+ All Categories
Home > Documents > CALORPLAST For Heating or Cooling of Heat Exchangers Available

CALORPLAST For Heating or Cooling of Heat Exchangers Available

Date post: 17-Oct-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
16
For Heating or Cooling of Corrosive Media > Immersion > Tube Plate > Gas/Liquid > Shell and Tube CALORPLAST Heat Exchangers
Transcript
Page 1: CALORPLAST For Heating or Cooling of Heat Exchangers Available

For Heating or Cooling of Corrosive Media

> Immersion > Tube Plate > Gas/Liquid > Shell and Tube

CALORPLAST Heat Exchangers

agotschall
TextBox
Available from Aetna Plastics 1.800.634.3074 www.aetnaplastics.com
Page 2: CALORPLAST For Heating or Cooling of Heat Exchangers Available

1

Immersion Style Heat ExchangersIntroduction

Inhighlycorrosivemedia,theprocessofexchanging

heatbetweentwofluidsisextremelycritical.Itssuccess

dependsnotonlyuponthemechanicalpropertiesof

materials,butalsotheirresistancetothecombined

elementsofchemicalattack,hightemperaturesand

pressures.

Therearemanyexoticmaterialsthatcanbeusedtohandle

corrosivechemicals,suchasspecialglass,titanium,

zirconium,tantalum,andchrome/nickelcontainingalloys.

However,ashortservicelifemaybeexpected.

CALORPLASTisanall-plasticheatexchangerdesigned

specificallyforheatingorcoolinghighlycorrosivemedia.

CALORPLASTheatexchangersaremanufacturedfrom

PVDF(polyvinylidenefluoride),polypropylene,and

polyethylene.TheextremechemicalinertnessofPVDF

anditsflexibilityinfabricationmakeitanidealmaterial

ofconstructioninmanychemicalprocesses.Thesmooth

surfaceofplasticstendstowardverylowcontamination

andincrustation,eveninextremeapplications.This

enablesuseoftheCALORPLASTinapplicationswhere

metalexchangersrequirefrequentmaintenancetoremove

buildupfromexchangertubes.

Althoughfluoropolymerheatexchangershavesuccessfully

replacedcostlymetallicdesigns,untilintroduction

ofCALORPLASTtherehadalwaysbeenproblemsin

satisfactorilyconnectingheatexchangertubestothe

headermanifold.CALORPLASTisproducedbyapatented

processofcontinuoustubeextrusionandmanifold

injectionovermoldingassuringtightconnectionsbetween

theexchangertubesandthemanifolds.Thereareno

mechanicaljointswhichcaninotherexchangerdesignsbe

weakspotssubjecttochemicalattackandstresscracking.

CALORPLASTisconstructedofmodularelements

whichenabletheheatexchangertobeadaptedtosuita

particularvesselgeometry.Inaddition,largeheattransfer

surfacesarecontainedinarelativelysmallvolume.Unlike

manyotherplasticheatexchangers,CALORPLASTisa

self-supportingdesign.Hangers,brackets,etc.,arenot

necessaryunlessspecificallyrequestedbythecustomer.

MostheattransfermediacanbeusedintheCALORPLAST.

Themostcommonlyusedheattransfermediaaresteam

andhotwaterforheatingandwater/glycolforcooling.

Advantages of CALORPLAST Heat Exchangers1. Superiorcorrosionresistancetomostacidsand

solutions.

2. Largeheattransfersurfaceinaconfinedspace.

3. All-plasticdesignwithnoelastomers,sealsor

mechanicaljoints.

4. Plasticdesigneliminateseffectofstraycurrentin

platingapplications.

5. Openflowtubebundle–tubesdonottouch.

6. Modularconstructionenablescustomadaptabilityto

particularvesselgeometry.

7. Exceptionallylowfoulingfactors.

8. Tough,impactresistanttubes,notcapillary-typetubing.

9. Lowpressuredropsenhancingturbulentflowresulting

inmaximizedheattransfercapability.

10.Handlesteamupto35psigsaturated.

11.Easilyrepairedatplantsitewithahotairweldinggun.

