 4 . 7

2 1 3 . t 5 r 9 4 . I2 9 8 . l 5 2 0 4 . 9

0 . 0 3 70 . 5 8 02 . 2 8 35 . 2 0 49 . 0 6 3

1 3 . 5 2t 8 . 4 22 3 . 4 92 8 . 5 63 3 . 7 54 4 . 1 85 4 . 0 05 3 . 7 97 3 . 3 08 2 . 3 5

9 1 . l O9 9 . 5 8

L O 7 . 71 1 5 . 5L 2 2 . 91 3 0 . 11 3 7 . 01 4 3 . 6r 4 9 . 91 5 5 . 1

1 5 1 . 91 6 7 . 51 7 3 . 0r 7 8 . 31 8 3 . 41 8 8 . 3r 9 3 . 0L 9 7 . 62 0 2 . 22 0 6 . 4

o . o l l0 . 1 3 9o . 6 5 2r . 6 7 83 . 2 4 05 . 2 7 97 . 7 2 7

1 0 . 5 21 3 , 5 81 6 . 8 52 3 . 9 33 t . 4 73 9 , 3 34 7 . 3 95 5 . 5 9

6 3 . 8 57 2 . 1 48 0 . 4 38 8 . 7 09 6 . 9 3

r 0 5 . t1 1 3 . 2L z t . 2L 2 9 . 11 3 7 . 0

t 4 4 . 7L 5 2 . 41 6 0 . 01 6 7 . 5t 7 4 . 41 8 2 . 1r 8 9 . 3t 9 6 . 42 0 3 . 42 L O . 4

o . 0 0 60 . 1 1 00 . 5 1 4L . 2 9 42 . 4 4 93 . 9 1 55 . 6 3 47 . 5 4 89 . 6 0 1

t t . 7 6t 6 . 2 92 0 . 9 f2 5 . 7 23 0 . 4 83 5 . 2 2

3 9 . 9 04 4 . 5 24 9 . 0 75 3 . 5 4s 7 . 9 26 2 . 2 16 6 . 4 L7 0 . 5 1' t 4 . 5 37 a . 4 5

8 2 . 2 98 6 . 0 48 9 . 7 09 3 . 2 89 6 . 7 9

1 0 0 . 21 0 3 . 61 0 6 . 81 1 0 . 11 1 3 . 2

0 . 0 0 3o . o 2 90 . 1 3 80 . 3 8 4o . 7 9 LI . 3 5 32 . 0 9 32 . 9 6 93 . 9 7 55 . 0 9 87 . 6 3 8

1 0 . 5 01 3 . 5 11 6 . 9 r2 0 . 3 7

2 3 . 9 52 7 . 6 2

3 5 . 1 63 9 . 0 14 2 . 8 84 6 . 7 A5 0 . 6 95 4 . 6 L5 8 . 5 4

6 2 . 4 66 5 . 3 77 0 . 2 87 4 . t 77 8 . 0 58 1 . 9 18 5 . 7 68 9 . 5 89 3 . 3 99 7 . 1 7

l o o . 91 0 4 . 71 0 8 . 4I I 2 . I1 1 5 . 71 r 9 . 4r 2 3 . 0L 2 6 . 6

8 6 . 9 59 6 . 4 7

coupled to other local features of the structure, as sug-gested by Brown and Fenn (1979).

The heat capacity measurements presented here foranalbite and sanidine differ significantly from those givenpreviously by Openshaw et al. (1976) on the same sam-ples. The accuracy claimed in both the earlier study andthe present one for values above 50 K is 0.2 percent. Thedifferences between the smoothed values of the two datasets for analbite and sanidine have been plotted in Figure2. Unlike the entries in Table 8 and 12, the plotted valueswere corrected to end member compositions. Above 125K, the analbite measurements agree. The deviationsbelow 125 K are disconcerting but not unreasonable inview of the diferences in equipment used in the twostudies. Above 250 K the sanidine measurements ofOpenshaw et aI. (1976) are much lower (0.3-0.6%) thanthe present ones. We are unable to explain the difference.Our principal reasons for preferring the present data for

3 1 0 2 1 0 . 53 2 0 2 1 4 . 63 3 0 2 1 A . 43 4 0 2 2 2 . 13 5 0 2 2 5 . 63 6 0 2 2 9 . 13 7 0 2 3 2 . 53 8 0 2 3 5 . 9

2 7 3 . t 5 1 9 4 . 82 9 8 . r 5 2 0 5 . 9

2 t 7 . 2 1 1 5 , 32 2 4 . O 1 1 9 . 32 3 0 . 6 1 2 2 . 22 3 7 . 2 1 2 5 . 12 4 3 . 7 r 2 7 . 92 5 0 . I 1 3 0 . 72 5 6 . 4 r 3 3 . 42 5 2 . 6 1 3 6 . 0

r 9 1 , 6 1 0 4 . 62 0 9 , L L 1 2 . 6

Page 8: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE-SANIDINE 405

foranalbite and sanidine heat capacities, are shown in Figure3. Any deviation from zero indicates an excess heatcapacity (CT') and contributes to the excess entropy.Because the curves are the heat capacities divided byabsolute temperature, the excess entropy is the integratedarea beneath the curves. It is clear, especially for theAb55Ora5, that the largest contributions to the excessentropy of mixing are at low temperatures. Above 298 K,the deviations are within the experimental precision of0.17o except the curve for Ab65Or15. If (Cplfl* decreasesto zero at temperatures above 298 K, then the enthalpyand entropy of mixing can be regarded as temperatureindependent functions of composition in calculations ofgeologic interest. As discussed below, the assumption ofQ" = O at T > 298 K is quite reasonable. If C$" is notnegligible at high temperatures, then the quantity of heat

Table 10. Smoothed thermodynamic functions foranalbite55sanidinea5

T E M P . H E A T E N T R O P Y E N T H A L P YC A P A C I T T P U N C T I O N

G I B B S E N E R G YF U I { C T I O N

r . ; <s i ' s i l <n i -n i l r r -<c i -n i l l r

Table 11. Smoothed thermodynamic functionsanalbite25sanidineT5

T E U P . E E A T E N T R O P YC A P A C I T Y

t a ;

( E L V I N

<s i -s i I

E N T H A L P Y G I E B S E N B R G YF U N C T I O N P U N C T I O N

rn i -n i l r r - t c i - u i l l r

J / ( o o l ' K )

51 0I 52 02 53 03 54 04 55 06 07 08 09 0

1 0 0

0 . 0 4 5 0 . 0 I 30 . 4 8 5 0 . I 3 02 , 0 6 4 0 . 5 9 55 . l o 3 I . 5 7 09 . 3 1 1 3 . 1 4 3

1 4 . 3 1 5 . 2 7 21 9 . 8 2 7 , 8 8 82 5 . 4 9 1 0 . 9 03 1 . 0 9 t 4 . 2 33 6 . 4 A L 7 . 7 94 7 . O 8 2 5 . 3 85 7 . 3 5 3 3 . 4 16 7 . 2 L 4 L , r 27 6 . 4 9 5 0 . r 88 5 . L 2 5 8 . 6 9

9 3 . 7 2 6 7 . 2 01 0 2 . I 7 5 . 7 21 1 0 . 3 8 4 . 2 21 1 7 . 9 9 2 . 6 71 2 5 . 0 t 0 1 . 01 3 2 . 0 1 0 9 . 3I 3 8 . 8 1 1 7 , 51 4 5 . 3 L 2 5 . 7r 5 1 . 4 1 3 3 . 7L 5 7 . 2 1 4 1 . 6

0 . 0 r 00 . 1 0 10 . 4 6 31 . 2 1 12 . 3 9 43 . 9 5 45 . 8 2 37 . 9 2 5

1 0 . t 91 2 . 5 5r 7 . 4 32 2 . 4 02 7 . 3 93 2 . 3 43 7 . t 9

1 L . 9 44 5 . 6 05 1 . 1 95 5 . 6 86 0 . 0 76 4 . 3 56 8 . 5 31 2 . 6 1l 6 . 5 08 0 . 4 9

8 4 . 2 78 7 . 9 79 1 . 5 99 5 . r 39 8 . 5 9

1 0 2 . 0r 0 5 . 31 0 8 , 5l l r . 71 1 4 . 8

1 1 7 . 8t 2 0 . 7L 2 3 , 61 2 6 . 5L 2 9 . 3r 3 2 . 0r 3 4 . 6r 3 7 . 3

1 0 6 . 3t t 4 . 2

o . o o 30 . 0 2 90 . r 3 30 . 3 5 8o , 7 4 91 . 3 1 82 . 0 6 52 . 9 7 84 , 0 4 r5 , 2 3 61 . 9 5 3

1 1 . 0 1r 4 . 3 3t 7 . 8 42 t , 5 0

2 5 . 2 72 9 , t 23 3 . 0 33 6 . 9 94 0 . 9 84 4 . 9 94 9 , 0 25 3 . 0 55 7 . 0 96 1 . 1 2

5 5 . 1 46 9 . t 47 3 . 1 37 7 , t O8 1 , 0 68 4 . 9 98 8 . 9 09 2 . 7 99 6 . 6 5

1 0 0 . 5

1 0 4 . 31 0 8 . 1t l l . 81 1 5 . 61 r 9 . 31 2 3 . 0L 2 6 . 61 3 0 . 2

9 0 . 1 39 9 . 7 8

K E L V I N

l l o1201 3 0r 4 01 5 01 6 01 7 0r 8 0r 9 02 0 0

2 l o2202302 4 02502602 7 02802903 0 0

3 r o3203 3 03 4 03 5 03 5 03 7 03 8 0

J / ( o o 1 ' K )

1 01 52 02 53 0

4 04 55 06 07 08 09 0

roo

l l o1 2 0r 3 01 4 01 5 0r 6 01 7 01 8 01 9 02 0 0

2 l o220

2402502602 7 02ao2903 0 0

3 1 03203 3 03 4 03 5 03 5 03 7 03 8 0

L 6 2 . 7r 6 8 . 5r 7 3 . 91 7 9 . 1t 8 4 . 21 8 9 , O1 9 3 . 51 9 7 . 92 0 2 . 12 0 6 , 4

2ro .62 1 4 . 42 1 8 . 12 2 1 . 92 2 5 . 62 2 9 . 12 3 2 . 32 3 5 . 6

1 4 9 . 41 5 7 . tL 6 4 . 7L 7 2 . 2t 7 9 . 61 8 7 . 0t 9 4 . 22 0 1 . 32 0 8 . 32 t 5 . 2

