+ All Categories
Home > Documents > Cannabidiol and Multiple Sclerosis - SciTech...

Cannabidiol and Multiple Sclerosis - SciTech...

Date post: 04-Apr-2019
Category:
Upload: dothuy
View: 219 times
Download: 0 times
Share this document with a friend
12
C H A P T E R 893 Handbook of Cannabis and Related Pathologies. http://dx.doi.org/10.1016/B978-0-12-800756-3.00108-3 Copyright © 2017 Elsevier Inc. All rights reserved. 93 Cannabidiol and Multiple Sclerosis M. Mecha, A. Feliú, F.J. Carrillo-Salinas, C. Guaza Neurobiology and Functional Systems Department, Cajal Institute, CSIC, Madrid, Spain SUMMARY POINTS Multiple sclerosis (MS) is the most frequent chronic neurological disease among young and middle-aged people in the northern industrialized countries. MS is pathologically characterized by multifocal inflammation, demyelination and neuronal injury in the central nervous system (CNS). The first-line disease modifying therapies for MS patients include immunomodulatory and immunosuppressive medications. Cannabidiol (CBD), which constitutes up to 40% of Cannabis sativa extract, may represent a promising agent for human therapeutic use due to the lack of psychoactive actions. Up to date, there is no evidence about the full binding of CBD to any known receptor site, and the molecular pharmacology of CBD has not been well defined. Experimental autoimmune encephalomyelitis (EAE) and Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV- IDD) are two experimental models of MS that include classical MS hallmarks like inflammation, neuronal damage, and demyelination. CBD has been shown to ameliorate EAE and TMEV-IDD model symptomatology by diminishing inflammation, microglial activity, and leukocyte homing. Sativex is used for the treatment of symptoms of MS, particularly spasticity and neuropathic pain. KEY FACTS OF NEUROLOGY Multiple sclerosis is a complex heterogeneous demyelinating autoimmune disease that primarily affects the myelin in the central nervous system (CNS). CNS demyelination, the pathological process in which myelin sheaths are lost, is the consequence of a direct insult targeted at the oligodendrocyte. Axonal degeneration is accepted as the major cause of irreversible neurological disability in multiple sclerosis (MS) patients. Autoantigen-specific Th17 and Th1, B cells and monocytes/macrophages have major pathological roles. Pharmacological treatment options approved for MS aim at limiting inflammation and decreasing relapse rate, but, no current therapies can cure the disease. KEY FACTS OF CNS REPAIR Remyelination is the process in which myelin sheaths are restored to demyelinated axons restoring functional deficits. Remyelination involves the generation of new mature oligodendrocytes from oligodendrocyte progenitors. A key function of remyelination in multiple sclerosis is axon survival. The efficiency of remyelination is affected by age, sex, and genetic background regardless of the disease process. The most significant approach to enhance remyelination is to target the endogenous regenerative process.
Transcript

C H A P T E R

893

Handbook of Cannabis and Related Pathologies. http://dx.doi.org/10.1016/B978-0-12-800756-3.00108-3Copyright © 2017 Elsevier Inc. All rights reserved.

93Cannabidiol and Multiple Sclerosis

M. Mecha, A. Feliú, F.J. Carrillo-Salinas, C. GuazaNeurobiology and Functional Systems Department, Cajal Institute, CSIC, Madrid, Spain

SUMMARY POINTS

• Multiplesclerosis(MS)isthemostfrequentchronicneurologicaldiseaseamongyoungandmiddle-agedpeopleinthenorthernindustrializedcountries.

• MSispathologicallycharacterizedbymultifocalinflammation,demyelinationandneuronalinjuryinthecentralnervoussystem(CNS).

• Thefirst-linediseasemodifyingtherapiesforMSpatientsincludeimmunomodulatoryandimmunosuppressivemedications.

• Cannabidiol(CBD),whichconstitutesupto40%ofCannabis sativaextract,mayrepresentapromisingagentforhumantherapeuticuseduetothelackofpsychoactiveactions.

• Uptodate,thereisnoevidenceaboutthefullbindingofCBDtoanyknownreceptorsite,andthemolecularpharmacologyofCBDhasnotbeenwelldefined.

• Experimentalautoimmuneencephalomyelitis(EAE)andTheiler’smurineencephalomyelitisvirus-induceddemyelinatingdisease(TMEV-IDD)aretwoexperimentalmodelsofMSthatincludeclassicalMShallmarkslikeinflammation,neuronaldamage,anddemyelination.

• CBDhasbeenshowntoameliorateEAEandTMEV-IDDmodelsymptomatologybydiminishinginflammation,microglialactivity,andleukocytehoming.

• SativexisusedforthetreatmentofsymptomsofMS,particularlyspasticityandneuropathicpain.

KEY FACTS OF NEUROLOGY• Multiplesclerosisisacomplexheterogeneous

demyelinatingautoimmunediseasethatprimarilyaffectsthemyelininthecentralnervoussystem(CNS).

• CNSdemyelination,thepathologicalprocessinwhichmyelinsheathsarelost,istheconsequenceofadirectinsulttargetedattheoligodendrocyte.

• Axonaldegenerationisacceptedasthemajorcauseofirreversibleneurologicaldisabilityinmultiplesclerosis(MS)patients.

• Autoantigen-specificTh17andTh1,Bcellsandmonocytes/macrophageshavemajorpathologicalroles.

• PharmacologicaltreatmentoptionsapprovedforMSaimatlimitinginflammationanddecreasingrelapserate,but,nocurrenttherapiescancurethedisease.

KEY FACTS OF CNS REPAIR• Remyelinationistheprocessinwhichmyelinsheaths

arerestoredtodemyelinatedaxonsrestoringfunctionaldeficits.

• Remyelinationinvolvesthegenerationofnewmatureoligodendrocytesfromoligodendrocyteprogenitors.

• Akeyfunctionofremyelinationinmultiplesclerosisisaxonsurvival.

• Theefficiencyofremyelinationisaffectedbyage,sex,andgeneticbackgroundregardlessofthediseaseprocess.

• Themostsignificantapproachtoenhanceremyelinationistotargettheendogenousregenerativeprocess.

894 93. Cannabidiol and Multiple SCleroSiS

VII. MEDICINAlCANNABISUSE

LIST OF ABBREVIATIONS

AD AlzheimerdiseaseCBD CannabidiolCNS CentralnervoussystemEAE Experimentalautoimmune

encephalomyelitisEDSS ExpandeddisabilitystatusscaleFAAH FattyacidamidehydrolaseGPCR G-proteincoupledreceptorIFN-β Interferon-betaMCA Middle-cerebral-arteryMHC MajorhistocompatibilitycomplexMRI MagneticresonanceimageMS MultiplesclerosisPPAR PeroxisomeproliferatoractivatedreceptorsPPMS PrimaryprogressivemultiplesclerosisRRMS RemittentrecurrentmultiplesclerosisSPMS SecondaryprogressivemultiplesclerosisTHC TetrahydrocannabinolTMEV-IDD Theiler´smurineencephalomyelitis

virus-induceddemyelinatingdiseaseTPVR-1 Transientpotentialvanilloidreceptor-1

INTRODUCTION

Multiple sclerosis (MS) is the most frequent chronicneurologicaldiseaseamongyoungadultsinthenorthernindustrializedcountries.MSispathologicallycharacter-ized by multifocal inflammation, demyelination, andneuronalinjuryintheopticnerves,brainandspinalcord,

andisconsideredtobeanautoimmunediseasewithacomplex pathophysiology (Compston & Coles, 2002).Thepathologicalhallmarksofthediseaseresultinanaf-fectationofwhitemattertractsandinjurytothecorticalanddeepgraymatter,generatingneurologicsymptomsanddisabilityinpatientswithMS(Table93.1).