PLASTIC TUBE

heated, temperaturecontrolled pin

CAVITY

CORE

temperating fluid

MOLD RIGHT

MOLD LEFT

Page 3: CALORPLAST For Heating or Cooling of Heat Exchangers Available

2

Limitations1. Maximum continuous use

temperature = 281°F (PVDF)

2. Maximum saturated steam

pressure = 35 psig (PVDF)

3. Maximum operating pressure

at 68°F = 232 psig (PVDF)

4. Superheated steam may not

be used as a heating medium.

Mechanical Strength

Temperature of Medium °F 68 104 140 176 212 248 281

PVDF MaximumOperatingPressure

psig 232 174 145 109 87 65 35

PP MaximumOperatingPressure

psig 116 87 58 29 — — —

PE MaximumOperatingPressure

psig 116 87 58 (160°Fmax.)29

— — —

Chemical Resistance

TheCALORPLASTimmersionheatexchangercanbeusedforheatingorcooling

mostcorrosivechemicalsinopentanks.Generally,theapplicationareasforPVDF,

polypropylene,andpolyethyleneheatexchangerswillbethesameasthosefor

SYGEF®PVDF,polypropylene,andpolyethylenepipingsystems.Thefollowing

guidelinesareusedwhenselectingtheappropriateheatexchangerforaspecific

application:

1) Forsteamheatingofinorganicandorganicacidscommonlyusedinplating

(chrome,phosphoric,nickel,sulfuric,hydrochloric,nitric,hydrofluoricetc.)use

PVDF.

2) Foraqueoussaltsolutionsandalkalisolutions,usepolypropylene,or

polyethylene.

3) Foranyheatingapplicationutilizingsteamastheheatingmedium,PVDFmustbe

used.PVDFcanbeusedupto281°F(35psigsaturatedsteam).

4) Forcoolingsulfuricacidsolutions,polypropyleneorpolyethyleneshouldbeused,

asitismosteconomical.

5) Fordetailedchemicalresistanceinformation,visitourwebsiteat

www.gfpiping.comorrefertotheGFPipingSystemsEngineeringHandbook,

ChemicalResistanceGuide.

Page 4: CALORPLAST For Heating or Cooling of Heat Exchangers Available

3

TheCALORPLASTheatexchangerisdesignedinmodular

elementsconnectedtoprovidetherequiredheattransfer

surfaceareaforaspecificapplication.Theexchanger

modulesareonefootwideandareavailableinthefollowing

lengths:1.7,2.4,3.1,3.7,4.4,5.0,5.7,7.0,and8.3ft.The

modulesareheatfusedtogetheratthemanifoldheadersto

provideacontinuousheatexchangergrid.

• Individualtubesare6mmOD/4.8mmID

• ModulesinPVDFareavailablewith3or5tuberows

• ModulesinPE-RTareonlyavailablein5tuberowdesign

• ModulesinPPareonlyavailablein3tuberowdesign

• Moduleswith3rowshave117tubeseachmodule,and

moduleswith5rowshave195tubesineachmodule

Tubularspacerssupporttheconsistencyofshapeand

intertubulardistancesinthegrid.Assemblyofmodulesis

performedusingheatfusiontechniquesbetweenheaders,

withstandardaccessoriesandtools.Interconnectionof

modulesismadetogiveparallelorseriesflowpatterns

accordingtothespecificdesignrequirementoftheheat

exchanger.

Asanexample,refertoTableNo.1.Supposeaparticular

applicationforpolypropylenerequires17sq.ft.ofheat

transferarea.Thiscouldbeaccomplishedbyeithera1

ft.x3.1ft.heatexchanger(consistingofasinglemodule

3.1ft.long)ora2ft.x1.7ft.heatexchanger(consisting

oftwo1.7ft.longmodulesfusedtogetherattheheader).

Theconfigurationselecteddependsonpriceandtank

configuration.