2 2 2 . 12 2 8 . 82 3 5 . 52 t 2 . 12 4 8 . 52 5 4 , 92 6 t . 32 6 7 , 5

t 9 5 . 42 L 4 . O

0 . 0 4 50 . 5 6 52 . 2 9 r5 . 4 4 09 . 6 6 9

r 4 . 5 5L 9 . 4 72 5 . 2 53 0 . 5 73 5 . 9 84 6 , 3 35 6 . 3 86 5 , 4 27 5 . 2 E8 4 . O 7

9 2 , 7 9l o l . r1 0 8 . 91 1 6 . 7I 2 3 . 91 3 0 , 6t 3 7 . 71 4 4 . I1 5 0 , 6r 5 6 . 7

1 6 2 . 21 6 7 . 81 7 3 . 31 7 8 . 31 E 3 . 6r 8 8 . I1 9 3 . 01 9 7 , 42 0 2 . 42 0 5 . 0

2 1 0 . 12 t 4 , 42 t 7 , 72 2 7 , 32 2 5 , 22 2 8 . 92 3 L . 92 3 5 . 4

0 , 0 1 50 . 1 4 8o , 6 5 61 . 7 1 13 . 3 6 25 . 5 4 98 . 1 8 8

r 1 , 1 91 4 . 4 Et 7 . 9 62 5 . 4 53 3 . 3 44 1 . 5 04 9 . 8 15 E . 2 1

6 6 . 6 77 5 . l O8 3 . 5 09 1 . 8 6

1 0 0 . 21 0 8 . 41 1 6 . 5L 2 4 . 6t 3 2 . 61 4 0 . 4

t 4 4 . 21 5 5 , 91 6 3 , 51 7 1 . 01 7 8 . 31 8 5 . 6t 9 2 . 8r 9 9 . 92 0 6 . 92 t 3 , 9

2 2 0 . 72 2 7 . 42 3 4 . r2 4 0 . 62 4 7 . 12 5 3 . 52 5 9 . 82 6 5 . O

o . o l 00 . 1 1 40 , 5 r 31 . 3 I 92 . 5 5 14 . 1 3 66 , O O l8 . 0 7 0

l o . 2 81 2 . 5 6r 7 , 3 42 2 . 2 02 7 , O 73 1 , 9 13 6 . 7 0

4 t . 4 44 6 . 0 55 0 . 6 05 5 . 0 55 9 . 4 r5 3 . 6 75 7 . 8 27 r . 8 97 5 . 8 57 9 . 7 5

8 3 . 5 4a 7 . 2 59 0 . 8 79 4 . 4 19 7 . 8 7

l o l . 3l o 4 . 6l o 7 . 8I t l , O1 1 4 . 1

l I 7 . l1 2 0 . 11 2 3 , 0r 2 5 . 81 2 8 . 61 3 r . 41 3 4 . 0r 3 6 . 7

0 . 0 0 50 . 0 3 4o . I 4 40 . 3 9 10 , 8 1 1r . 4 1 22 . L 8 73 . r 2 14 . 1 9 95 . 3 9 9L l l 0

l r . 1 5L 4 , 4 31 7 . 9 02 1 . 5 1

2 5 . 2 32 9 . O 31 2 . 9 03 6 . 8 r4 0 . 7 64 4 . t 34 4 . 7 25 2 . 7 L5 6 . 7 06 0 . 6 9

6 4 . 6 86 8 . 6 57 2 . 6 L7 6 . 5 58 0 . 4 78 4 . 3 88 8 . 2 59 2 . 1 29 5 . 9 69 9 . 7 8

1 0 3 . 61 0 7 . 3l l l . lr 1 4 . 81 1 E . 5t 2 2 . L1 2 5 . At 2 9 . 4

8 9 . 4 89 9 . 0 7

2 7 3 . r 5 t 9 5 . 22 9 8 . 1 5 2 0 5 . 0

capacity data required for phase equilibrium calculationswould increase greatly.

Discussion

Most considerations of nonideality in mineral solu-tions, especially feldspars, have involved quadratic andcubic series expansions whose properties have beendiscussed by Thompson (1967). To date, the data foralkali feldspars do not require more complicated expres-sions. A quadratic polynominal was fitted to the five(SzsrSo) values by least squares. The resulting symmetri-cal representation for the excess entropy of mixing,plotted in Figure 4, is Siia : Xlia Xo, (10.3+0.3 J/mol.K);a higher order fit is unwarranted. The compositionalheterogeneity of our samples (Table 2), which is greatestfor Ab55Ora5, could diminish the observed excess entropyof that sample by about 0.1 J/mol.K. The error would be

2 7 3 . r 5 r 9 4 . 42 9 8 . r 5 2 0 5 . 1

r 9 5 . 1 1 0 5 . 62 L 2 . 6 1 1 3 . 5

Page 9: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

406 HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE-SANIDINE

Table 12. Smoothed thermodynamic functions for sanidine

T E M P . H E A T E N T R O P YC A P A C I T Y

r . ; rs i -s i r

E N I H A L P Y G I B B S B N E R G IP U N C T I O N F U N C T I O N

rn i -n i l t r - t c i - n i l l r

less for the other samples. The calculated excess entro-pies of mixing, deduced by Thompson and Hovis (1979)from the phase-equilibrium work of Orville (1963) andmeasured enthalpies of mixing (Hovis and Waldbaum,1977),have been recalculated to reflect adjustments for asystematic calorimetric measurement error of -l percent(Hovis, 1982) and for new chemical analyses of thefelspars used by Hovis and Waldbaum (1977) (Hovis,unpublished data). The magnitudes of the calculatedentropy of mixing curves using a symmetric representa-tion of the measured enthalpy of mixing data (WH :20.07

kJ/mol) and an asymmetric representation (WXb :

22.95 kJlmol, W8. : 17.71 kJlmol) are somewhat lessthan the measured entropy values. If the excess entropyis symmetric, then the enthalpy of mixing, as calculatedfrom the phase-equilibrium data, must be slightly asym-metric and have a maximum at Ab-rich compositions,rather than at sanidine-rich compositions as indicated by

, a a- ^ t o -

' 5 ; - . . . o . a .

a .

t ,

r o o a a O a a - - a " - -

o o

l o

r o % ' \

o o o

o loo ,"ro"?1ro".". *

3oo 4oo

Fig. 2. Deviat ion plot comparing the smoothed heatcapacit ies of Openshaw et al. (1976) and the presentmeasurements for analbite (O) and sanidine (O). The presentmeasurements are the reference values, and the dashed linesindicate relative deviations of 0.1% and 1.UVo. Where the pointsfor analbite and sanidine overlap, only the analbite points havebeen plotted.

the enthalpy of mixing data of Hovis and Waldbaum(1977) and Hovis (unpublished data).

Short-Range Order (SRO)

If SRO in the alkali site of high alkali feldspars issignificant for practical calculations, its presence shouldbe reflected in the phase-equilibrium studies. The move-ment of alkali ions is relatively fast, unlike ordering of Aland Si in the tetrahedral sites; indeed, the solvus determi-nations depend on a reasonable alkali ion exchange rate.Because the entropy of mixing arising from vibrational

o 50 1oo r"'""1::,,". ^

2oo 25o 3oo

Fig. 3. Excess heat capacit ies divided by absolutetemperature as a function of temperature for the threeintermediate compositions: Ab65Or15 AbssOresand Ab25Oq5 ----.

K E L V I N J / ( D o l ' K )

5l 0l 52 02 53 03 54 04 55 06 07 08 09 0

1 0 0

r l o

1 3 01 4 01 5 0r 6 0L 7 0r 8 01 9 0200

0 . 0 3 9o . 4 L 2I . E 5 44 . 9 L 69 . 3 5 7

1 4 . 6 12 0 . 3 12 6 . 0 53 r . 6 43 7 . 1 44 7 , 8 75 7 , 7 26 7 . 4 07 6 . 6 56 ) . 4 )

9 3 . A 1 6 7 . 6 5l o 2 , l 7 6 . L 8r l o . 0 8 4 , 6 61 1 7 . 5 9 3 . 0 9L 2 4 , 7 l o l . 4r 3 1 . 5 1 0 9 . 71 3 8 . 3 1 1 7 . 9t 4 4 , 7 1 2 6 . 0r 5 1 . 0 1 3 4 . 01 5 6 . 9 1 4 1 . 9

t 4 9 . 7r 5 7 . 41 5 4 . 9L 7 2 . 41 7 9 . 81 8 7 . r1 9 4 . 32 0 t . 42 0 E . 42 r 5 . 3

2 2 2 . 22 2 4 . 92 3 5 . 52 4 2 . 12 4 4 . 52 5 5 . O2 5 1 . 32 6 7 . 5

0 . 0 1 2 0 . 0 0 90 . 1 1 5 0 . 0 8 80 . 5 0 2 0 . 3 9 2L . 4 0 7 1 . 0 9 92 , 9 6 L 2 . 2 8 85 . L 2 3 3 . 8 9 67 . 8 0 0 5 . 8 3 0

1 0 . 8 9 8 . 0 0 0t 4 , 2 A l O , 3 2r 7 . 9 0 t 2 . 7 22 5 . 6 4 1 7 . 7 L3 3 . 7 6 2 2 . 7 24 2 . t O 2 7 . 7 05 0 . s 8 3 2 . 6 35 9 . I 1 3 7 . 4 8

4 2 . 2 24 6 . a 75 t . 4 25 5 . 8 86 0 . 2 36 4 , 4 76 8 . 6 27 2 . 6 77 6 . 6 38 0 . 4 9

8 4 . 2 78 7 . 9 59 1 . 5 59 5 . 0 79 8 . 5 2

1 0 1 . 9t o 5 . 21 0 8 . 41 1 1 , 51 1 4 . 6

1 1 7 . 61 2 0 . 61 2 3 . 51 2 6 . 3r 2 9 . t1 3 1 , 8L 3 4 . 41 3 7 . 0

0 . 0 0 3o . o 2 70 . 1 0 9o . 3 0 9o . 6 7 3t . 2 2 71 . 9 7 02 . 8 8 83 . 9 6 35 , r 7 47 . 9 3 2

l l . 0 41 4 . 4 0r 7 . 9 52 1 . 6 4

2 5 . 4 32 9 . 3 r3 3 . 2 43 1 , 2 L4 1 . 2 24 5 , 2 44 9 . 2 75 3 . 3 r5 7 . 3 56 1 . 3 7