MSoccurs ina female–male ratioof3 to1,andhasanestimatedprevalenceofmorethan2.1millionpeopleworldwide (Niedziela, Adamczyk-Sowa, & Pierzcha-la, 2014). It is widelyaccepted that MS cause is multi-factorial,includingmultiplegeneticandenvironmentalriskfactorslikeriskallelesingenesformajorhistocom-patibility complex (MHC), and interleukin-2 and 7 re-ceptorsamongothers(Beechametal.,2013).Moreover,thegeographiclocationofresidencebeforeadolescencemayalsobepredictiveofMSrisk,asithasbeenfound

KEY FACTS ON THE CANNABINOID SYSTEM• Thecannabinoidsystemisaregulatorysystem

identifiedfollowingthestudyofCannabis sativaderivativesinvolvedinthehomeostasiscontrol.

• Theendocannabinoidsignalingsystemiscomposedofcannabinoidreceptors,theirendogenousligandsandtheenzymesthatproduceandinactivatetheseligands.

• Thereare>60cannabinoidcompoundspresentinextractsofC. sativa,and∆9-tetrahydrocannabinol(∆9-THC)isresponsibleforthepsychoactiveeffectsofcannabis,andformanyofthepotentialmedicinaleffects.

• Thenonpsychoactivecannabidiol(CBD)istheothercannabinoidderivedfromC. sativaofcurrentmedicalinterestinMS.

• Sativexisanoromucosalspray,constitutedbyanequimolecularcombinationof∆9-THCandCBD-enrichedbotanicalextractsapprovedforthetreatmentofspasticityandpainassociatedtoMS.

TABLE 93.1 expanded disability Status Scale (edSS) in patients With MS

TheKurtzke’sEDSSscores8functionalsystemsandtheperson’sabilitytowalk.From0.0to4.0,peopleareabletowalkwithoutassistance.From4.0to7.5,peoplecanwalkbutwithassistance.Mainly,point6onthescalerepresentswalkingwithacane,andthispointisoftenusedasanendpointoftheprogressionofdisability.From7.5to10,themaindeterminantofEDSSistheperson’sabilitytotransferfromwheelchairtobedandself-care.AnEDSSof10isnotincludedinthistablebecauseitmeansdeathofthepatientduetoMS.

Cbd pharMaCology and MeChaniSMS of aCtion 895

VII. MEDICINAlCANNABISUSE

increasedratesofthediseaseinnorthernandsouthernlatitudescomparedwithequatorialcountries,probablylinkedtoavitaminDdeficiency(VanderMeietal.,2003).Additionally, the risk to MS may be influenced by theexposuretoparticularinfectiouslikeEpstein–Barrvirus(lassmann,Niedobitek,Aloisi,&Middeldorp,2011)andHerpesvirus6(Tait&Straus,2008).

Thefirst-linediseasemodifying therapies forMSpa-tientsincludeimmunomodulatoryandimmunosuppres-sive medications like interferon-β (IFN-β) or glatirameracetateamongothers(Table93.2),whichhasbeenshowntoreducebothriskofrelapseandnewlesionformationonMRIscans.Paradoxically,antiinflammatorytreatmentmightcontribute to the failureof repair,as results fromstudiesofpatientswithMS indicate that the inflamma-tionblockademighttriggercounter-regulatoryinflamma-torymechanismsusedtohealtheinjuredtissue(Martinoetal.,2002),andsuggestingthattissueintegrityisrestoredby the conversionof the inflammatory response fromadamagingtoarepairingone(Nathan,2002).

Evidencesuggestthatneuroinflammation,demyelin-ation,andneurodegenerationmayoccurinparallel,thecombination of antiinflammatory, oligoprotective andneuroprotectivestrategiesariseasanemergingtherapyforthesymptomaticandtherapeutictreatmentofMS.Inthisline,C. sativaderivativeshaveattractedspecialinterest regardingputative therapeuticproperties,de-spitethefactthatthesecompoundshavealwaysraisedbothethicalandpracticalproblemsfor theirpotentialabuse and unavoidable psychotropic effects. Amongmarijuanacompounds,cannabidiol(CBD),whichcon-stitutesupto40%ofcannabisextract,mayrepresentapromisingagentforhumantherapeuticuseasitlacksanycognitiveandpsychoactiveactions,andhasanex-cellent tolerability profile in humans (Mechoulam &Hanus,2002).

AlargenumberofclinicaltrialshavebeenperformedtoassesstheclinicalefficacyofCBDindifferentpathol-ogies.Mostof themhasbeen focusedonSativexcom-pounds (GW Pharmaceuticals; Salisbury, United King-dom),acommerciallyavailablepreparationcontainingCBDand∆9-THCunderfourdifferentformulationsthatdiffersintheconcentrationofCBDand∆9-THC(tetrahy-drocannabinol).TheoromucosalsprayadministrationofSativexhasbeenagreedin2005forthetreatmentofpainand spasticity in MS (Perras, 2005). In the central ner-voussystem(CNS),CBDhasbeenreportedtoactasanantiinflammatorycompound,thusbeingusefulforneu-roinflammatorydisordersbutalsoasaneuroprotectiveagentbynormalizingglutamatehomeostasis,reducingoxidativestress,andattenuatingglialactivationandtheoccurrence of local inflammatory events (reviewed byFernandez-Ruizetal., 2013).All thesepropertiespointoutCBDasapromisingtherapeuticagentforthetreat-mentofneuroinflammatorydisorderslikeMS.

CBD PHARMACOLOGY AND MECHANISMS OF ACTION

Isolated in across the 1930s and 1940s from C. sativa,the structure and configuration of CBD was fully eluci-dated by Mechoulam et al. in the 1960s (Mechoulam &Shvo,1963;Mechoulam,Shani,Edery,&Grunfeld,1970).ThefirststudyfocusingonCBDpharmacologywaspub-lished in 1981, regarding hypnotic and anticonvulsantproperties(Carlini&Cunha,1981).Alongthistime,sev-eral studieshavebeendone to identify themechanismsthroughwhichCBDexertsitsactions.Uptodate,thereisnoevidenceaboutthefullbindingofCBDtoanyknownreceptorsite.ThemolecularpharmacologyofCBDhasnotbeenwelldefinedyet,andlittleisknownaboutapossibleCBD-receptor-mediated signaling pathway. It is knownthat many of the CBD effects are associated with bothcentralandperipheralactions,andnumerousstudieshasbeenreportedtryingtoelucidatesomeofitsmechanismsofaction(Table93.3),thataredetailedlaterinthechapter.

CBD is a Potent Antioxidant

PioneerworksbyHampson,Grimaldi,Axelrod,andWink(1998)showedthatCBDhasantioxidantpropertiesthathavebeenconfirmedalongseveralpublications.Theplantcannabinoids,beingmonophenols,monophenolicesthers(likeTHC),orresorcinols(likeCBD)arelikewisepotentantioxidants.Hampsonetal.(1998)demonstrat-edthatCBDexertedapotentantioxidantactivitythatre-sultedmoreprotectivethaneitherascorbate(vitaminC)orα-tocopherol(vitaminE)againstglutamate-mediatedneurotoxicity.TheseobservationssuggestthatCBDmaybeapotentialtherapeuticagentforthetreatmentofoxi-dativeneurologicaldisorderslikecerebralischemia,andfordiseasesthatcoursewithoxidativedamage.