IfforPVDForpolyethylene180sq.ft.ofheattransfer

surfacewererequired,asingleheatexchanger2ft.x8.3

ft.oroneheatexchanger4ft.x4.4ft.couldbeused.Both

havetherequired180sq.ft.andtankconfigurationwill

determinewhichisselected.Allmodulesare2.2inches

thinwhichisthethicknessofallCALORPLASTheat

exchangers.Thisthinprofileenablestheexchangertofit

mostplating/picklingtankswithoutinterferingwithparts

beingprocessed.

CALORPLASTimmersionheatexchangersmaybe

usedwitheitherverticalorhorizontaltubing.Selection

ofaspecificconfigurationdependsontankgeometry.

Generally,verticaltubingispreferredforsteamheating

applicationsbecausethisisthemostefficientdesign.In

theverticalconfiguration,theheightoftheexchanger

willbethelengthofamoduleplus4inchestoaddan

anti-buoyancyweight.Theanti-buoyancyweightsmaybe

addedtothesideoftheexchangerifthevesselislimitedin

verticalspace.Thehorizontaldimensionwillbe1ft.times

thenumberofmodulesplusapproximately7"fortheinlet

andoutletpiping.Forexample,aPVDF60sq.ft.steam

heatexchangerconsistingoftwo3.1ft.modulesfused

togetherwillhaveanoveralldimensionofapproximately

3’4"verticalx2’7"horizontalx2.2"thick.

PVDFHeatExchangerfabricatedforcylindricaltank.

Polyethyleneheatexchangersofferexcellentchemicalresistancetosulfuricacidattemperaturesupto160°F.

Exchanger Configurations

Page 5: CALORPLAST For Heating or Cooling of Heat Exchangers Available

4

Table No.1: Surface Area for Polypropylene CALORPLAST Modules (Square Feet)

H(ft) L(ft) 1.7 2.4 3.1 4.4 5.7 7.0 8.3

1.0 8.8 13.1 17.4 26.0 34.8 43.5 52.2

2.0 17.6 26.2 34.9 52.1 69.5 86.9 104.4

3.0 26.5 39.3 52.3 78.1 104.2 130.4 156.5

4.0 35.3 52.4 69.7 104.1 139.0 173.9 208.7

5.0 44.1 65.5 87.1 130.2 173.8 217.3 260.9

6.0 52.9 78.6 104.6 156.2 208.5 260.8 313.1

Table No. 2: Surface Area for PVDF and Polyethylene CALORPLAST Modules (Square Feet)

H(ft) L(ft) 1.7 2.4 3.1 3.7 4.4 5.0 5.7 7.0 8.3

1.0 15 23 30 38 45 52 60 75 90

2.0 30 45 60 75 90 105 120 150 180

3.0 45 68 90 113 135 158 180 225 270

4.0 60 90 120 150 180 210 240 300 360

5.0 75 113 150 188 225 263 300 375 450

6.0 90 135 180 225 270 315 360 450 540

ModuleLengthL

ModuleThickness=2.2"

Mod

uleLe

ngth

H

Anti-Buoyancy WeightsAplasticheatexchangermayfloatinafluiddependingontheheatingor

coolingmediumandonthespecificgravityofthetankfluid.Toprevent

floating,weightsareaddedtothebottomoftheheatexchangerswhere

needed.TheweightsconsistofsteelbarencapsulatedineitherPVDF,

polypropyleneorpolyethylene.Theweightsareweldedtotheexchanger

manifold.Nometalisexposedtothetankfluid.Aweightisalways

requiredforthefollowingheatexchangeapplications.

1. Steamheatingapplications(alwaysPVDF).

2. Allpolypropyleneandpolyethyleneapplications.

3.PVDF–heatingorcoolingwithwaterwhenspecificgravityoftank

fluidisgreaterthan1.35.

Page 6: CALORPLAST For Heating or Cooling of Heat Exchangers Available

5

Foranyheatexchangeapplication,therearefour

resistancestoheattransferencountered:theheat

exchangertubewall,theinsidefilmandoutsidefilm

resistancesandanadditionalfoulingresistance.

Whencomparingmetalversusplasticheatexchangers,the

followingshouldbenoted.Formetalheatexchangers,the

tubewallprovidesverylittleresistancetoheattransfer.