6 5 . 3 95 9 . 4 07 3 . 3 97 7 . 3 68 1 . 3 1a 5 , 2 48 9 . r 59 3 , 0 39 5 . 8 9

l o o . 7

1 o 4 . 51 0 8 . 31 1 2 . 11 r 5 . 81 1 9 . 5t 2 3 . 2t 2 6 . 41 3 0 . 4

9 0 . 3 7l o o . 0

2 1 0 L 5 2 . 52 2 0 1 5 8 . I2 3 0 t 7 3 . 42 4 0 1 7 8 . 72 5 0 1 8 3 . 72 6 0 1 8 8 . 42 7 0 1 9 3 . 02 8 0 1 9 7 . 52 9 0 2 0 1 . 93 0 0 2 0 6 . 0

3 1 03 2 03 3 03403 5 03 6 03 7 03 8 0

2 1 0 . 12 t 4 . O2 t 7 . 82 2 t . 42 2 4 . 92 2 4 . 32 3 1 . 52 3 4 . 7

2 7 3 . t 5 1 9 4 . 82 9 8 . r 5 2 0 5 , 6

I 9 6 . 6 t O 5 . 22 t 4 . L l L 4 . l

Page 10: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

EASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE_SANIDINE N7

contributions is now known quite precisely, we havecombined this information with known volumes of mixingto obtain enthalpies of mixing from a number of solvusdeterminations. Systematic deviations of the calculatedenthalpies from the measured enthalpies could suggestthe presence of alkali SRO. No attempt has been made toassign uncertainties to the calculated enthalpies of mix-ing. Because most of the solvus data are not in the form ofreversal brackets and because kinetic problems havebeen significant in these studies, the errors cannot bepresumed to be normally distributed.

Thompson and Waldbaum (1969a, b) have presented arelatively simple process by which an asymmetric enthal-py of mixing can be deduced from the solvus data.Because similar calculations based on the alkali feldsparsolvus determinations have been presented previously(e.g., Thompson and Waldbaum, 1969b; Luth, 1974), thefollowing discussion is rather brief.

At each temperature below the critical point, the com-positions of the coexisting feldspar phases yield thevalues of two free-energy parameters 86 and C6 whichare given in terms of Wf;6 and W& in a Margules notation(Thompson, 1967).

w$ + wf;o

U

0

/ di lcutated

rie. +. B*"",. "Il,,"or#;;;:l'-';'i;ril, ". tn".n"". *o

solid curve represent the present measurements. The calculatedentropy curves, similar to those ofThompson and Hovis (1979),are based on the phase equilibrium data of Orville (1963) and thesymmetric (solid curve) and asymmetric (dashed curve)

'representations of the enthalpy of mixing data (Hovis andWaldbaum, 1977; Hovis, unpublished data).

J/bar)/R and Cy : 0. With the entropy and volumesubstitutions into equations la and lb much of thefreedom of the fitting process has been removed.

Values of Bq, C6, Wf;6, and W8. at I bar have beencalculated for coexisting pairs from a number of solvusdeterminations. These values are listed in Table 13. Thereare no apparent systematic differences that can be attrib-uted to the experimental method or the pressure of theexperiments. Also, there is no consistent temperaturevariation in the enthalpy parameters. Solvi, all at I bar,have been calculated using the mean WH parameters inTable 13. These solvi are superimposed in Figure 5.Parsons (1978) has cited some of the experimental errorsin the determinations which account for at least some ofthe scatter among solvi. Importantly, equilibrium has notbeen demonstrated in most studies, and long times arerequired for apparent equilibration at low pressures(Smith and Parsons, 1974). Accordingly, the first-orderbreak in slope of the Or-rich limb (Luth, 1974, andMartin, 1974), which is based on statistical arguments andhas not been confirmed by reversed experiments, hasbeen omitted from consideration. An additional source ofvariation is the differences in X-ray determinative curvesfrom which feldspar compositions are obtained.

The mean enthalpy parameters for each experimentalstudy listed in Table 13 were used to calculate a family ofenthalpy of mixing curves, which are represented by theband in Figure 6. The experimentally determined enthal-pies of mixing (Hovis and Waldbaum, 1977) are alsoplotted. Note that adjustments have been made to theheat of solution data of Hovis and Waldbaum (1977)(Hovis, unpublished data). The exact position of theexperimental points in Figure 6 depends on the order ofthe least-squares fit to the heat of solution data, becausethe endpoints are not fixed. The point placements are

B c :

C c :

2R

w& - wfo

( la)

(1b)

(2a)

(2b\

2R

The parameters for the enthalpy, volume, and, entropyare related to a Margules notation for enthalpy, volume,and entropy by expressions of identical form. The free-energy parameters 86 and C6 are related to enthalpy,volume, and entropy parameters by equations 2a and 2b:

B":+*?-",c.=++f-c.

We assume that the total excess entropy of mixing isgiven by the low temperature measurements presentedhere; therefore, 85 : (10.3 J/mol.K)/R and C, : gbecause Sxs is symmetric.

The excess volume of mixing at ambient conditions hasbeen studied several times, most recently by Hovis(1977). He summarized the volume measurements andconcluded that asymmetry in the volume of mixing hadnot been demonstrated conclusively. With the exceptionof the study of Luth and Querol-Suf,6 (1970), agreementon the magnitude of the symmetric Wv is excellent. Weassume that Wv is the mean of the values from Donnayand Donnay (1952) as refined by Wright and Stewart(1968), Orville (1963), and Hovis (1977);thus By = (0.39

Page 11: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

408 HASELTON ET AL,: CALORIMETRrc INVESTIGATION OF ANALBITE-SANIDINE

Table 13. (continued)Table 13. Values of the free energy of mixing parameters, B6and C6, and the enthalpy of mixing parameters, WXu and W8.,from experimental determinations of the analbite-sanidine solvus

cc x ; ; " i , '

K J K J

*-1T

K

P

k b a r

* ? r s B -

7 7 3 . 2 2 . O 0 . 0 3 4 0 . 8 0 3 - 0 . 1 6 3 0 . 7 6 9a 7 3 . 2 2 . O O . r 2 4 0 . 6 1 7 - 0 . 2 3 9 0 . 5 r 39 2 3 . 2 2 . O 0 . 2 0 8 0 . 5 2 5 - O . 2 6 7 0 . 3 1 79 4 3 . 2 2 . O 0 . 2 4 9 0 . 4 5 0 - 0 . 3 0 1 0 . 2 0 18 7 1 . 2 5 . O 0 . 0 6 6 0 , 5 8 8 - O . 2 4 6 0 . 6 2 2