CBD Potentiates the Endocannabinoid Signaling System

Intheimmaturedamagedbrain,CBDhasshowndi-rectactivitybindingtotheCB2receptor,andanindirectactivitythroughaninhibitoryeffectonthemechanismsofinactivationofendocannabinoids(transporter,FAAHenzyme)(Bisognoetal.,2001;DeFilippisetal.,2008).Inthisline,theenhancementoftheendocannabinoidtonemaymediatesomeoftheantiinflammatoryandneuro-protectiveeffectsofCBD.

CBD Binds With Low Affinity to Both CB1 and CB2 Cannabinoid Receptors

At concentrations in the micromolar range, CBDshows weak ability to remove 3[H]CP55940, a not se-lective ligand for CB receptors from both CB1 and

VII.M

ED

ICIN

AlC

AN

NA

BISU

SE

TABLE 93.2 Currently available MS treatments

Treatment

Year of FDA approval Type

Route of administration Implications Mechanism of action Side effects

Acute Methylprednisolone(Solu-Medrol)

1959 Glucocorticoid Intravenous(3–5days)

Acuterelapse StabilizingtheBBB,decreasingproinflammatorycytokines,andinducingTcellapoptosis

Disturbanceoftaste,facialflushing,insomnia,psychiatricdisturbance,exacerbationofacne,transienthyperglycemia,andhypertension

ACTH(H.P.Acthar) 1978 Hormone Intramuscularorsubcutaneous(5–15days)

Acuterelapse Stimulatestheadrenalcortexglandtosecretecortisol,corticosterone,andaldosterone

Vomiting,changeinappetite,diarrhea,constipation,restlessness,difficultysleeping,sweating

Plasmaexchange / / Intravenous Acuterelapse Exchangeofimmunoglobulins Hypocalcemia,hypovolemia,andanaphylactoidreactions

Chronic IFNβ-1a(Avonex) 1996 Cytokine(lowdose) Intramuscularinjection

RRMSfirstline

Suppressestheproliferationofmyelin-basicprotein-specificTcells.Reducestheproductionofproinflammatorycytokines,andinducesantiinflammatorycytokines.EffectsontheendothelialcellsoftheBBB

ProductionofNAb(IFNβ1AlessthanIFNβ1B)Influenza-likesymptoms.Headache,injectionsitereaction,asthenia,lymphopenia,depression,hepaticinjury,congestiveheartfailure,anaphylacticshock,andpain

IFNβ-1a(Rebif) 2002 Cytokine(highdose) Subcutaneousinjection

IFNβ-1b(Betaseron) 1993 Cytokine(highdose) Subcutaneousinjection

Glatirameracetate(Copaxone)

1996 Syntheticpolymerofrandomsequencesof4aa(l-tyr,l-glutl-Ala,l-lys)

Subcutaneousinjection

RRMSfirstline

Unknown,possiblebindingtothemajorMHC-IIcompetingwiththeotherMSputativeAg

Injectionsitereactions,tightness,anxiety,dyspnea,palpitation,vasodilation

Mitoxantrone(Novantrone)

2000 Antineoplasticdrug Intravenousinfusion

RRMSSPMS InhibitBcell,Tcell,macrophageproliferation.Impairantigenpresentation,andthesecretionofIFN-γ,TNFα,andIl-2

Cardiotoxicity,myelogenousleukemia,gonadaldysfunction

Natalizumab(Tysabri)

2006 Humanizedanti-VlA-4monoclonalantibody

Intravenousinfusion

RRMSfirstline

Targetstheα4-chainofα4β1integrindecreasingtheaccumulationofactivatedleukocyteswithintheCNS

Headache,fatigue,arthralgia,urinarytractinfection,lowerrespiratoryinfections,gastroenteritis,vaginitis,diarrhea,hypersensitivityreactions,hepatotoxicity,PMl

Dalfampridine(Ampyra)

2010 4-aminopyridine(4-AP)

Oralcapsule Chronicprogressive

Potassiumchannelblocker,potentcalciumactivator

Dizziness,nervousness,nauseaurinarytractinfection

Fingolimod(Gilenya)

2010 Sphingosine-1-phosphate(SIP)receptormodulator

Oralcapsule RRMSsecondline

SIPreceptorantagonistinlymphocytes.Itblockstheabilityoflymphocytestoleavelymphnodes

Headache,infections,bradycardiabradyarrhythmias,macularedema

Teriflunomide(Aubagio)

2012 Drug Oralcapsule RRMS BindstoDHODHproteininhibitingpyrimidinesynthesisinproliferatingcellssuchasTandBlymphocytes(immunomodulatory)

Dyspnea,diarrhea,nausea,alopecia,hepatotoxicity,acuterenalfailure,hypertension,leukopenia

Dimethylfumarate(Tecfidera,BG12)

2013 α,β-unsaturatedester

Oralcapsule RRMSfirstline

ReducetransendothelialmigrationofactivatedleukocytesthroughtheBBB.Neuroprotectiveeffectsviaactivationofantioxidativepathways

Gastrointestinaldisorders,lymphopenia,flushing,pruritus,rash,erythema

AcuteandchronictreatmentsavailableforMSpatients(reviewedinDamal,Stoker,&Foley,2013;Kantarci,Pirko,&Rodriguez,2014).PMl,progressivemultifocalleukoencephalopathy;ACTH,adrenocorticotropichormone;DHODH,dihydroorotatedehydrogenaseBBB,blood–brainbarrier.Intravenousimmunoglobulins(IVIG)andcyclophosphamideforacuterelapsesarenotcoveredinthistable.

Cbd pharMaCology and MeChaniSMS of aCtion 897

VII. MEDICINAlCANNABISUSE

TABLE 93.3 Cbd Molecular Mechanism of actions and effects

Targets Mechanisms Affinity/dose Effect

Receptors and channels

CB1/CB2 Antagonist KB79nM(CB1);138nM(CB2) Antagonizescannabinoidinduceantispas-modiceffect

CB2 Inverseagonist EC50:503nM Antiinflammatoryeffect

GPR55 Antagonist IC50:350nM Antagonisticactivityinhumanosteoclasts

5-HT3Aligand-gatedchannel Allostericinhibition IC50:0.6µM Modulationofnociceptionandemesis

TRPM8cationchannel Antagonist EC50:80–140nM;IC50:60nM Analgesiceffects

TRPA1cationchannel Agonist EC50:110nM;IC50:160nM Analgesiceffects

PPARγnuclearreceptor Agonist IC50:±5µM Vasorelaxationantiinflammatoryeffect

T-typeCa2+channel Inhibitor IC50:±1µM Nociceptiveandantiepilepticeffects,sleepregulation

TRPV1cationchannel Agonist EC50:1µM;IC50:0.6µM Antipsychoticandanalgesiceffects

TRPV2cationchannel Agonist EC50:1.25µM;IC50:4.5µM Antiinflammatory/analgesic/antinocicep-tiveeffect

5-HT1Areceptor Agonist 80%displacementat16µM Antiischemicandanxioliticproperties.Neuroprotective

µandδopioidreceptors Allostericmodulation EC504.38(µ);4.10(δ) Potentiallyenhancetheeffectsofopiates

α1andα1βglycineligand-gatedchannels

Positiveallostericmodulation

EC50:12.3µM(α1);18.1(α1β) Roleinchronicpainafterinflammationornerveinjury

Abnormal-CBDreceptor Antagonist Effectat1µM Attenuatesthevasodilatorresponsetoanandamide

Targets Mechanisms Affinity/dose Effect

Enzymes

CYP1A1 Competitiveinhibitor IC50:0.41µM MightleadtointeractionofdrugsortoxicantsmetabolizedbyCYPenzymes.PossibleadverseeffectsorintoxicationCYP1A2andCYP1B1 Competitiveinhibitor IC50:3.8µM(A2);5.96µM(B1)