Thesurfaceandfoulingresistanceshavethegreatest

effectontheoverallheattransfercoefficient.Plastic

heatexchangersaregenerallylessefficientthanmetal

onesbecausethetubewallisthegreatestresistanceto

heattransfer.However,metalheatexchangershavea

muchgreatertendencytobecomefouledthandoplastic

exchangers.Foulinggreatlyreducestheoverallheat

transfercoefficientofmetalexchangers.Asanexample,

whencomparingmetalwithplasticexchangers,assuming

nofoulingofthetubewall,aplasticexchangerwillrequire

approximately6timesasmuchheattransfersurfaceasa

∆Tm= meanlogarithmicdifferenceintemperaturebetween

hotandcoldside(°F)

k = thermalconductivityoftubingmaterial(BTU/fthr°F)

A =

metalexchanger.Whennormalfoulingofthetubewallis

considered,thisratioisreducedtoabout3:1.(Note:The

overallheattransfercoefficientisnotdirectlyrelatedto

thethermalconductivityoftheexchangertubing.Ascan

beseeninTable No. 3,theratioofthermalconductivities

forstainlesssteelandPVDFis900:1buttheratioofheat

transfercoefficientsisapproximately3:1.)

Therelativelylowthermalconductivityoftheplastic

materialwillbelessandlesssignificantiftheouterand

innerfilmbecomethelimitingresistances.Suchconditions

areencounteredinthefollowingapplications:

1.Oneoftheheatexchangefluidsishighlyviscousand

flowsatlowvelocity(opentankapplications)

2.Heatisexchangedbetweenaliquidandagas.

3.Heatisexchangedbetweentwogases.

4.Heatisexchangedbetweenacondensableandanon-

condensable.

Basic Calculations for Immersion Heat ExchangersTheintegratedsteadystatemodificationofFourier’s

generalequationisacceptedas:Q=UA∆Tm

Usingvariationsofthisbasicequation,itispossibleto

readilycalculatetheheatexchangersurfaceneeded,the

timetoaccomplishaheat-upoperation,orthetemperature

ofafluidbathattheconclusionofapresetperiodoftime

forthefollowingbasicheatexchangerapplications:1.Maintainingaconstantbatchtemperatureusing

condensingsteam.2.Condensingsteamtoheatupanaqueouschemical

solution.3.Circulatinghotwatertoheatupanaqueouschemical

solution.4.Circulatingcoldwatertocoolanaqueouschemical

solution.

Todeterminetheheatexchangersurfaceareaneeded,it

isrecommendedtheheatexchangersbesizedaccording

tothefollowingapproximatecalculations.Foradetailed

sizing,pleasecontactaGFrepresentative.

A = heatingsurface(ft2)

Q = totalheattransferred(BTU/hr)

U = overallheattransfercoefficient(BTU/hrft2°F)

t = tubingwallthickness(ft)Q

∆Tm•U(ft2)

Table No. 3Thermal Conductivity of Materials

Copper 225 390

Aluminum 117 203

Graphite 87 151

Tantalum 31 54

CarbonSteel 27 47

316SS 94 16.3

Titanium 9.2 16

Ni-Cr-MoAlloys 5.2 9

PE(HD) 0.24–0.29 0.42–0.51

Nylon 0.12–0.17 0.21–0.30

ETFE 0.133 0.23

PFA 0.127 0.22

PP 0.127 0.22

FEP 0.116 0.20

PVDF 0.104 0.18

k( )BTUhr ft °F

Wm Kk( )

General Applications

Page 7: CALORPLAST For Heating or Cooling of Heat Exchangers Available

6

Typical Steps for Heat Exchanger Calculations1.Determineheatlossesfromopentopandtankwalls.

2.Determineheatlossorgainfromadditionofliquidsor

metalstotank.

3.Determineheatloadtoheatorcoolthebathliquid,ifa

timelimitforheatuporcooldownexists.

4.Calculatetherequiredandavailableheatingorcooling

capacity.

5.Establishin/outtemperaturesforbothliquidsormedia

andcalculatethelogmeantemperaturedifference.