b ) s e c k ( r 9 7 2 )7 2 3 , 2 1 . 3 0 , 0 3 8 0 . 7 9 5 - 0 . r 6 7 0 . 7 5 77 2 3 . 2 1 . 3 0 , 0 2 4 0 . 8 1 r - 0 . 1 6 5 0 . 7 8 77 2 3 . 2 t . 3 0 . O 3 3 0 . A 2 2 - 0 . r 4 5 0 . 7 8 97 7 3 . 2 \ . 3 0 . 0 4 7 0 . 7 0 3 - 0 . 2 s 0 0 . 5 5 67 7 3 . 2 L . 3 0 0 4 7 0 . 7 2 3 - O . 2 3 0 0 . 6 7 67 7 3 . 2 1 . 3 0 . O 4 7 0 . 7 4 4 - O . 2 0 9 0 . 6 9 77 7 3 , 2 r . 3 0 . 0 5 7 0 . 7 7 0 ' O . 1 7 3 0 . 7 1 37 1 3 . 2 \ . 3 0 . 0 5 2 0 . 7 8 0 - 0 . r 6 8 0 . 7 2 87 7 3 . 2 1 . 3 0 . 0 4 7 0 . 7 8 5 - 0 . 1 5 8 0 . 7 3 88 2 3 , 2 t . 3 0 . 0 9 5 0 . 6 3 5 - 0 . 2 6 9 0 . 5 4 L8 2 3 . 2 r . 3 0 . 1 0 4 0 . 5 6 2 - 0 . 2 3 4 0 . 5 5 8a 2 3 . 2 \ . 3 0 . 1 0 0 0 . 7 0 8 - o . 1 9 2 0 . 6 0 88 2 3 . 2 r , 3 0 . 1 1 4 0 . 7 2 3 - 0 . 1 5 3 0 . 5 0 98 2 3 . 2 L . 3 0 , r 0 9 0 . 7 2 3 - 0 . 1 6 8 0 . 6 r 48 7 3 . 2 r . 3 0 , 1 9 r 0 . 5 7 5 - 0 . 2 3 3 0 . 3 8 56 7 3 . 2 2 . 5 O . 0 0 9 0 . 8 3 7 - 0 . r 5 4 0 . 8 2 86 7 3 , 2 2 . 5 0 . 0 0 9 0 . 8 5 3 - 0 . r 3 8 0 . 8 4 47 2 3 . 2 2 . 5 0 . 0 3 8 0 . 8 0 6 - 0 . 1 5 6 0 . 7 6 87 2 3 . 2 2 . 5 0 . 0 3 8 0 . 8 1 6 - O . 1 4 6 0 . 7 7 a7 2 3 , 2 2 . 5 0 . 0 3 8 0 . 8 4 7 . 0 . 1 1 5 0 . 8 0 91 2 3 , 2 2 . 5 0 . 0 5 2 0 . 8 5 8 - 0 . O 9 0 0 . 8 0 67 7 1 , 2 2 . 5 0 . 0 7 1 0 . 8 1 0 - 0 . 1 r 9 0 . 7 3 97 7 3 . 2 2 . s 0 . 0 5 5 0 . 8 0 r - 0 . 1 3 3 0 . 7 3 57 7 3 , 2 2 . 5 0 . 0 5 7 0 . 7 7 5 - 0 . 1 5 8 0 . 7 1 87 7 3 , 2 2 . 5 0 . 0 6 2 0 . 7 7 5 - 0 . 1 6 3 0 . 7 1 37 7 3 . 2 2 . 5 0 . 0 6 6 0 . 7 7 5 - 0 . I 5 9 0 . 7 0 98 2 3 . 2 2 . 5 0 . 0 9 0 0 , 5 7 8 - 0 , 2 3 2 0 . 5 8 8a 2 1 . 2 2 . 5 0 . 0 8 1 0 . 6 5 7 - 0 . 2 5 2 0 , 5 8 58 2 3 . 2 2 , 5 0 . 1 0 0 0 . 7 2 3 - 0 . L 7 7 0 . 6 2 3a 2 3 , 2 2 . 5 0 . 1 0 4 0 . 7 4 9 - 0 . r 4 7 0 . 6 L 5a 2 3 . 2 2 . 5 0 . 1 0 4 0 . 7 5 4 - 0 . 1 4 2 0 . 6 5 08 7 3 . 2 2 , 5 0 . r s 7 0 . 5 9 6 - O . 2 4 7 0 . 1 3 98 7 3 . 2 2 . 5 0 . 1 5 2 0 . 6 0 r - o . 2 4 7 0 . 4 4 98 7 3 . 2 2 . 5 0 . r 6 2 0 . 5 3 1 - O . 2 0 7 0 . 4 5 9a 7 3 . 2 2 . 5 0 . 1 6 7 0 . 6 6 2 - 0 . r 7 1 0 . 4 9 57 7 3 . 2 5 . O O . 0 s 7 0 . 8 5 3 - O . 0 8 0 0 . 8 0 68 2 3 . 2 5 . 0 0 . 0 8 1 0 . 7 7 0 ' 0 . 1 4 9 0 . 6 8 98 2 3 , 2 5 . O 0 . 0 8 1 0 . 7 8 5 - 0 . 1 3 4 0 . 7 0 4a 2 1 . 2 5 . 0 0 . 0 8 r 0 , 8 3 2 - 0 . 0 8 7 0 . 7 5 r8 7 3 . 2 5 . 0 0 . 0 9 5 0 . 6 9 8 - O . 2 0 7 0 . 6 0 3a 7 3 . 2 5 . 0 0 . r o 4 0 , 7 2 3 - 0 . 1 7 3 0 . 5 1 98 7 3 . 2 5 . 0 0 . 1 0 0 0 . 7 3 9 - 0 . 1 6 1 0 . 6 3 98 7 3 , 2 5 . O 0 . 1 0 0 0 . 7 4 4 - 0 . 1 5 6 0 . 6 4 49 2 3 . 2 5 . O 0 . 1 4 7 0 . 5 8 6 - O . 2 6 7 0 . 4 3 99 2 3 . 2 5 . O 0 . 1 5 2 0 . 6 1 6 - O . 2 3 2 0 . 4 6 47 7 3 . 2 r 0 . O 0 . 0 2 4 0 . 8 6 8 - 0 , 1 0 8 0 . 8 4 47 7 3 . 2 r O , O 0 . 0 3 3 0 . 8 6 3 - O . 1 0 4 0 . 8 3 07 7 3 . 2 t 0 . O 0 , 0 4 3 0 . 8 9 5 - 0 . 0 6 2 0 . 8 s 27 7 3 . 2 t O . O 0 . 0 4 3 0 , 8 9 5 - 0 . 0 6 2 0 . 8 5 27 7 3 . 2 1 0 . 0 0 . 0 3 3 0 . 8 8 9 - 0 , 0 7 8 0 . 8 5 68 2 3 . 2 1 0 . 0 0 . 0 5 2 0 , 8 3 2 - O . r r 6 0 . 7 8 08 2 3 . 2 1 0 . 0 0 . 0 5 2 0 , 8 5 3 - O . 0 9 5 0 . 8 0 18 2 3 . 2 r 0 . 0 0 . 0 4 3 0 . 8 4 8 - 0 . 1 0 9 0 . 8 0 58 2 3 . 2 r 0 . 0 0 . 0 4 7 0 . 8 6 3 - o . 0 9 0 0 . 8 r 68 2 3 . 2 r 0 . O 0 . 0 4 3 0 . 8 6 3 - 0 , 0 9 4 0 . 8 2 08 7 3 . 2 1 0 , 0 0 . 0 6 6 0 . 7 5 9 - 0 , 1 7 5 0 . 6 9 38 7 3 . 2 r 0 . 0 0 . 0 7 6 0 . 7 9 5 - O . L 2 9 0 . 7 1 98 7 3 . 2 r 0 . 0 0 . 0 7 1 o . 8 1 0 - o . 1 1 9 0 . 7 3 98 7 3 . 2 1 0 . 0 0 . 0 7 1 0 . 7 9 0 - 0 . 1 3 9 0 . 7 1 98 7 3 . 2 r 0 . 0 0 . 0 7 1 0 . 8 0 1 - 0 , r 2 8 0 . 7 3 08 7 3 , 2 1 0 , 0 0 . 0 7 1 0 . 8 0 6 - 0 . r 2 3 0 . 7 3 59 i 3 . 2 1 0 . 0 0 . 0 9 0 0 . 6 2 6 - 0 . 2 8 4 0 . 5 3 59 7 3 . 2 1 0 . O 0 . 0 8 5 0 . 6 0 6 - 0 . 3 0 9 0 . 5 2 19 7 3 . 2 r O , 0 0 . 0 9 0 0 . 5 8 6 - o . 3 2 4 0 . 4 9 69 7 3 . 2 1 0 . 0 0 . 0 9 0 0 . 6 0 6 - 0 . 3 0 4 0 . 5 1 6

r 0 2 3 . 2 1 0 . 0 0 . r 5 2 0 . 5 9 6 - O . 2 5 2 0 . 4 4 41 0 2 3 . 2 1 0 . O 0 . 1 8 2 0 . 4 5 5 - 0 . 3 6 3 0 . 2 7 3

9 7 3 . 2 r O . O 0 . 0 9 0 0 . 6 0 6 - 0 . 3 0 4 0 . 5 1 6

2 . 6 6 0 9 0 . 8 7 6 8 r 8 . 7 1 2 9 . 9 82 . 0 4 5 r 0 . 5 5 9 8 r E . 9 8 2 7 . 2 51 . 8 7 8 2 0 . 4 8 5 1 1 9 . 4 8 2 6 . 9 21 . 7 7 8 9 0 . 5 1 8 4 1 8 . S 7 2 7 . 0 02 . r 5 0 5 0 . 8 3 3 8 1 6 . 7 3 2 8 . 8 3

H e a n 1 8 . 5 4 2 8 . 0 o

2 , 6 0 8 7 0 . 8 4 0 0 1 7 . 6 3 2 7 . 7 32 . 7 5 8 r r . 0 5 3 2 r 7 . 2 5 2 9 . 9 r2 . 7 5 0 8 0 . 8 2 5 8 1 8 . 5 7 2 8 . 5 02 . 1 9 r 3 r . 0 r 2 3 r 5 - 0 9 2 8 . 1 r2 . 2 A 2 1 0 . 9 4 6 6 t 6 . r O 2 8 . 2 72 . 3 1 2 9 0 . 8 7 9 7 1 7 . \ L 2 8 . 4 22 . 4 5 8 7 0 . 6 8 6 8 L 8 . 9 0 2 7 . 7 32 . s 0 5 9 0 . 7 0 8 8 1 9 . O 6 2 8 . 1 82 . 5 3 8 0 0 . 7 s O 6 r 9 . 0 0 2 8 . 6 52 . O O 2 5 0 . 7 3 9 2 1 6 . 6 7 2 6 . 7 92 . 0 9 8 2 0 . 5 1 8 0 r 8 . r 6 2 6 . 6 22 . 2 2 8 1 0 . 5 3 3 3 r 9 . 6 3 2 6 . 9 32 . 2 6 t 3 0 . 4 2 9 2 2 0 . 5 7 2 6 . 4 42 . 2 6 4 0 0 . 4 5 2 1 2 0 . 4 2 2 6 . 5 21 . 9 6 6 1 0 . 4 3 8 5 1 9 . 6 3 2 6 . 0 03 . 1 1 4 2 1 . 5 4 2 9 1 4 . 8 2 3 2 . O 9 13 . 2 2 3 a 1 . 4 5 6 9 1 5 . 9 1 3 2 . 2 2 '2 . 6 5 5 4 0 . 8 0 2 5 r 7 . 6 A 2 7 . 3 32 . 6 9 7 5 0 . 7 6 A 2 r A . 1 4 2 7 . 3 82 . 8 2 7 7 0 . 5 5 8 3 I 9 . 5 8 2 7 . 5 02 . 7 9 2 6 0 . 4 5 9 9 2 0 , 5 6 2 6 . O 92 . 5 5 7 8 0 . 4 5 5 8 2 0 . 5 6 2 6 . 4 32 . 5 4 2 7 0 . 5 1 9 3 2 0 . 0 6 2 6 . 7 A2 . 4 7 6 5 0 . 6 7 2 2 1 8 . 6 5 2 7 . 3 02 . 4 6 6 3 0 . 6 2 5 8 1 8 . 8 9 2 5 . 9 32 . 4 5 8 6 0 . 5 9 r 8 1 9 . 0 5 2 6 . 6 62 . 1 3 6 8 0 . 6 6 6 4 1 7 . 6 3 2 5 . 7 52 . 0 9 0 1 0 . 7 6 0 5 1 6 . 6 7 2 7 . O 42 . 2 6 A 6 0 . 4 9 a 6 1 9 . 6 8 2 6 . 5 12 . 3 3 2 4 0 . 4 t A 5 2 0 . 6 7 2 6 . 4 02 . 3 4 4 8 0 . 4 0 7 0 2 0 . 8 3 2 6 . 4 0r . 9 7 5 0 0 . 5 1 5 7 r 8 . 6 8 2 6 . 1 71 . 9 8 r 5 0 . 5 2 4 9 1 8 . 6 6 2 6 . 2 82 . O 5 A 4 0 . 4 2 7 7 L 9 . 9 2 2 6 . r 32 . 1 2 L 4 0 . 3 5 2 6 2 0 . 9 1 2 6 . 0 52 . 7 A 6 9 0 . 3 9 7 a 2 1 . 5 0 2 6 . 6 L2 . 4 r 1 5 0 . 4 9 6 5 r 9 . 8 0 2 6 . 6 02 , 4 6 0 7 0 , 4 5 A 0 2 0 , 3 6 2 6 . 6 32 . s 9 6 1 0 . 3 3 0 0 2 2 . 1 6 2 6 , 6 42 . 2 0 0 0 0 . 5 a 5 7 r a . a 9 2 7 . 3 92 . 2 6 6 6 0 . 4 7 7 6 2 0 . 1 5 2 7 . 0 92 . 3 r 0 5 0 . 4 6 1 7 2 0 . 5 9 2 7 . 2 92 . 3 2 3 6 0 . 4 5 0 1 2 0 . 7 7 2 7 . 3 01 . 9 3 5 7 0 . 5 7 7 7 1 8 . 1 r 2 6 . 9 72 . 0 r 7 9 0 . 4 9 3 9 1 9 . 3 8 2 6 . 9 63 . 0 4 5 8 0 . 8 1 8 3 1 8 . 6 2 2 9 . 1 42 . 9 3 4 2 0 . 6 7 0 7 1 8 . 8 5 2 7 . 4 83 . 0 0 3 1 0 . 4 0 4 7 2 r . O r 2 6 . 2 13 . 0 0 3 1 0 . 4 0 4 7 2 r . O l 2 6 . 2 r3 , 0 5 7 r 0 . 5 6 0 5 2 0 . 3 5 2 7 . 5 62 . 6 9 5 9 0 . 5 4 7 7 1 9 . 5 2 2 7 . O 22 . 7 7 3 7 0 . 4 7 7 5 2 0 . 5 4 2 7 . O 72 . 8 0 1 7 0 . 5 9 0 6 1 9 . 9 5 2 8 . 0 42 . 8 3 9 0 0 . 4 9 1 5 2 0 . 8 9 2 7 . 6 12 . 8 6 3 0 0 . 5 3 5 7 2 0 , 7 5 2 8 . 0 E2 . 4 0 5 8 0 . 5 3 5 8 r a . L 8 2 7 . 4 22 , 5 0 0 1 0 . 4 6 3 9 2 0 . 1 2 2 5 . 8 s2 , 5 5 7 A O , 4 5 6 A 2 0 , s 9 2 7 . 2 22 . 4 9 6 0 0 . 5 1 2 2 1 9 . 7 4 2 7 . r 72 . 5 3 0 0 0 . 4 8 2 0 2 0 . 2 0 2 7 . 2 02 . 5 4 5 4 0 . 4 6 8 0 2 0 . 4 2 2 7 . 2 11 . 9 5 5 5 0 . 8 0 2 0 1 5 . 7 0 2 8 . 6 81 . 8 6 0 0 0 . 8 9 9 3 1 4 . 1 4 2 4 . 6 9r . 7 9 1 4 0 . 9 r 6 8 1 3 . 4 4 2 A . 2 8r . 8 7 6 6 0 . 8 5 8 0 1 4 . 6 L 2 8 . 4 91 . 9 6 8 9 0 . 5 3 5 4 1 9 . 0 8 2 8 . r 91 . 6 r 3 9 0 . 7 4 2 0 1 4 . 3 0 2 5 . 9 2r . 8 7 6 6 0 . 8 5 8 0 1 4 . 5 1 2 8 . 4 9