CYP2B6 Inhibitor Ki:0.694µM

CYP2D6 Competitiveinhibitor IC50:6.65µM

CYP3A5 Inhibitor IC50:1.65µM

CYP2A6 Inhibitor Ki:55µM

CYP3A4andCYP3A7 Inhibitor IC50:11.7µM(A4)23–31µM(A7)

FAAH Inhibitor IC50:15.2µM IncrementofAEAtone.Analgesic,antiinflammatoryeffects

Mg2+-ATPase Inhibitor Effectat50µM Anticonvulsanteffect

AANAT Inhibitor 65%reductionat10µM Reducesmelatoninbiosynthesis

5-lipoxygenase Inhibitor IC50:73.73µM Antimitoticeffectingliomacells

15-lipoxygenase Inhibitor IC50:2.56µM Involvedinatherosclerosis

PhospholipaseA2 Activator/inhibitor EC50:6.4µM(+)134µM(−) Antiinflammatoryeffects

Indoleamine-2,3-dioxygenase Inhibitor IC50:2.8µM/ml Enhanceoftryptophanandthereforeserotonin.Improvementofmooddisturbances

(Continued)

898 93. Cannabidiol and Multiple SCleroSiS

VII. MEDICINAlCANNABISUSE

CB2 receptor sites (Thomas, Gilliam, Burch, Roche, &Seltzman,1998).

CBD Antagonizes CB1 and CB2 Receptor Agonists, and Can Act as an Inverse Agonist of CB2 Receptor

CBDattenuatestheeffectsofWIN55212andCP55940(CB1agonists)atprejunctionalsitesinmousevasdefer-ens(Pertwee,Ross,Craib,&Thomas,2002).Moreover,at concentration values in low nanomolar range, CBDcouldworkasaninverseagonistofCB2receptor,as ithasbeendemonstratedinwhole-brainmembranesandmembranes from CHO cells transfected with humanCB2 receptors (Thomas et al., 2007). This mechanismmayexplainsomeofthepharmacologicaleffectsofCBDsuchasitsantiinflammatoryproperties.

CBD Enhances Adenosine Signaling

CBD binds to the equilibrative nucleoside-trans-porter-1 with a Ki value below 250 nM, which in turnled to the increase of extracellular adenosine (Carrier,Auchampach,&Hillard,2006).NeuroprotectiveeffectsofCBDinhypoxic–ischemicbraindamagealsoinvolve

adenosineA2receptors(Castillo,Tolon,Fernandez-Ruiz,Romero,&Martinez-Orgado,2010).Moreover,CBDdi-minishesinflammationinacutemodelsofinjury(Ribeiroetal.,2012)andinaviralmodelofMSthroughadenos-ineA2receptors(Mechaetal.,2013b).

CBD Interacts With the Transient Potential Vanilloid Receptor Type-1 (TPVR-1), and With 5-HT1A Serotonin Receptor

BothCBDandits(+)enantiomerinteract(EC50esti-matedbetween3.2and3.5µM)withTPVR-1 receptor,withamaximaleffectthatissimilartothenaturalago-nist capsaicin. These effects have been confirmed bothin vitro (Bisogno et al., 2001) and in a model of acuteinflammationinrats(Costa,Giagnoni,Franke,Trovato,&Colleoni,2004).

In relation to 5HT1A serotonin receptors, Russo,Burnett,Hall,andParker(2005)demonstratedthatCBDdisplacestheagonist([3H]-8-OH-DPAT)fromthehumanclonedreceptor inaconcentration/dependentmanner,and that it increases [35S]GTPgSbinding in thisG-pro-tein-coupledreceptor(GPCR)systemdecreasingcAMPconcentrationatsimilarapparentlevelsofreceptoroccu-pancy.Inaddition,CBDsignificantlyreducestheinfarct

Targets Mechanisms Affinity/dose Effect

Glutathioneperoxidase Activator Effectat10and25µM ROSproductionandcaspaseactivationintumorcells

Glutathionreductase Activator

Superoxidedismutase Inhibitor Effectat100µM GeneratesROSandinducescelltoxicityintumorcells

Catalase Inhibitor

NAD(P)H-quinonereductase Inhibitor

Progesterone17α-hydrolase Inhibitor Effectat1M Interactionwithsteroidmetabolism.InhibitsthetestosteronesynthesisinrattestisTestosterone6β-hydrolase Inhibitor

Testosterone16α-hydrolase Inhibitor

Targets Mechanisms Affinity/dose Effect

Transporters and cellular uptake

Adenosineuptake Competitiveinhibitor IC50:120nM Incrementofadenosinetoneantiinflammatoryeffect

IntracellularCa2+uptake Inhibition Effectat1µM Neuroprotectiveandantiepilepticproperties

Anandamidereuptake Inhibitor IC50:28µM IncrementofAEAtone

Cholineuptake Inhibitor EC50:1.6pM IncrementofAchtone

P-glycoprotein(drugeffluxtransporter)

Inhibitor IC50:39.6µM PotentiallyinfluencetheabsorptionanddispositionofcompoundsthatareP-gpsubstrates

MoleculartargetsofCBD,includingcannabinoidandnoncannabinoidreceptors,enzymes,transporters,andcellularuptakeproteins(reviewedinIzzo,Borrelli,Capasso,DiMarzo,&Mechoulam,2009;Mechoulam,Petersa,Murillo-Rodriguez,&Hanus,2007;Hill,Williams,Whalley,&Stephens,2012).CYP,CytochromeP450enzymes;AANAT,arylalkylamineN-acetyltransferase;FAAH,fattyacidamidehydrolase;AEA,N-arachidonoylethanolamide;Ach,acetylcholine;ROS,reactiveoxygenspecies.

TABLE 93.3 Cbd Molecular Mechanism of actions and effects (cont.)

Cbd and aniMal ModelS of MS 899

VII. MEDICINAlCANNABISUSE

volume induced by middle-cerebral-artery (MCA) oc-clusion(Mishimaetal.,2005),exertinganeuroprotectiveeffectthatwasinhibitedbytheserotonin5-HT1Arecep-tor antagonist WAY100135, but not by capsazepine, avanilloid-receptorantagonist.

CBD Allosterically Modulates µ and δ Opioid Receptors

Data from Kathmann, Flau, Redmer, Tränkle, andSchlicker(2006)showthat,onratcerebralcortexmem-brane homogenates, CBD accelerated the dissociationof both the µ opioid receptor agonist [3H]DAMGO in-duced by naloxone, and the δ opioid receptor agonist[3H] naltrindole induced by naltrindole. Interestingly,this property was shared by THC, but not by the CB1cannabinoid-receptor antagonist rimonabant. As thismodulationofopioidreceptorsoccursatveryhighlev-elsofCBD,itcannotbeexpectedtocontributemarkedlytothephytocannabinoidactionsinvivo.

CBD Affects Nuclear Receptors of the Peroxisome Proliferator-Activated Receptors (PPAR-g), and Antagonizes the Orphan Receptor GPR55

Recently, it has been discovered the ability of dif-ferent endocannabinoids and phytocannabiniods, in-cluding CBD, to display an extra-cannabinoid recep-torbindingactivitybytheinteractionwithperoxisomeproliferator-activated receptors (PPARs) (O’Sullivan &Kendall, 2010). PPARs belong to the family of nuclearhormone receptors, and have been reported to controlthe expression of genes related to inflammatory re-sponses. Esposito et al. (2011) reported that the block-adeofPPARγinaratmodelofAlzheimerdisease(AD),bluntedCBDeffectsonreactivegliosisandsubsequentlyonβ-amyloid-inducedneurotoxicity.Moreover,andduetotheinteractionofCBDwithPPARγ,thiscannabinoidwasobservedtostimulatehippocampalneurogenesis.