6.Calculate/estimateoverallheattransfercoefficientU.

7.Calculaterequiredheattransferarea.

8.Sizethemodule(s)accordingtotankdimensionsand

calculatedheattransferarea.

9.Checktolerablepressuredropthroughmodule(s).

Heat Loss TabulationHeatlossestobeconsideredinclude:

1. Totalheattobegivenortakenawayfromthebathor

tank.

2. Heatlossesfromthetopsurfaceofanopentankor

vessel.

3. Heatlossesthroughthetankwall.

4. Heatlossesfromheating/coolinganymaterialsbeing

treatedand/oraddedtothebath.

5. Heatlossesduetomakeupfluidsbeingadded.

6. Heatlossesduetosplashingoftreatedmaterials.

Pressure DropVerylowpressuredropsoccurinCALORPLASTheat

exchangersduetotheextremelysmoothinsidetube

surfacesandtheoptimaltubingI.D.of0.189inches.

Additionally,theheatexchangersurfaceconsistsofmany

paralleltubesenablingverylowpressuredrops.Pressure

dropvaluesperlinearfootofmodulemaybeapproximated

bythefollowingequations(forPVDF).

For laminar flow:

∆p(psi/ft)=0.00035xvelocityinft/min

For turbulent flow:

∆p(psi/ft)=0.0006xvelocityinft/min

Crosssectionalareaoftubesinonemodule=5.46sq.in.

Forexample,thepressuredropforamodule8.2ft.

longwithfluidflowat20gpm(70ft./min.velocity)is

approximately0.25psi.Thepressuredropacrossa180°

closereturnbendelbow(usedtojointwomodulesinseries

insomedesigns)is0.04psiundertheseconditions.

Page 8: CALORPLAST For Heating or Cooling of Heat Exchangers Available

7

Regardlesswhethertheheatexchangerequirementis

forheatingorcoolingofthetankfluid,theheatloadis

calculatedusingthefollowing:

Q=mCp∆T

WhereQ=Heattoberemovedoradded,inBTU/hr.

m=Quantityoffluidtobeheatedorcooledinlbsperhour

(incorporatesrateofheat-up/cool-down).

Cp=Heatcapacityofthefluidtobeheatedorcooled

(consultfactoryorassumevalueof1BTU/lb°F).

T=Differencebetweeninitialandfinaltemperatureoftank

fluid,in°F.

Notethatiftheheatexchangeristobesizedtoovercome

tankheatlossesonly,thecalculationformediaheatup

requirementmaybeignored.

Cooling to Remove Electrical Energy InputCalculatetheelectricalheatinputusing:

Watts = Amps x Volts

ToconverttoBTU/Hour,use:

Volts x Amps x 3.412 = BTU/HR

Calculating the Overall Heat Transfer Coefficient (U)“U”isanoverallheattransfercoefficientbasedon

temperaturedifferentialandunitheattransferarea.The

reciprocalofUisanoverallthermalresistancewhichcan

beconsideredashavingthefollowingcomponents:

1.Aninsidefilmcoefficient(hi).

2.Awallcoefficient(k/t).

3.Anoutsidefilmcoefficient(ho).

4.Foulingfactorstoallowforscalingonbothsidesofthe

heatexchangertubes(f).

FoulingFactors:Industrialexperiencehasshownthat

foulingfactors(f)forCALORPLASTheatexchangersmay

beconsideredinconsequentialformostapplications.

Determinationsoftheoverallheattransfercoefficient(U),

theinsidefilmcoefficient(hi)andtheoutsidefilmcoefficient

(ho)takeintoaccountseveralfactors,includingtheNusselt

Number,laminarflow,turbulentflow,naturalconvection

(unagitatedbath)andforcedconvection(agitatedbath).

Precisevaluesforthefilmcoefficientsmaybecalculated

onlyforextremelywelldefinedheattransfer(conduction)

andflowregimes.