M e e n 1 8 . 9 2 2 7 - 2 7

;)---Tsh- mi Ml€ (r966)8 2 3 . 2 2 . O 0 . 0 8 3 0 . 7 9 5 - O . 1 2 2 0 . 7 1 38 4 8 . 2 2 . 0 0 . 0 8 s 0 . 6 9 6 - 0 . 2 1 9 0 . 5 1 28 5 0 . 2 2 . 0 O . 0 5 7 0 . 7 2 4 - 0 . 2 1 9 0 . 6 6 88 7 3 . 2 2 . O 0 . 0 8 s 0 . 7 0 2 - 0 . 2 1 3 0 . 6 r 7a 9 8 . 2 2 . O 0 . r 9 5 0 . 5 7 5 - 0 ' 2 3 0 0 . 3 8 09 0 0 . 2 2 , O 0 . 1 5 9 0 . 5 9 3 - 0 . 2 4 8 0 . 4 3 59 0 8 . 2 2 , O O . r 1 2 0 . 6 2 2 - O . 2 4 6 0 . 4 9 ) -g r s . 2 2 , o 0 . 2 0 3 0 . 5 4 3 - O . 2 5 4 0 . 3 4 09 2 3 . 2 2 . O O , 2 2 6 0 . 5 2 6 - 0 . 2 4 7 0 . 3 0 09 3 r . 2 2 . O O . 2 8 ! O . 4 9 6 - O . 2 2 0 0 . 2 r 29 3 8 . 2 2 . 0 0 , 2 8 5 0 . 5 2 6 - 0 ' r 8 9 0 . 2 4 19 2 3 , 2 5 , 0 0 . r 0 9 0 . 5 7 4 - 0 . 2 I 7 0 . 5 6 5s 2 3 . 2 1 0 . O 0 . 0 5 0 0 . 7 5 8 - 0 . 1 9 1 0 . 7 0 8

2 . 4 8 6 6 0 . 4 2 0 7 2 r . A 9 2 7 ' 6 52 . 1 9 2 3 0 . 6 5 A 4 r 8 . 8 3 2 8 . 1 12 . 2 8 8 5 0 . 8 2 s 5 1 8 . 3 7 3 0 . 0 42 . 2 r t 2 0 . 6 3 7 3 1 9 . 6 9 2 8 . 9 5| , 9 6 7 1 0 . 4 2 9 t 2 0 . 0 1 2 6 . 4 2r . 9 7 0 3 0 . 5 r 5 2 1 9 . 4 4 2 7 . 1 52 . 0 L 3 4 0 . 5 6 5 7 1 9 . 5 5 2 8 . r 1r . 9 0 9 9 0 . 4 6 5 7 1 9 . 6 9 2 6 . 7 4t . 9 0 5 4 0 . 4 2 9 6 2 0 . 1 1 2 6 . 7 |t . 9 r s 7 0 , 3 4 4 7 2 r . 0 3 2 5 . 3 71 . 9 5 A 2 0 . 2 9 3 0 2 I . 9 3 2 5 . 5 02 , 1 3 5 6 0 . 5 6 3 3 1 9 . 7 5 2 8 . 4 02 , 4 2 7 2 0 . 1 9 4 7 1 8 . 3 8 3 0 . 5 8

M e a n I 9 . 9 o 2 7 ' 8 3

P *1. *o'. Bc ce H HH l l x o t

appropriate for the symmetrical or quadratic fit for whichAH'i* : Xe#o, (20'07 kJ/mol). The calculated enthal-pies of mixing tend to be greater in magnitude than themeasured values especially for Ab-rich compositions.The calculated curves are asymmetric toward Ab-richsolutions, as required by the symmetry of the entropy ofmixing and the Ab-rich maximum in the solvus. A cubicfit to the measured enthalpy data deviates slightly furtherfrom the calculated enthalpy curves.

d ) c o l d s D t t h a n d N e 0 t o n ( 1 9 7 4 )a t 3 . 2 9 . 0 0 , 0 3 5 0 . 7 7 5 - O ' r 9 0 0 . 7 4 0 2 . 5 3 0 7 0 . 9 5 7 9 r 7 ' t 2 3 r ' 0 3

8 7 3 . 2 9 . O O . O 8 o O . 7 6 0 - O ' 1 6 0 0 ' 6 8 0 2 ' 3 8 9 7 0 . 5 2 8 5 1 9 . 2 L 2 6 ' 8 9

8 2 3 . 2 g , O 0 . 0 2 5 0 . 8 5 0 - 0 . 1 2 5 0 . 8 2 5 2 . 9 4 4 4 0 . A 7 2 4 1 9 . 3 7 3 1 . 3 r

8 2 3 . 2 g . O 0 . 0 5 0 o . 8 o O - 0 . 1 5 0 0 . 7 5 0 2 , 5 A 5 9 0 . 6 6 9 4 r A ' 1 0 2 7 ' L 7

8 7 3 . 2 1 4 , O 0 . 0 3 5 0 . 8 4 5 - 0 . 1 2 0 0 . 8 1 0 2 ' 8 3 9 0 0 , 1 0 9 2 r 9 ' 3 3 2 9 ' 6 3

8 7 3 . 2 1 4 . O O , 0 6 o 0 . 8 2 0 - O . r 2 0 0 . 7 6 0 2 . 6 2 3 3 0 . 5 1 2 4 1 9 - 1 9 2 6 . 6 3

8 2 3 . 2 1 4 . O 0 . 0 2 5 0 . 8 9 5 - 0 . 0 8 0 0 . 8 7 0 3 . 1 7 5 8 0 . 6 7 1 9 2 0 . 4 9 2 9 ' 5 9

a 2 3 . 2 1 4 . O O . O 6 0 0 . 8 5 5 - 0 . 0 8 5 0 . 7 9 5 2 . 7 4 4 2 0 . 4 0 0 9 1 9 . 3 9 2 L . 8 8

7 7 3 . 2 1 4 . O 0 . 0 2 5 0 . 9 2 0 - 0 . 0 5 5 0 . 8 9 5 3 . 3 2 2 6 0 . 5 3 6 5 2 0 . 7 5 2 7 ' 6 4

7 1 3 . 2 1 4 . 0 0 . 0 3 5 o . 9 0 O - 0 . 0 6 5 0 . 8 5 5 3 . 0 9 3 6 0 . 4 8 0 3 1 9 . 6 4 2 5 ' 8 r

7 2 3 . 2 1 5 , O O . O I O 0 . 9 7 0 - 0 . 0 2 0 0 ' 9 5 0 4 , 1 7 2 7 0 , 5 1 8 1 2 3 . 9 3 3 0 ' r 6

7 2 3 . 2 1 5 , O O . 0 3 5 0 . 9 1 5 - O . O 5 o 0 . 8 8 0 3 , r 1 4 2 0 , 4 0 3 1 1 8 - 6 2 2 3 . 4 6

6 7 3 . 2 1 5 , O O . 0 2 o 0 . 9 8 5 0 . O O s 0 . 9 6 5 4 . 1 8 2 6 ' 0 . 1 3 4 8 2 5 - 6 0 2 4 ' l O

5 7 3 . 2 1 5 . O 0 . 0 1 0 0 . 9 3 0 - 0 . 0 6 0 0 . 9 2 0 3 . 7 3 5 3 0 , 9 3 2 6 r 7 . r 3 2 7 . 5 7

6 2 3 . 2 1 5 . O O . O O r 0 . 9 9 9 o . O O O O . 9 9 8 6 . 9 2 0 5 0 . 0 0 0 0 3 6 . 7 8 3 6 ' 7 8 *

6 2 3 . 2 1 5 . O O . 0 1 o O . 9 6 5 - 0 . 0 2 5 0 . 9 5 5 4 . 0 9 8 0 0 . 5 9 0 9 1 9 . r o 2 5 ' 2 2u e a n I 9 . 8 I 2 7 . 4 3