Additionally, CBD displays GPR55 antagonistic ac-tivityinhumanosteoclasts(Whyteetal.,2009),andhasnoGPR55agonisticactivitywhenassayedinβ-arrestinrecruitment and calcium mobilization assays (Yinetal.,2009;Kapuretal.,2009),demonstratingthatCBDcanactasanantagonistoftheorphanreceptorGPR55.

CBD TOXICITY AND PHARMACOKINETIC

InviewofthepotentialtherapeuticuseofCBD,andencouragedbythelackofitsundesiredpsychotropicef-fects,severalstudieshavebeenperformedtodeterminethetoxicologicalprofileofthisphytocannabinoid.

VerylowtoxicityofCBDhasbeenfoundbothinhu-manandinotherspecies,withanlD50of212mg/kgwhen intravenously injected into rhesus monkey(Rosenkrantz, Fleischman, & Grant, 1981). The oraltoxicity of CBD had not been clearly established, butRosenkrantz et al. (1981) showed that an oral dose of20–50 times larger than the intravenous route of CBDis required to initiate severe intoxication.Additionally,CBDdoesnotcauserelevantCNSalterations,anddoesnotdisplaymutagenicorteratogenicactivities(Dalterio,Steger,Mayfield,&Bartke,1984;Matsuyama&Fu,1981).

In regards of the pharmacokinetic of CBD, reviewedbyGrotenhermen(2003),onceorallygivenandduetoamarked first-pass effect, CBD bioavailability ranges be-tweenvaluesof13%and19%,whilethesystemicbioavail-abilityofinhaledCBDhasarangeof11–45%makingforthisreasontheintravenouslyadministrationrouteprefer-able.WithplasmapatternsimilartothatofTHC,afteritsadministrationCBDisrapidlydistributed,andduetoitslipophilicnaturecaneasilypass theblood–brainbarrier.ThebiotransformationroutesforCBDarethosetypicallyobserved forphytocannabinoids,withmultiplehydroxi-lations,oxidationstocarboxylicacids,β-oxidation,conju-gationandepoxidation(Harvey&Mechoulam,1990;Sa-mara,Bialer,&Harvey,1990a).ThisturnsintoaprolongedeliminationofCBD,withaterminalhalf-lifeofabout9h,being preferentially excreted in the urine as free and itsglucuronidecompound(Samara,Bialer,&Harvey,1990b).

CBD AND ANIMAL MODELS OF MS

TheuseofanimalmodelstostudyacomplexdiseaselikeMShasallowednotonlytoabetterunderstandingaboutthepathophysiologyofthehumandisease,butalsotothedevelopment of preclinical testing of disease therapies.TherearetwomainanimalmodelstostudyMS:experi-mentalautoimmuneencephalomyelitis(EAE),inducedbyimmunizationagainstmyelin,andexperimentalviralin-fectionliketheoneinducedwithTheiler’smurineenceph-alomyelitisvirus(TMEV)insusceptiblemice(reviewedinMecha, Carrillo-Salinas, Mestre, Feliu, & Guaza, 2013a).Both animal models include classical MS hallmarks likeinflammation,neuronaldamageanddemyelination,andithasbeendescribedtheabilityofcannabinoidstoexhibittherapeuticpotentialusingthesetwomodels.

TheenhancedleukocytetraffickingisakeyfeatureinMS,andthereareavailabletherapiesdesignedtotargetCNSinflammationinitsearlyevents,suchasnatalizum-ab(Tysabri),whichinterfereswiththehomingofimmunecellstotheCNSandiscurrentlyprescribedforthetreat-ment of relapsing remitting MS (Krumbholz, Derfuss,Hohlfeld,&Meinl,2012).Inthisline,thetreatmentwithcannabinoidagonistshasbeenshowntobeeffective intheleukocyterollingandadhesiontoendothelialcellsin

900 93. Cannabidiol and Multiple SCleroSiS

VII. MEDICINAlCANNABISUSE

EAE(Nietal.,2004),aswellasintheprogressionofthedisease in TMEV infected mice through the regulationofadhesionmoleculesbothinvivo(Mestreetal.,2009)andinvitro(Mestreetal.,2011).TheimmunoregulatorycapacityofcannabinoidsinEAEhasalsobeenreported(Cabranesetal.,2005;Mareszetal.,2007).

RegardingtheeffectsofCBDintheanimalmodelsofMS(Fig.93.1),onlytwostudieshavebeenpublishedshowingthepromisingtherapeuticeffectofthisC. sativaderivativecompound.Inthisline,CBDhasbeenshowntoameliorateEAEsymptomatologybydiminishinginflammation,mi-croglialactivityandleukocytehominginthespinalcordofimmunizedanimals(Kozelaetal.,2011).lately,Mechaetal.showedin2013thatCBDalsoexertsbeneficialeffectsinTMEV-IDDinduceddemyelinatingdiseasebydecreas-ingtheexpressionofadhesionmolecules,thehomingofleukocytestotheCNS,andtheneuroinflammationintheacute phase of the TMEV-IDD model with long lasting-effectsontheclinicalcourseofthedisease.

CBD AND MS: PERSPECTIVES

MS,oneofthemostcommonautoimmuneneurode-generativediseases,remainswithanuncleartriggerandstill missing therapeutic solutions. Difficulties in clini-caltrialsinpatientswithMSareduetothediverseandheterogeneous population varying in terms of diseasetype, severity, variable progression/time course, andwithregardtothewiderangeofpresentingsymptoms.BesidethecurrentlyavailableMStreatmentsdescribedintheintroduction,thereareotherpotentialcompoundsinclinicalphasethat involvestheimmunesystemasatherapeuticapproach(Table93.4).

Extensive preclinical findings have reinforced thenotion deduced from the anecdotal observations thatcannabisderivativesmayhavearoleinrelievingsymp-tomsinMSpatients.TheclinicaltrialsfocusedinSativex

efficacyinthetreatmentofsymptomsofMS,particularlyspasticityandneuropathicpain.Beneficialresultsinpla-cebo-controlled trialswereobtainedwhenSativexwasadministeredasanadd-ontherapyintheseindications,supportingtheviewthatSativexisefficaciousandwelltolerated for the treatment of these symptoms (Collin,Davies,Mutiboko,&Ratcliffe,2007;Wade,Collin,Stott,&Duncombe,2010;Novotnaetal.,2011).Additionaltri-als confirmed that the CBD/THC combination reducesleep disturbance in patients with MS-related neuro-pathicpainandthatthistreatmentismostlywelltolerat-ed(Iskedjian,Bereza,Gordon,Piwko,&Einarson,2007;Rog,Nurmikko,&Young,2007).CurrentTHCanalogsor Sativex trials in MS for symptomatology controlhave,sofar, failedtodemonstratearelevantreductionofrelapse,indicativeofimmunosupressivepropertiesinhumans(Zajiceketal.,2005).Evidencefrompreclinicalobservationsunderlinestheinterestofcannabinoidsasneuroprotectiveagentsbesides theirabilitiesas immu-nomodulators.However,thereisalackofpreclinicalandclinicalstudiesevaluatingtheSativexuseinprogressiveMS(primaryorsecondary)diseaseasadiseasemodify-ingdrug.Inaddition,thereisalackofclinicaltrialsrelat-ingtheadministrationoforalCBDaloneinMSpatients,besidesthesuggestiveprofileofCBDasimmunomodu-lator, antioxidant, neuroprotective, and oligoprotectiveagentaswedescribedabove.