Approximated for PVDF:

U= 1 (BTU/hr•ft2•°F)

1 + 0.00197 + 1

hi 0.104 ho

ApproximatedforPolypropylene:

U= 1 (BTU/hr•ft2•°F)

1 + 0.00197 + 1

hi 0.127 ho

ApproximatedforPolyethylene:

U= 1 (BTU/hr•ft2•°F)

1 + 0.00197 + 1

hi 0.25 ho

Calculation of ∆Tm

∆Tm = ∆T1-∆T2

Ln(∆T1)∆T1= Hotfluidinlettemperature—

coldfluidinlettemperature

∆T2= Hotfluidoutlettemperature—

coldfluidoutlettemperature

∆T2

Tank Fluid Heat Requirements

Page 9: CALORPLAST For Heating or Cooling of Heat Exchangers Available

8

Approximation of OverallHeat Transfer

Coefficient “U”

Forestimatesofheattransferarea

requirements,anapproximatevaluemaybe

usedfortheoverallheattransfercoefficient.

Pleaserefertothefollowingtablefor

approximate“U”values:

Application “U” Value

(Btu/hr-

sqft-°F)

SteamHeating(PVDFonly) 42

HotwaterPVDF 38

ColdwaterPVDF 33

Hotwaterpolypropylene 40

Coldwaterpolypropylene 35

Hotwaterpolyethylene 48

Coldwaterpolyethylene 39

Lowtemperature(below50°F),contactGF.

Note: Theseareonlyapproximate"U"

values.FordetailedcalculationcontactaGF

representative.

PVDFexchangersforcoolingacid

Page 10: CALORPLAST For Heating or Cooling of Heat Exchangers Available

10

Material of construction

PVDFpolyethyleneandpolypropylene

Applications

Forheattransferbetweencorrosivefluids.Verysuitable

forhighpurityDIwaterandotherhighpurityfluids.For

condensationofaggressivevapors.

Cleaning

Heatexchangersconstructedentirelyofcorrosionresistant

plasticsshouldbechemicallycleaned.

Temperature

Inaccordancewiththematerialofconstructionand

allowableoperatingpressure,thefollowingtemperatureis

possible:

PVDF: 281°F PP: 180°F

PE: 160°F

Layout

AllCALORPLASTheatexchangersarecustomdesignedfor

specificoperatingconditions.Pleasesubmityouroperating

datatoreceiveaquotation(seedatasheetatbackofthis

section)

Design

TheCALORPLASTtubeplateheatexchangerisanentirely

newconceptinheatexchangerdesign.Itisdesignedto

handlemostcorrosiveheatingandcoolingapplications

whenanexternaltypeheatexchangerisrequired.

Theheattransfersurfaceconsistsofanumberoftube

plateswhichareheatfusedoneontopoftheother.The

stackedtubeplatesformacontinuousparallelseriesof

tubesacrosswhichtheshellfluidflows.Thetubefluid

flowswithintheindividualtubes.

Tube Plate Heat ExchangersAdoublewallplasticpressurevesselisobtainedby

stackingofthetubeplates.Eachtubeplateconsistsof

35plastictubeswhichterminateinasquareopensided

header.Thetubeplatesareheatfusedtogetherattheside

oftheheadersothatacontinuousheaderisformed;the

lengthoftheheaderdependsonthenumberoftubeplates.

Theflowdirectionofthetubingisperpendiculartothe

lengthoftheexchanger.

Thesquareheaderofeachtubeplateispartitioned

diagonallyatthecornerstoformaninletandoutletheader.

Ifallofthetubeplatesarelinedupinthesamedirection,

thetubesidefluidwillflowthroughthetubeplatesina

parallelflowpattern.Ifeveryothertubeplateisrotated

90°,thetubesidefluidwillflowinseriesthrougheachrow

oftubes.Regardlessofthetubesideflowconfiguration,the

shellsidefluidalwaysflowsinthecentralchannelformed

bytheinsideofthetubeplateheader.Theflowofthe

shellsidefluidisalwaysperpendiculartothetubesidefluid

flow.

Sincetheentireheatexchangerisheatfused,thereisno

needforamechanicalsealbetweentheshellsideand

tubesidefluids.Becausetheentireheattransfersurfaceis

fabricatedfromcorrosionresistantplastic,Calorplastheat

exchangersareideallysuitedforapplicationswhereboth

thetubesideandshellsidefluidsarecorrosive.