2 . 9 4 5 2 r . 6 7 1 5 L 3 . 7 0 3 2 . 4 12 . 7 7 1 8 1 . 3 0 2 0 1 4 . 8 0 2 9 . 3 72 . 4 7 9 A O , 5 3 5 9 1 8 . 7 7 2 5 . 2 22 . 4 7 7 5 0 . 8 7 4 0 1 6 . 7 3 2 7 . 2 42 . 7 r 8 5 0 . 8 3 0 6 L 7 . 1 ! 2 6 . 4 42 . 5 1 6 8 0 . 5 8 3 3 l a . 7 1 2 5 . 1 32 . 3 5 8 9 0 . 6 4 6 L r a . 6 1 2 6 . 9 22 . 0 4 4 0 0 , 7 8 7 8 1 6 . 7 2 2 7 . 5 0r . 9 5 4 1 0 . 6 4 5 8 l 7 . 6 0 2 6 . 7 1L 9 7 0 r 0 . 3 6 9 6 2 0 . 2 5 2 5 ' 6 22 . 3 8 8 4 0 . 7 3 1 8 \ a . 2 5 2 7 . 6 62 . t 1 9 2 0 . 6 ! 4 6 1 8 , 2 I 2 7 ' 0 32 . 0 7 6 0 0 . 5 1 0 9 r 8 . 1 5 2 6 . 5 rr . 8 3 2 9 0 . 6 5 5 4 1 6 . 6 8 2 5 . 9 2

M e a a 1 7 . 4 5 2 7 . r G

3 . 1 3 r 3 1 . 1 r 7 0 1 5 . 1 4 2 5 . 7 92 . 8 9 5 0 0 . 9 1 3 3 r 6 . 3 3 2 5 . 7 92 , A 7 5 9 0 . 7 9 2 3 1 7 . 5 4 2 6 ' 0 82 , 6 8 6 9 0 . 8 3 5 4 1 6 . 9 4 2 6 . 2 92 . 4 9 1 a O . 7 4 6 3 r 7 . 5 8 2 6 . 5 62 . 3 0 2 0 0 . 6 4 L r r a . 2 8 2 6 . 5 22 . 1 1 4 3 0 . 5 t 1 8 r 8 . 8 r 2 6 . 3 72 , 0 6 8 9 0 . 4 7 2 2 r 9 . 2 8 2 5 . 8 31 . 9 7 3 4 0 . 4 3 4 0 r 9 . 8 1 2 6 . 1 11 . 8 8 4 5 0 . 4 5 9 4 L 9 . 5 3 2 6 . 4 01 . 8 3 8 r 0 , 4 6 8 1 1 9 . 4 5 2 6 . 5 61 . 8 4 6 4 0 . 4 3 3 r 1 9 . 8 9 2 5 . 5 0

v e a n 1 8 . 2 2 2 6 . 2 3

o t r l t t e d .

In the above calculations, we have assumed the ab-sence of SRO in the alkali site and have hence calculatedthe maximum enthalpy of mixing allowed by the solvusdata. Because the free energy of mixing is fixed by thesolvus data. the inclusion of SRO in the calculations,which decreases the entropy of mixing, will only decreasethe calculated enthalpy of mixing. Except for the mea-surements at Or35 1, the calculated and measured enthal-pies overlap. The difference between the dashed and solidcurves representing the measured enthalpy data is almostentirely due to differences in the chemical analyses of thesamples. The compositional uncertainty together with the

€ ) s D t t h a n d P a r 6 o n 6 ( 1 9 7 4 )6 7 3 . 2 1 . O 0 . 0 0 9 0 . 8 1 3 - 0 . r 7 8 0 . 8 0 46 7 3 . 2 r . O 0 . 0 1 7 0 . 8 0 3 - 0 . r 8 0 0 ' 7 8 67 2 3 . 2 L . O 0 . 0 7 0 0 . 7 8 4 - 0 . 1 4 5 0 . 7 r 47 2 3 . 2 r . O O , 0 4 2 0 . 7 6 7 - 0 ' 1 9 1 0 . 7 2 56 7 3 . 2 l . O 0 . 0 3 4 0 . 8 1 5 ' 0 . 1 5 0 0 . 7 8 27 2 3 . 2 l . O O , 0 6 2 0 . 7 9 0 - o - 1 4 8 0 . 7 2 87 7 3 . 2 l . O 0 . 0 5 9 0 ' 7 4 5 - O . r a s 0 . 6 7 78 2 3 . 2 L . O 0 . 0 8 2 0 . 6 5 4 - O . 2 6 4 0 . 5 7 28 4 8 . 2 1 . 0 0 . 1 2 3 0 . 5 0 6 - 0 . 2 7 r 0 . 4 8 38 7 3 . 2 L ' O O , 2 2 4 O , 5 6 3 - 0 . 2 1 3 0 . 3 3 97 7 3 . 2 r . O 0 . 0 5 8 0 . 7 5 1 - 0 . r 9 1 0 . 6 9 3a 2 3 . 2 1 . O 0 . 0 9 6 0 . 5 7 1 - 0 . 2 3 3 0 . 5 7 58 2 3 . 2 L . O 0 . 1 0 9 0 ' 5 5 3 - 0 . 2 3 8 0 . 5 4 48 4 8 . 2 r . 0 0 . I 4 8 0 . 5 5 0 - O . 3 0 2 0 ' 4 0 2

f ) L a B d c h e a n d { e i s b r o d ( 1 9 7 7 )5 7 3 . 2 r . O O . O r 5 0 . 8 6 0 - 0 . 1 2 5 0 . 8 4 55 2 3 . 2 1 . 0 0 . 0 2 5 0 . 8 4 0 - 0 . 1 3 5 0 . 8 r 56 4 8 . 2 1 . 0 0 . 0 3 0 0 . 8 4 5 - 0 . 1 2 5 0 . 8 r 56 7 3 . 2 r . O 0 , 0 3 5 0 , 8 r 0 ' 0 . r 5 5 0 . 7 7 57 2 3 . 2 l . O 0 . 0 5 0 0 . 7 7 5 - 0 . 1 7 5 0 . 7 2 57 7 3 , 2 t . O 0 . 0 7 5 0 . 7 3 0 - 0 ' 1 9 5 0 . 6 5 5a 2 3 . 2 l , O 0 . l r s 0 . 5 6 5 - O - 2 2 0 0 . 5 5 08 3 3 . 2 r . O 0 . 1 4 5 0 . 5 4 0 - 0 . 2 1 5 0 . 4 9 58 7 3 . 2 1 . O 0 . 1 9 0 0 . 5 8 0 - 0 . 2 3 0 0 . 3 9 08 9 8 . 2 r . 0 0 . 2 2 0 0 . 5 2 0 - 0 . 2 6 0 0 . 3 0 09 r 3 . 2 1 . O 0 . 2 4 5 0 . 4 8 0 - 0 - 2 7 5 0 - 2 3 59 r 8 . 2 r . 0 0 , 2 7 0 0 . 4 6 5 - 0 ' 2 6 5 0 . 1 9 5

Page 12: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

()@

G

o

oF

HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE.SANIDINE 409

Tw o-feldspar t he rmome try

The two-feldspar geothermometer, initially suggestedby Barth (1951), is based on the distribution of the Abcomponent between coexisting plagioclase and alkalifeldspars. Because of the apparent near-ideality of mixingin high structural state plagioclases at high temperatures(Orville, 1972; Seil and Blencoe, 1979) and the pro-nounced nonideality in high alkali feldspars, the Abcomponent tends to concentrate in the plagioclase. Astemperature decreases, the tie-line for a given bulk com-position rotates, decreasing the NaAlSirOs in the alkalifeldspar relative to plagioclase. General usage of thethermometer relies on the formulations by Stormer (1975)and Whitney and Stormer (1977). The earlier formulationof Stormer (1975) is applicable to high structural statefeldspars. He assumed the very convenient standard stateof pure albite at I bar and assumed that the mixingproperties of plagioclase could be described by an ideal,single-site model. The alkali feldspar mixing was de-scribed by the parameters deduced by Thompson andWaldbaum (1969a) from the equilibrium data of Orville(1963). Whitney and Stormer (1977) incorporated theexperimental data of Bachinski and Miiller (1971) to makea correction for low structural state in the alkali feldsparwhile retaining the ideal l-site formulation for plagio-clase. Both formulations presume that the plagioclase andalkali feldspar are strictly binary. Powell and Powell(1977) modified Stormer's (1975) expression to account

o 2 0 4 0 6 0 8 0 1 0 0

M o l e p e r c e n t O r t h o c l a s e

Fig. 5. Calculated solvi at I bar based on the phase-equilibrium studies (in order of decreasing critical temperature)ofOrville (1963), Luth and Tuttle (1966), Seck (1972), Smith andParsons (1974), Goldsmith and Newton (1974),and Lagache andWeisbrod (1977).

uncertainties in solvus and entropy measurements makesmall diferences between the measured and calculatedenthalpies meaningless. The essential coincidence ofthese values indicates that SRO is not a sigiflcant factor insynthetic, disordered alkali feldspars and, by extension,in natural alkali feldspars.

In the above calculations, we have assumed that theexcess heat capacity is neglible above 298 K, but a smallresidual AC|', which should diminish at higher tempera-tures, is suggested in Figure 3. If ACT" does not diminish,but continues at a value of AC$' : 0.5 J/mol.K at X6, :0.5, the resulting enthalpy and entropy differences be-tween 298 and 1000 K are (0.5 J/mol.KXlO00 - 298) : 351J/mol and (0.5 J/mol.K)ln(1000/298) : 0.65 J/mol.K. At1000 K, the additional stabilization in AG-1" is -254 Jlmol. If symmetrical, temperature-dependent terms of theabove magnitude are incorporated into a solvus calcula-tion, the critical temperature decreases by approximately30'C. This decrease is considerably less than the range ofcritical temperatures resulting from the experimental de-terminations.

Temperature-dependent AUSi ordering would tend toyield larger apparent WH values at lower temperatures.Inspection of the entries in Table 13 generally shows theopposite result; hence, we conclude that the availablesolvus data are not sufficiently precise to detect the AUSiordering that has been observed by X-ray examination ofthe run products.