Because of the interest of CBD alone as therapeuticagentinotherneurodegenerativepathologies(Table93.5)such as Huntington disease as well as in very diverseCNSpathologiesthatincludeepilepsy,schizophreniaoreven affective disorders, there are studies administer-ingCBD-aloneatdifferentdoses tohealthyvolunteersbyoralorIVroute(Zhornitsky&Potvin,2012).OnthebasisofCBDeffectsonexperimentalmodelsofMSandonCNScelltypes(Fig.93.2)futurestudiesshouldinves-tigate clinical applications of oral CBD for MS, RRMS,and PPMS/SPMS, and should also administer CBD to

FIGURE 93.1 CBD and animal models of MS.PrincipalhallmarksofthetwomousemodelsofMS,andbeneficialeffectsofCBD(dpi,dayspostimmunizationinthecaseofEAE;anddayspostinfectioninTMEV-induceddemyelinatingdisease).

Cbd and MS: perSpeCtiveS 901

VII. MEDICINAlCANNABISUSE

patientsforprolongedperiodoftimeinordertosimu-latethechronicconditionofthisdisease.AmongC. sa-tivaderivedcompounds,CBDwhichlacksanyunwant-edpsychotropiceffectmayrepresentapromisingagentwith the highest prospect for therapeutic use but thishypothesisneedstobeproved.

TABLE 93.4 MS therapy pipeline

Name TypeRoute of administration Pending indications Phase Mechanism of action

laquinimod Derivativeoflinomide Oral RRMS III Inducesantiinflammatorycytokineprofileinhumans.InhibitsTh1andTh2leukocytemigrationintodeCNS.

Rituximab(Zituxam)

Chimerichuman/mouseanti-CD20monoclonalantibody

Intravenous RRMS(approvedbyFDAforlymphomaandarthritisrheumatoid)

III DepletesCD20+Blymphocytesviacell-mediatedandcomplement-dependentcytotoxiceffects,andpromotesapoptosisofthesecellsintheperipheralcirculation

Daclizumab(Zenapax)

Humanizedanti-CD25monoclonalantibody

Subcutaneous RRMS III TargetstheαsubunitofIl2RCD25onactivatedTlymphocytes.BlockingtheCD25downregulatestheproliferationofBandTlymphocytesviareductionthesecretionofproinflammatorycytokines.ProductionofCD56positivenaturalkillercellswithregulatoryfunction

Alemtuzumab(Campath-1H)

Humanizedanti-CD52monoclonalantibody

Intravenous RRMS(approvedbyFDAforleukemia;betterthanRebif)

III TargetsthemoleculeCD52,expressedonthesurfaceofmaturelymphocytes,monocytes,andmacrophages.Itdepletesthesecellsviacomplement-mediatedlysisantibody-dependentcelltoxicityandapoptosis.InducestheproductionofneurotrophicfactorsbythereconstitutedautoreactiveTlymphocytes

Ocrelizumab Humanizedanti-CD20monoclonalantibody

Intravenous RRMS II DepletesCD20+Blymphocytes

PerspectivesfornewtreatmentsforMSpatients,includingthephaseoftheclinicaltrialandtheexpectedmechanismofaction(reviewedinMinagar,2013).

TABLE 93.5 potential beneficial effects of Cbd in humans

Ischemia

Huntingtondisease

Parkinsondisease

Multiplesclerosis

Alzheimerdisease

Priondiseases

PsychiatricdisordersObsessivecompulsivebehaviorDepressionSchizophreniaAnxietyPsychosis

Epilepsy

Cancer

Diabetes

Rheumatoidarthritis

Amyotrophiclateralsclerosis

DifferentdiseasesinwhichthetreatmentwithCBDcanbetherapeuticbasedontheeffectsonmousemodels(reviewedinFernandez-Ruizetal.,2013andPertwee,2012).

FIGURE 93.2 Cellular targets of CBD.Neurons,oligodendrocytes,microglialandendothelialcellscanbetargetsoftheeffectsofCBDintheCNS.Theactionsonastrocytecellshavenotyetbeendetermined.

902 93. Cannabidiol and Multiple SCleroSiS

VII. MEDICINAlCANNABISUSE

MINI-DICTIONARY

Autoimmune disease Anabnormalimmuneresponseofthebodytotissuesandmoleculesnormallypresentinthebody.ItcompromisestheproductionofautoantibodiesfromtheB-cellsoftheimmunesystem.Thetreatmentofautoimmunityincludesimmunosuppresion,todecreasetheimmune“self”response.Cannabidiol Oneofatleast60activecannabinoidsidentifiedinCannabis sativa,countingforupto40%oftheplant’sextract,consideredtohaveawiderscopeofmedicalapplicationsthanTHCwithnopsychoactiveeffects.Demyelination Damagetothemyelinsheaththatcoversnervefibersinbrainandspinalcord.Thisprovokesthatnerveimpulsessloworevenstop,causingneurologicalalterations.EAE model AnanimalmodelofCNSautoimmuneinflammationthatcourseswithinflammationanddemyelination,andisusedasanexperimentalmodelforthehumaninflammatorydemyelinatingdiseaseMS.Mainlyinducedbyinoculationwithspinalcordhomogenatesormyelinproteinsorpeptides,thatresultsindistinctmodelsofdiseasecoursedependingofthegeneticbackgroundofmice.Endocannabinoid system lipidsystemofintercellularcommunicationconstitutedbyendogenousligands,receptors,andthemachineryofsynthesisanddegradationenzymes.It´sinvolvedinavarietyofphysiologicalprocessesincludingmemory,mood,pain-sensation,andappetite.CannabinoidsextractedfromC. sativausethisendogenoussystemtoexerttheircentralandperipheralactions.Multiple Sclerosis Chronicneurologicaldiseasethatispathologicallycharacterizedbymultifocalinflammation,demyelination,andneuronalinjuryinopticnerves,brain,andspinalcord.Mainlyconsideredasanautoimmunedisease.Neurodegeneration Aconditionthatresultinprogressivelossofneuronalstructureandfunctionwithneuronaldeath.SomeneurodegenerativedisordersincludeParkinson,Alzheimer,andHuntingtondisease.Neuroinflammation Inflammationofthecentralorperipheralnervoussystem.Itcanbeinitiatedinresponsetoinfection,autoimmunity,traumaticbraininjuryortoxicmetabolitesamongothers.Neuroinflammationcompromisesmicroglialcells,theresidentinnateimmunecellsoftheCNS,andcirculatingperipheralimmunecellsthatinfiltratethroughthebloodbrainbarrier.Oligodendrocyte MyelinatingcelloftheCNS.Myelinactsasaninsulatorofaxonalsegmentsandisaprerequisiteforthehighvelocityofnerveconduction.Sativex CannabinoidmedicineforthetreatmentofspasticityduetoMSwhichisalsoindevelopmentforcancerpainandneuropathicpain.CommercializedbyGWPharmaceuticals,thepreparationcontainingCBDand∆9-THCisavailableunderfourdifferentformulationsthatdifferintheconcentrationofCBDand∆9-THC.TMEV-IDD model Ananimalmodelofprimarychronic-progressivediseasethatcourseswithinflammation,demyelination,andneurodegenerationinbothbrainandspinalcord,usedasanexperimentalmodelforthehumandiseaseMS.InducedbytheintracerebralinoculationofdifferentstrainsoftheTheiler’svirusinsusceptiblemice.

ReferencesBeecham, A. H., Patsopoulos, N. A., Xifara, D. K., Davis, M. F.,

Kemppinen, A., Cotsapas, C., International Multiple SclerosisGeneticsConsortium(IMSGC),etal.(2013).Analysisofimmune-related loci identifies 48 new susceptibility variants for multiplesclerosis.Nature Genetics,45,1353–1360.