PVDFtube-plateexchangersareidealforhigh-puritymedia.

Tube Plate Cross Section

15.75"

Shellsidecrossflowpattern

Tubesideflowpattern,customizedtoachievetherequiredthermalandhydraulicperformance.

Page 11: CALORPLAST For Heating or Cooling of Heat Exchangers Available

11

DimensionsTubesize: 5mmo.d.Ø 4mmi.d.Ø

15.75"

10.24" 12.60"

15.75"

10.24"

10.24"

11.02"15.75"

Condenser Heatexchangerinverticalposition

Heatexchangerinhorizontalposition

L=Lengthdependingondesignrequirements

L L

L

n2

n1

Flowarrangement

n1=Numberofplatesperpassn2=Numberofpassesperheatexchanger

Joiningofmodules

Page 12: CALORPLAST For Heating or Cooling of Heat Exchangers Available

12

PVDF,polyethyleneandpolypropylenetube-plateheatexchangers,inverticalorientation.

Permissible Working PressuresTemperature of medium (°F) 68 104 140 176 212 248 284

PVDFrupturepressure(psig) 1160 798 725 580 435 325 253

maxworkingpressure(psig) 232 174 130 108 87 65 35

PPrupturepressure(psig) 362 260 203 116

maxworkingpressure(psig) 115 87 58 29

PErupturepressure(psig) 362 260 203 116

maxworkingpressure(psig) 115 87 58 29at160°F

Typical Overall Heat Transfer CoefficientsForestimatingrequiredheattransfersurface,thefollowingvaluesmaybeusedforoverallheattransfercoefficient.For

detailedsizing,consultaGFrepresentative.

Application"U" (Btu/hr-sqft - °F)

PVDF Polypropylene Polyethylene

steamtoaqueoussolutions 60 — —

hotwatertoaqueoussolutions 53 60 80

coldwatertoaqueoussolutions 48 53 71

Page 13: CALORPLAST For Heating or Cooling of Heat Exchangers Available

14

CALORPLASTgas/liquidheatexchangersaredesigned

specificallyforcondensingand/orreheatinghighly

corrosivegasstreams.Manufacturedfromtough,impact-

resistantPVDF(polyvinylidenefluoride)polyethyleneorPP

(polypropylene),theseexchangersarecapableofhandling

gasstreamtemperaturesupto280°F(PVDF).Though

standardconfigurationsexist,eachexchangeriscustom

builttooperateforthespecificheatload,gasvolume

andvelocityoftheapplication.Theyprovideasignificant

costsavingswhencomparedtoconventionalalloy/

metallicexchangers.Theirsmoothplasticsurfacetends

towardverylowfoulingandincrustation,eveninsevere

environments.Apatentedprocesscompletelyeliminates

elastomers,sealsandmechanicaljointswhichmight

otherwiseproduceweakspotssubjecttochemicalattack,

stresscrackingandleakage.

Typicaluses,amongothersinclude:

•Condensationrecoveryofacidiccomponentsfromgas

streamsgeneratedingarbageandbiologicalwaste

incineration

•Reheatingofstackgasesforplumereduction

•Wasteheatrecoveryfromcorrosivestreams

CALORPLAST Gas/Liquid Heat Exchangers for Corrosive Gases

DesignTheexchangerplastictubingis

containedwithinstandardized

injectionmoldedmodules.

Thesemodulesareconfigured

dependingonprocess

requirementsandinstalledwithin

thecorrosionresistanthousing.

Theutilityfluidflowsthroughthe

tubingwhilethegasescooland

condenseontheoutsidetube

surface.

CALORPLASTheatexchangers

arecleanedbymeansof

pressurizedwateror,ifnecessary,

byuseofchemicaldetergents.

Thehighdegreeofcorrosion

resistanceallowschemical

cleaningoftheCALORPLASTheat

exchanger.