Y

9 4

?Y

i z

cE Ot!

o 20 40 60 80 1ooMole Percent Orthoclase

Fig. 6. Measured and calculated enthalpies of mixing at I bar.The circles are the values deduced from the measured data ofHovis and Waldbaum (1977) and Hovis (unpublished data). Thesymmetric fit to their data is given by the heavy solid curve. Thedata have been corrected with a -lVo calorimetric correction(Hovis, 1982), and with new chemical analyses. The dashedcurve is the symmetric fit to the uncorrected data (Hovis andWaldbaum, Equation 3, 1977). The stippled band containsenthalpies of mixing calculated from the values in Table 13.

Page 13: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

410 HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE-SANIDINE

approximately for the solution of An component in alkalifeldspars. At relatively high An contents, Powell andPowell showed that the calculated temperature may bedecreased by 200'C or more, depending on the specificbulk composition and tie-line orientation. They retainedthe l-site ideal mixing approximation for the plagioclase.

The assumption of an ideal, l-site model for plagioclasewas suggested initially by the general shape of the liqui-dus and solidus curves. The equilibration experiments ofplagoiclases in chloride solutions at 7(X)"C by Orville(1972) and at 6ff)-800'C by Seil and Blencoe (1979) show,however, that the free energies of mixing are slightlymore positive than those predicted by the ideal l-sitemodel. For low structural state plagioclases, the assump-tion of the ideal l-site model could induce significanterror, because the presence of a variety of intergrowths(see Smith, 1974 for a review) evidences significantnonideality.

We have combined the recent calorimetric results ofNewton et al. (1980) for high plagioclases and the presentwork on alkali feldspars to yield a new expression for thetwo-feldspar thermometer that partially accounts for ter-nary solution of each feldspar (Powell and Powell, 1977)and that yields higher temperatures than do formulationsbased on previous thermodynamic descriptions of alkaliand plagioclase feldspars.

The activity of NaAlSi3Os in the alkali feldspar t"A[l i*formulated from the mean of the enthalpy parametersfrom Table 13 (WXb : 18.81 kJ/mol, W8, = 27.32 kJ/mol)and the entropy (Ws : 10.3 J/mol'K) and volume (WV :

0.364 J/bar) parameters from above.

"*E : xtil

According to Newton et al. (1980),

olo[:txlollz-xHb)

IrxX^l' Q8230 - 3e520 xi[) l ,,' "xplTr , . ,L " ' " ' ' " )

The alet expression contains no excess entropy or volume

of mixing terms. No data are available from which theexcess entropy, if significant, can be evaluated. Newtonet at. (1980) demonstrated that the volume of mixing is

negligible for a carefully controlled series of syntheticplngioclases. Results of experiments by Mark D. Bartonof the Geophysical Laboratory, involving silica solubili-ties in H2O buffered, in part, by plagioclases at 475'C,agree closely with the activities predicted by Newton er

al.'s expressions but not with ideal l-site mixing (M. D'Barton, personal communication, 1981). Hence, phase-

equilibrium studies in the temperature range of 475-800"Csupport the combination of the Al-avoidance model and

the enthalpy of mixing data. The activities from equation(4) are plotted at several temperatures in Figure 7. Theideal Al-avoidance curve results from assuming thatAH*i^ : 0. Most natural plagioclases coexisting with

alkali feldspar have compositions for which Ab activitiesare less than those predicted by the assumption ofideal 1-

site mixing.Substituting the activity expressions into the condition

for equilibrium, olA[ : 4[, and solving for T

xlLFig. 7. Activities of NaAlSi3Os in plagioclase, calculated

from equation 4, at a range of temperatures' The 800 K isothermis below the critical temperature in the plagioclase binary.Activities predicted by an ideal l-site, mixing model areindicated by the dashed line.

*,i661)'z(rssro + rzolo xA[ - ro.rr + o.:o+r) 1NAT I

(3)

where T is in kelvins and P is in bars.The high-temperature solution calorimetry (Newton et

al., 1980) makes the assumption of ideal activities in highplagioclases unnecessary and provides insight into theplagioclase solution properties. The measured enthalpy ofmixing in plagioclases at 970 K is quite positive; AIl-r*(kJ/mol) : xlt xPl" Q8.23 xi'" + 8.47 xlt). wtrenNewton et al. (1980) combined their enthalpy of mixingdata with the Al-avoidance model of Kerrick and Darken(1975), the calculated free energy of mixing curve at700"C, which is the temperature of Orville's (1972) ex-change experiments, is very similar to that given by theideal l-site model and is almost identical with free energyof mixing calculated by Orville (1972) from his equilibri-um experiments. In a preliminary report, Seil and Blen-coe (1979) stated that their results are similar to those ofOrville.

qii

1 00 80 6

Page 14: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

4 0 0

7 0 0

6 0 0

HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE-SANIDINE 4II

o .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6XAb(Atka t i Fe tdspar )

Fig. 8. The distribution of NaAlSi3Os component betweenalkali feldspar and plagioclase at I bar and in the range 400o-1000'C. The present formulation given by equation 5 isrepresented by solid curves and that of Stormer (1975, Equation18) by dashed curves. The temperatures of the isotherms forStormer are underlined. The distribution of isotherms in thepresent formulation is complicated at low temperatures (<560"C)by the presence of a solvus in the plagioclase binary.

rx = Kx6If(18810 + 17030 xXF + 03up)

- (Fi^)2(28230 - 39520 xfirn /I

f ro.l rxd5l' + 8.3143,' {t"lh'q- "ru' 11L

'J'rJ'r I ru ll tsl

The mole fractions refer to the ternary system and p is inbars. Although this expression includes nonideality in theplagioglas., it is not appreciably more complicated thanthe earlier formulation of Stormer (1975), because theentropy and volume of mixing are symmetrical. Iso-therms from equation (5) are plotted as solid lines inFigure 8. Isotherms from Stormer (1975, Equation 18) areplotted as dashed lines to indicate where significantdifferences arise from the two formulations. The presentformulation yields much higher temperatures for mostfeldspar pairs. At the highest temperatures, the twoformulations differ by hundreds of degrees. The differ-ence is caused principally by the plagioclase mixingmodels. At temperatures below 560"C, the configurationof the isotherms near the plagioclase axis is complicatedby the solvus predicted from the plagioclase mixingmodel. This diagram is not appropriate for feldsparshaving significant ternary solution or those thought to

have equilibrated at high pressures. Temperatures forthese pairs should be calculated directly from Equation(5). This formulation does involve a projection to thebinary axes and hence should be used with caution forplagioclases with very large amounts of Or component.

Phase equilibrium data from which the thermometercan be calibrated are very limited. In a careful studyJohannes (1979) has demonstrated an approach to equilib-rium for coexisting plagioclase and alkali feldspar for onebulk composition at 2 kbar and Sfi)'C. When Equation (5)is used, the bracketing pairs yield 783 and 862'C; accord-ing to Stormer (1975, Equation 18), the pairs yield 690 and730"C. At present, equilibrium has not been demonstratedin experiments at lower temperatures; hence, the accura-cy at lower temperatures, e.9., 5(X)"C, cannot be as-sessed. Most of Seck's (1972) results involved the directcrystallization of gels; therefore, except for some prelimi-nary experiments, equilibrium was inferred but not dem-onstrated. Also, the compositions of the plagioclaseswere inferred by projection rather than actually mea-sured. In general, Seck's results are not in serious conflictwith the present version of the thermometer. Because ofthe insensitivity of the thermometer for very high tem-perature pairs, calculated temperatures above 850"-900'Care likely to be grossly in error.

Acknowledgments

We wish to thank our U.S. Geological Survey colleagues,Priestley Toulmin, III and David B. Stewart, for their manyhelpful suggestions. We also much appreciate the critical reviewsof Alexandra Navrotsky and James B. Thompson, Jr.

References

Bachinski, S. W. and Miiller, G. (1971) Experimental determina-tion ofthe microcline-low albite solvus. Journal ofPetrology,12.329-356.

Barth, T. F. W. (1951) The feldspar geologic thermometers.Neues Jahrbuch fiir Mineralogie Abhandlun gen, 82, 143-154.

Blasi, A. (1979) Mineralogical applications of the lattice constantvariance-covariance matrices. Tschermaks Mineralogischeund Petrologische Mitteilungen, 26, 139-148.

Brown, G. E. and Fenn, P. M. (1979) Structure energies of thealkali feldspars. Physics and Chemistry ofMinerals, 4, 83-100.

Burham, C. W. (1962) Lattice constant refinement. CarnegieInstitution of Washington Year Book 6l , 132-135.

Commission on Atomic Weights (1976) Atomic weights of theelements 1975. Pure and Applied Chemistry, 47,75-95.

Delbove, F. (1971) Equilibre d'echange d'ions entre feldspathsalcalins et halogdnures sodi-potassiques fondus. Applicationau calcul des propridtds thermodynamiques de la serie desfeldspaths alcalins. Bulletin de la Socidtd francaise de Min6ra-logie et de Cristallographie,94, 456466.

Delbove, F. (1975) Excess Gibbs energy of microclineJow albitealkali feldspars at E00'C and I bar, based on fused alkalibromide ion-exchange experiments. American Mineralogist,ffi.972-9E4.

Donnay, G. and Donnay, J. D. H. (1952) The symmetry change

oa

f , oooo

o - O

o

,.{

Page 15: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

412 HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITE-SANIDINE

in the high-temperature alkali feldspar series. American Jour-nal of Science. 2504. ll5-132.

Fenn, P. M. and Brown, G. E. (1977) Crystal structure of asynthetic, compositionally intermediate, hypersolvus alkalifeldspar: evidence for Na, K site ordering. Zeitschrift ftirKristallographie, 145, 124-145.

Goldsmith, J. R. and Newton, R. C. (1974) An experimentaldetermination of the alkali feldspar solvus. In W. S. MacKen-zie and J. Zussman, Eds., The Feldspars, p. 337-359, Man-chester University Press, Manchester, England.

Haselton, H. T., Jr. and Westrum, E. F., Jr. (1980) Low-temperature heat capacities of synthetic pyrope, grossular,and pyrope6qgrossulara6. Geochimica et Cosmochimica Acta,44,701J09.

Hemingway, B. S., Krupka, K. M., and Robie, R. A. (1981) Heatcapacities of the alkali felspar between 350 and 10fi) K fromdiferential scanning calorimetry, the thermodynamic func-tions of the alkali feldspar from 298.15 to 1400K and thereaction quartz + jadeite : analbite. American Mineralogist,66,1202-1215.