Bisogno,T.,Hanus,l.,DePetrocellis,l.,Tchilibon,S.,Ponde,D.E.,Brandi,I.,Moriello,A.S.,Davis,J.B.,Mechoulam,R.,&DiMarzo,V. (2001).Moleculartargetsforcannabidiolanditssyntheticana-logues:effectonvanilloidVR1receptorsandonthecellularuptakeandenzymatichydrolysisofanandamide.British Journal of Pharma-cology,134,845–852.

Cabranes,A.,Venderova,K.,delago,E.,Fezza,F.,Sanchez,A.,Mestre,l.,Valenti,M.,Garcia-Merino,A.,Ramos,J.A.,DiMarzo,V.,&Fer-nandez-Ruiz,A. (2005). Decreased endocannabinoid levels in thebrainandbeneficialeffectsofagentsactivatingcannabinoidand/orvanilloidreceptorsinaratmodelofmultiplesclerosis.Neurobiology of Disease,20,207–217.

Carlini,E.A.,&Cunha,J.M.(1981).Hypnoticandantiepilepticeffectsofcannabidiol.Journal of Clinical Pharmacology,21,417S–427S.

Carrier,E.J.,Auchampach,J.A.,&Hillard,C.J.(2006).Inhibitionofanequilibrativenucleosidetransporterbycannabidiol:amechanismofcannabidiolimmunosuppresion.Proceedings of the National Acad-emy of Sciences of the United States of America,103,7895–7900.

Castillo,A.,Tolon,M.R.,Fernandez-Ruiz,J.,Romero,J.,&Martinez-Orgado,J.(2010).Theneuroprotectiveeffectofcannabidiolinaninvitromodelofnewbornhypoxic-ischemicbraindamageinmiceismediatedbyCB(2)andadenosinreceptors.Neurobiology of Disease,37,434–440.

Collin,C.,Davies,P.,Mutiboko,I.K.,&Ratcliffe,S.SativexSpasticityinMSStudyGroup.(2007).Randomizedcontrolledtrialofcanna-bis-basedmedicineinspasticitycausedbymultiplesclerosis.Euro-pean Journal of Neurology,14,290–296.

Compston,A.,&Coles,A.(2002).Multiplesclerosis.Lancet,359,1221–1231.Costa,B.,Giagnoni,G.,Franke,C.,Trovato,A.E.,&Colleoni,M.(2004).

Vanilloid TRPV1 receptor mediates the antihyperalgesic effect ofthe nonpsychoactive cannabinoid, cannabidiol, in a rat model ofacuteinflammation.British Journal of Pharmacology,143,247–250.

Dalterio,S.,Steger,R.,Mayfield,D.,&Bartke,A.(1984).Earlycanna-binoidexposureinfluencesneuroendocrineandreproductivefunc-tionsinmalemice:I.Prenatalexposure.Pharmacology Biochemistry and Behavior,20,107–113.

Damal,K.,Stoker,E.,&Foley,J.F.(2013).Optimizingtherapeuticsinthe management of patients with multiple sclerosis: a review ofdrugefficacy,dosing,andmechanismsofaction.Biologics: Targets and Therapy,7,247–258.

DeFilippis,D.,Iuvone,T.,d’Amico,A.,Esposito,G.,Steardo,l.,Her-man,A.G.,Pelckmans,P.A.,deWinter,B.Y.,&deMan,J.G.(2008).Effect of cannabidiol on sepsis-induced motility disturbances inmice:involvementofCBreceptorsandfattyacidamidehydrolase.Neurogastroenterology and Motility,20,919–927.

Esposito, G., Scuderi, C., Valenza, M., Togna, G. I., latina, V., DeFilippis,D.,Cipriano,M.,Carratu,M.R.,Iuvone,T.,&Steardo,l.(2011). Cannabidiol reduces Ab-induced neuroinflammation andpromoteshippocampalneurogenesisthroughPPARginvolvement.PLoS One,6(12),e28668.

Fernandez-Ruiz,J.,Sagredo,O.,Pazos,M.R.,Garcia,C.,Pertwee,R.,Mechoulam, R., & Martinez-Orgado, J. (2013). Cannabidiol forneurodegenerative disorders: important new clinical applicationsforthisphytocannabinoid?British Journal of Clinical Pharmacology,75(2),323–333.

Grotenhermen,F.(2003).Pharmacokineticsandpharmacodynamicsofcannabinoids.Clinical Pharmacokinetics,42,327–360.

Hampson,A.J.,Grimaldi,M.,Axelrod,J.,&Wink,D.(1998).Cananbi-dioland(−)Delta9-tetrahydrocannabinolareneuroprotectiveanti-oxidants.Proceedings of the National Academy of Sciences of the United States of America,95(14),8268–8273.

Harvey,D.J.,&Mechoulam,R.(1990).Metabolitesofcannabidioliden-tifiedinhumanurine.Xenobiotica,20,303–320.

Hill,A.J.,Williams,C.M.,Whalley,B.J.,&Stephens,G.J.(2012).Phy-tocannabinoidsasnoveltherapeuticagentsinCNSdisorders.Phar-macology and Therapeutics,133(1),79–97.

VII. MEDICINAlCANNABISUSE

referenCeS 903

Iskedjian, M., Bereza, B., Gordon, A., Piwko, C., & Einarson, T. R.(2007).Meta-analysisofCannabis-basedtreatmentsforneuropathicand multiple sclerosis-related pain. Current Medical Research and Opinion,23(1),17–24.

Izzo,A.A.,Borrelli, F.,Capasso,R.,DiMarzo,V.,&Mechoulam,R.(2009).Non-psychotropicplantcannabinoids:newtherapeuticop-portunitiesfromanancientherb.Trends in Pharmacological Sciences,30(10),515–527.

Kantarci,O.H.,Pirko,I.,&Rodriguez,M.(2014).Novelimmunomod-ulatoryapproachesforthemanagementofmultiplesclerosis.Clini-cal Pharmacology and Therapeutics,95(1),32–44.

Kapur,A., Zhao, P., Sharir, H., Bai,Y., Caron, M. G., Barak, l. S., &Abood,M.E.(2009).Atypicalresponsivenessoftheorphanrecep-tor GPR55 to cannabinoid ligands. Journal of Biological Chemistry,284,29817–19827.

Kathmann,M.,Flau,K.,Redmer,A.,Tränkle,C.,&Schlicker,E.(2006).Cannabidiol is an allosteric modulator at mu- and delta-opioidreceptors. Naunyn Schmiedebergs Archives of Pharmacology, 372(5),354–361.

Kozela,E.,lev,N.,Kaushanski,N.,Eilam,R.,Rimmerman,N.,levy,R.,Ben-Nun,A.,Juknat,A.,&Vogel,Z.(2011).Cannabidiolinhib-its pathogenic T cells, decreases spinal microglial activation andamelioratesmultiplesclerosis-likediseaseinC57Bl/6mice.British Journal of Pharmacology,163(7),1507–1519.

Krumbholz,M.,Derfuss,T.,Hohlfeld,R.,&Meinl,E.(2012).Bcellsandantibodies inmultiple sclerosispathogenesis and therapy. Nature Reviews Neurology,8(11),613–623.

lassmann,H.,Niedobitek,G.,Aloisi,F.,&Middeldorp,&The,J.M.NeuroproMISEEBVWorkingGroup.(2011).Epstein–Barrvirusinthemultiplesclerosisbrain:acontroversialissue.Brain,134(Pt9),2772–2286.