Page 14: CALORPLAST For Heating or Cooling of Heat Exchangers Available

15

Tubeside Pressure RatingsTemperatureofmedium °F 68 104 140 176 212 248 280

PVDF Workingpressure psig 232 174 145 109 87 65 35

PP Workingpressure psig 116 87 58 29 — — —

PE Workingpressure psig 116 87 58 29at160°F

Characteristics• Materials:PVDF,polyethyleneand

polypropylene

• Allowableoperatingtemperatureasa

functionofthematerialchosen–22°Fto

280°F(PVDF)

• Outerpipediameter0.25"/6.4mm,wall

thickness0.024"/0.6mm

• Liquidcollectorandcleaningsystem,

constructedofplastic,canbeinstalled

• Strongplasticcasingwithload-bearing

reinforcingribs

• Casinggastightweldedincluding

condensatecollector

• Casingpressureisdependenton

temperature(consultfactory)

Eachheatexchangercanbeequippedwithspraynozzlesforcleaning.TubingisavailableinPVDFpolyethyleneorpolypropylene.Casingavailableinplasticorothermaterials,dependingonapplication.

Gas/liquidheatexchanger:forcondensing/recoveryofacidfromlow-pressurecorrosivegasstreams.

Page 15: CALORPLAST For Heating or Cooling of Heat Exchangers Available

17

Material of ConstructionPVDF,PFA,polyethylene(PE)andpolypropylene(PP)

ApplicationsForcooling,heating,condensingorevaporatingof

aggressive,cleanorhighpuritymedia.

CleaningTheheatexchangersareeasytocleanwithpressurized

water,steamorchemicals.

TemperatureInaccordancewiththeselectedmaterialofconstruction

andallowablepressureofmedia,thefollowingmaximum

temperatureispossible:

PVDF:284°F PFA:390°F

PE: 160°F PP: 180°F

LayoutAllCALORPLASTheatexchangersarecustomdesignedfor

specificoperatingconditions.Pleasesubmityouroperating

datatoreceiveaquotation(seedatasheetatbackofthis

section).Thetubebundlecanbeusedwithouttheshell.

DesignTheCALORPLASTShellandtubeheatexchangeris

designedtohandlemostcorrosiveheatingandcooling

applications,aswellashighpurityapplications.The

shellandtubeismanufacturedwithoutsealsorgaskets,

providingaleak-freesystemforlowmaintenanceandlong

servicelife.

Thecounterfloworientationprovidesmoreefficientheat

transferbetweenthehotandcoldmedia.Thetubefluidwill

flowwithintheindividualtubes,whiletheshellfluidflows

aroundthetubes.

Forhighpurityapplicationstheshellandtubecanbe

fabricatedandpressuretestedinaCleanRoom.

Characteristics• Highdutyofheattransfercapacitybytheemploymentof

thin-walled,smoothnon-foulingtubes.

• Highresistancetohighlycorrosivemedia.

• Easy,compactdesign

• Smallpressureloss:approx.0.1–0.5bar(1.2–7.3psig)

• Smallmaintenancecost

Shell and Tube Heat Exchangers

Endcapremovedtoshowinsidetheexchanger;capisnormallyweldedon.

Page 16: CALORPLAST For Heating or Cooling of Heat Exchangers Available

18

Permissible Working PressuresTemperature of medium (°F) 68 104 140 176 212 248 284

PFARupturepressure(psig) 870 696 565 435 290 174 87

Maxworkingpressure(psig) 145 116 94 73 51 29 15

PVDFRupturepressure(psig) 1160 798 725 580 435 325 253

Maxworkingpressure(psig) 174 145 109 87 65 51 43

PP/PERupturepressure(psig) 362 261 203 116

Maxworkingpressure(psig) 116 87 58 29

Shell and Tube Arrangement

HeatTransferArea: 0.1to25m2(1.08to269ft2)TubeDiameter,d: 4;6;8mmWallThickness: 0.4;0.6;0.8mmShellDiameter,D: upto180mm(~7in.)

TotalLength,L: upto6000mm(~236in.)ConnectionsN1-N4: Flanges PipeUnions ThreadedConnections

N2 N3 N1

N4

L

L1

D d


Recommended