Hensen, B. J., Schmid, R., and Wood, B. J. (1975) Activity-composition relations for pyrope-grossular garnet. Contribu-tions to Mineralogy and Petrology, 51, 161-166.

Holland, T. J. B. (1980) The reaction albite : jadeite + quartzdetermined experimentally in the range 600-1200'C. AmericanMineralogist, 65, 129-134.

Hovis, G. L. (1977) Unit-cell dimensions and molar volumes fora sanidine--analbite ion-exchange series. American Mineral-ogist,62, 672-679.

Hovis, G. L. (1980) Angular relations of alkali feldspar series andthe triclinic-monoclinic displacive transformation. AmericanMineralogist, 65, 770J78.

Hovis, G. L., (1982) Resolution of a systematic interlaboratorydiscrepancy in recent calorimetric data, and the heats ofsolution of quartz, low albite, adularia, and gibbsite. AmericanMineralogist, 67 , 950-955.

Hovis, G. L. and Peckins, E. (1978) A new X-ray investigation ofmaximum microcline crystalline solutions. Contributions toMineralogy and Petrology, 66, 345-349.

Hovis, G. L. and Waldbaum, D. R. (1977) A solution calorimet-ric investigation of K-Na mixing in a sanidine--analbite ion-exchange series. American Mineralogist, 62, 680-686.

Iiyama, J. T. (1965) Influence des anions sur les 6quilibresd'dchange d'ions Na-K dans les feldspaths alcalins a 600'Csous une pression de 1000 bars. Bulletin de la Soci€t6 francaisede Min6ralogie et de Cristallographie, 88, 618422.

Iiyama, J. T. (1966) Contribution a l'6tude des €quilibres sub-solidus du syst€me ternaire orthose-albite-anorthite d I'aidedes rdactions d'echange d'ions Na-K au contact d'une solutionhydrothermale. Bulletin de la Soci6t6 francaise de Min€ralogieet de Cristallographie, 89, 442454.

Johannes, W. (1979) Ternary feldspars: kinetics and possibleequilibria at 800"C. Contributions to Mineralogy and Petrolo-gy, 68,221J30.

Kerrick, D. M. and Darken, L. S. (1975) Statistical thermody-namic models for ideal oxide and silicate solid solutions, withapplication to plagioclase. Geochimica et Cosmochimica Acta,39, t43t-r442.

Kroll, H., Bambauer, H.-U., and Schirmer, U. (1980) The highalbite-monalbite and analbite-monalbite transitions. AmericanMineralogist, 65, ll92-l2ll.

Lagache, M. and Weisbrod, A. OnT The system: two alkali

feldspar-KCl-NaCl-H2O at moderate to high temperaturesand low pressures. Contributions to Mineralogy and Petrolo-gy, 62,77-101.

Luth, W. C. (1974) Analysis of experimental data on alkalifeldspars: unit cell parameters and solvi. In W' S. MacKenzieandJ. Zussman, Eds., The Feldspars, p.249-296, ManchesterUniversity Press, Manchester, England.

Luth, W. C. and Fenn, P. M. (1973) Calculation of binary solviwith special reference to the sanidine-high albite solvus.American Mineralogist, 58, 1009-1015.

Luth, W. C. and Querol-Sufl6, F. (1970) An alkali feldspar series.Contributions to Mineralogy and Petrology, 25,2540.

Luth, W. C. and Tuttle, O. F. (1966) The alkali feldspar solvus inthe system NazO-KzO-Al2O3-SiO2-H2O. American Mineral-ogist,51, 1359-1373.

Martin, R. F. (1974) The alkali feldspar solvus: the case for afirst-order break on the K-limb. Bulletin de la Soci6t€ fran-caise de Min€ralogie et de Crystallographie, 97,346-355.

Merkel, G. A. and Blencoe, J. G. (1980) Theoretical analysis ofhigh-order phase transitions in binary crystalline solutionseries: applications to analbite-sanidine feldspars, (abstr.)

Geological Society of America Abstracts with Programs, 12,482.

Newton, R. C., Charlu, T. V., and Kleppa, O. J. (1980) Thermo-chemistry of high structural state plagioclases' Geochimica etCosmochimica Acta, 44, 933-941.

Okamura, F. P. and Ghose, S. (1975) Analbite--+monalbitetransition in a heat treated twinned Amelia albite' Contribu-tions to Mineralogy and Petrology, 50,211-216.

Openshaw, R. E., Hemingway, B. S., Robie, R. A', Waldbaum'D. R., and Krupka, K. M. (1976) The heat capacities at lowtemperatures and entropies at 298.15K oflow albite, analbite,microcline, and high sanidine. U.S. Geological Survey Journalof Research, 4, l95J0/..

Orville, P. M. (1963) Alkali ion exchange between vapor andfeldspar phases. American Journal of Science, 261,201-237.

Orville, P. M. (1967) Unit-cell parameters of the microclinelowalbite and the sanidine-high albite solid solution series. Ameri-can Mineralogist, 52, 55-86.

Orville, P. M. OnD Plagioclase cation exchange equilibria withaqueous chloride solution: results at 700'C and 2000 bars in thepresence of quartz. American Journal of Science, 272,234-272.

Parrish, W. (1960) Results of the LU.Cr. precision lattice-parameter project. Acta Crystallographica, 13, 838-850.

Parsons, L (197E) Alkali-feldspars: which solvus? Physics andChemistry of Minerals, 2, 199-213.

Powell, M. and Powell, R. (1977) Plagioclase-alkali feldspargeothermometry revisited. Mineralogical Magazine, 41, 253-256.

Prewitt, C. T., Sueno, S. and Papike, J. J. (1976) The crystalstructures of high albite and monalbite at high temperatures.American Mineralogist, 61, 1213-1225.

Ribbe, P. H., Megaw, H. D., Taylor, W. H', Ferguson, R. B.'and Traill, R. J. (1969) The albite structures. Acta Crystallo-graphica, B25, 1503-1518.

Robie, R. A. and Hemingway, B. S. (1972) Calorimeters for heatof solution and low-temperature heat capacity measurements.U.S. Geological Survey Professional Paper 755.

Robie, R. A., Hemingway, B. S., and Wilson, W. H. (1976) Theheat capacities of Calorimetry Conference copper and ofmuscovite KAl2(AlSi3)Oro(OH)2, pyrophyllite AlzSinOro(OH)z

Page 16: Calorimetric investigation of the excess entropy of mixing in … · 2007. 8. 26. · pared by alkali ion exchange from natural starting materi-als and from glasses and gels, have

HASELTON ET AL.: CALORIMETRIC INVESTIGATION OF ANALBITESANIDINE 413

and illite Kr(AlzMgXSirrAl2)O4o(OH)r between 15 and 325 Kand their standard entropies at 29E.15K. U.S. GeologicalSurvey Journal of Research, 4,631-@.

Seck, H. A. OnD Koexistierende Alkalifeldsp6re und plagio-clase im System NaAlSi3OrKAlSi3OrCaAl2Si2OgH2O beiTemperaturen von 650'C bis 900'C. Neues Jahrbuch fiir Min-eralogie Abhandlungen, I 15, 315-345.

Seck, H. A. gnD The influence of pressure on the alkalifeldspar solvus from peraluminous and persilicic materials.Fortschritte der Mineralogie, 49, 3149.

Seil, M. K. and Blencoe, J. G. (1979) Activity-compositionrelations of NaAlSi3O"{aAl2Si2Ot feldspar at 2 kb, 600-8$"C. (abstr.) Geological Society of America Abstracts withPrograms, 11,513.

Smith, J. V. (1974) Feldspar Minerals, Vol. I, Crystal srructureand physical properties. Springer-Verlag, New York.

Smith, P. and Parsons, l. (1974) The alkali-feldspar solvus at Ikilobar water-vapour pressure. Mineralogical Magazine, 39,747:167.

Stewart, D. B. and Wright, T. L. (1974) Al/Si order andsymmetry of natural alkali feldspars, and the relationship ofstrained cell parameters to bulk composition. Bulletin de laSoci6t€ francaise de Min6ralogie et de Cristallographie, gT,3sG377.

Stormer, J. C., Jr (t975) A practical two-feldspar geothermom-eter. American Mineralogist, ffi , 667-674.

Thompson, J. B., Jr. (1967) Thermodynamic properties of simplesolutions. In P. H. Abelson, Ed. Researchers in Geochemis-try, Vol. 2,p.34O-361. John Wiley and Sons, Inc., New york.

Thompson, J. B., Jr. and Hovis, G. L. (1979) Entropy of mixingin sanidine. American Mineralogist, U, 51'45.

Thompson, J. B., Jr. and Waldbaum, D. R. (196E) Mixingproperties of sanidine crystalline solutions: I. Calculationsbased on ion-exchange. American Mineralogist, 53, l%5-r99D.

Thompson, J. 8., Jr. and Waldbaum, D. R. (l%9a) Mixingproperties of sanidine crystalline solutions: III. Calculationsbased on two-phase data. American Mineralogist, 54, 8l l-83E.

Thompson, J. B., Jr. and Waldbaum, D. R. (l%9b) Analysis ofthe two-phase region halite-sylvite in the system NaCl-KCl.Geochimica et Cosmochimica Acta, 33,67149o.

Traetteberg, A. and Flood, H. (1972) Alkali ion exchangeequilibria between feldspar phases and molten mixtures ofpotassium and sodium chloride. Kungliga Tekniska Hogsko-lans Handlinga, Norsk, 2%, 609-61E.

Tuttle, O. F. and Bowen, N. L. (195E) Origin of granite in thelight of experimental studies in the system NaAlSi3OrKAl-Si3O&-SiOz-H2O. Geological Society of America Memoir, 74.

Waldbaum, D. R. and Robie, R. A. (1971) Calorimetric investiga-tion of Na-K mixing and polymorphism in the alkali feldspars.Zeitschrift ftir Kristallographie, I 34, 38 l-420.

Whitney, J. A. and Stormer, J. C., Jr. (1977)The distribution ofNaAlSi3Ot between coexisting microcline and plagioclase andits effect on geothermometric calculations. American Mineral-ogist, 62, 687491.

Wrieht, T. L. and Stewart, D. B. (l%E) X-ray and optical studyof alkali feldspar. I. Determination of composition and struc-tural state from refined unit-cell parameters and 2V. AmericanMineralogist, 53, 3E-E7.

Manuscript received, March 30, 1962;acceptedfor publication, November 4, 1982.


Recommended