Maresz,K.,Pryce,G.,Ponomarev,E.D.,Marsicano,G.,Croxford,J.l.,Shriver,l.P.,etal.(2007).DirectsuppressionofCNSautoimmuneinflammation via the cannabinoid receptor CB1 on neurons andCB2onautoreactiveTcells.Nature Medicine,13,492–497.

Martino,G.,Adorini,l.,Rieckmann,P.,Hillert,J.,Kallmann,B.,Comi,G., & Filippi, M. (2002). Inflammation in multiple sclerosis: thegood,thebad,andthecomplex.Lancet Neurology,1,499–509.

Matsuyama,S.S.,&Fu,T.K.(1981).Invivocytogeneticeffectsofcan-nabinoids.Journal of Clinical Psychopharmacology,1,135–140.

Mecha, M., Carrillo-Salinas, F. J., Mestre, l., Feliu, A., & Guaza, C.(2013a).Viralmodelsofmultiplesclerosis:neurodegenerationanddemyelination in mice infected with Theiler’s virus. Progress in Neurobiology,101,46–64.

Mecha,M.,Feliu,A.,Iñigo,P.M.,Mestre,l.,Carrillo-Salinas,F.J.,&Guaza, C. (2013b). Cannabidiol provides long-lasting protectionagainstthedeleteriouseffectsofinflammationinaviralmodelofmultiplesclerosis:aroleforA2Areceptors.Neurobiology of Disease,59,141–150.

Mechoulam,R.,&Hanus,l.(2002).Cannabidiol:anoverviewofsomechemical and pharmacological aspects. Part I: chemical aspects.Chemistry and Physics of Lipids,121(1–2),35–43.

Mechoulam, R., Petersa, M., Murillo-Rodriguez, E., & Hanus, l. O.(2007). Cannabidiol – recent advances. Chemistry and Biodiversity,4(8),1678–1692.

Mechoulam,R.,Shani,A.,Edery,H.,&Grunfeld,Y.(1970).Chemicalbasisofhashishactivity.Science,169,611–612.

Mechoulam,R.,&Shvo,Y.(1963).Hashish.I.Thestructureofcannabi-diol.Tetrahedron,19,2073–2078.

Mestre, l., Docagne, F., Correa, F., loria, F., Hernangomez, M., Bor-rell, J.,&Guaza,C. (2009).Acannabinoidagonist interfereswiththeprogressionofachronicmodelofmultiplesclerosisbydown-regulatingadhesionmolecules.Molecular and Cellular Neuroscience,40(2),258–266.

Mestre, l., Iñigo, P. M., Mecha, M., Correa, F. G., Hernangomez-Herrero,M.,loria,F.,Docagne,F.,Borrell, J.,&Guaza,C. (2011).

Anandamide inhibits Theiler’s virus induced VCAM-1 in brainendothelialcellsandreducesleukocytetransmigrationinamodelof blood brain barrier by activation of CB(1) receptors. Journal of Neuroinflammation,8,102.

Minagar,A.(2013).Currentandfuturetherapiesformultiplesclerosis.Scientifica,2013,249101.

Mishima,K.,Hayakawa,K.,Abe,K.,Ikeda,T.,Egashira,N.,Iwasaki,K.,&Fujiwara,M.(2005).Cannabidiolpreventscerebralinfarctionvia a serotonergic 5-hydroxytryptamine1A receptor-dependentmechanism.Stroke,36(5),1077–1082.

Nathan,C.(2002).Pointsofcontrolininflammation.Nature,420,846–852.

Ni,X.,Geller,E.B.,Eppihimer,M.J.,Eisenstein,T.K.,Adler,M.W.,&Tuma,R.F.(2004).Win55212-2,acannabinoidreceptoragonist,at-tenuatesleukocyte/endothelialinteractionsinanexperimentalau-toimmuneencephalomyelitismodel.Multiple Sclerosis,10,158–164.

Niedziela,N.,Adamczyk-Sowa,M.,&Pierzchala,K.(2014).Epidemi-ologyandclinicalrecordofmultiplesclerosisinselectedcountries:a systematic review. International Journal of Neuroscience, 124(5),322–330.

Novotna, A., Mares, J., Ratcliffe, S., Novakova, I., Vachova, M.,Zapletalova, O., Gasperini, C., Pozzilli, C., Cefaro, l., Comi, G.,Rossi,P.,Ambler,Z.,Stelmasiak,Z.,Erdmann,A.,Montalban,X.,Klimek,A.,&Davies,P.SativexSpasticityStudyGroup.(2011).Arandomized double blind, placebo controlled, parallel-group, en-riched-design study of Nabiximols (Sativex®) as an add therapyinsubjectswithrefractoryspasticitycausedbymultiplesclerosis.European Journal of Neurology,18,1122–1131.

O’Sullivan,S.E.,&Kendall,D.A. (2010).Cannabinoidactivationofperoxisomeproliferator/activatedreceptors:potentialformodula-tionofinflammatorydisease.Immunobiology,215,611–616.

Perras, C. (2005). Sativex for the management of multiple sclerosissymptoms.Issues in Emerging Health Technologies,72,1–4.

Pertwee,R.G.(2012).Targetingtheendocannabinoidsystemwithcan-nabinoidreceptoragonists:pharmacologicalstrategiesandthera-peuticpossibilities.Philosophical Transactions of the Royal Society B,367(1607),3353–3363.

Pertwee,R.G.,Ross,R.A.,Craib,S.J.,&Thomas,A.(2002).(−)-canna-bidiol antagonizes cannabinoid receptor agonists and noradrena-line in the mouse vas deferens. European Journal of Pharmacology,456,99–106.

Ribeiro,A.,Ferraz-de-Paula,V.,Pinheiro,M.l.,Vitoretti,l.B.,Mari-ano-Souza,D.P.,Quinteiro-Filho,W.M.,Akamine,A.T.,Almeida,V.I.,Quevedo,J.,Dal-Pizzol,F.,Hallak,J.E.,Zuardi,A.W.,Crippa,J.A.,&Palermo-Neto, J. (2012).Cannabidiol, anon-psychotropicplant-derived cannabinoid, decreases inflammation in a murinemodelofacutelunginjury:rolefortheadenosineA(2A)receptor.European Journal of Pharmacology,678,78–85.

Rog,D.J.,Nurmikko,T.J.,&Young,C.A.(2007).Oromucosaldelta9-tetrahydrocannabinol/cannabidiolforneuropathicpainassociatedwithmultiplesclerosis:anuncontrolled,open-label,2-yearexten-siontrial.Clinical Therapeutics,29,2068–2079.

Rosenkrantz,H.,Fleischman,R.W.,&Grant,R. J. (1981).Toxicityofshort-termadministrationofcannabinoidstorhesusmonkeys.Tox-icology and Applied Pharmacology,58,118–131.

Russo,E.B.,Burnett,A.,Hall,B.,&Parker,K.K.(2005).Agonisticprop-ertiesof cannabidiolat5-HT1Areceptors.Neurochemical Research,8,1037–1043.

Samara, E., Bialer, M., & Harvey, D. J. (1990a). Pharmacokinetics ofurinarymetabolitesofcannabidiolinthedog.Biopharmaceutics and Drug Dispositions,11,785–795.

Samara,E.,Bialer,M.,&Harvey,D.J.(1990b).Identificationofglucoseconjugatesasmajorurinarymetabolitesofcannabidiolinthedog.Xenobiotica,20,177–183.

Tait,A.R.,&Straus,S.K.(2008).PhosphorylationofU24fromHumanHerpesVirus type6 (HHV-6)and itspotential role inmimicking

904 93. Cannabidiol and Multiple SCleroSiS

VII. MEDICINAlCANNABISUSE

myelin basic protein (MBP) in multiple sclerosis. FEBS Letters,582(18),2685–2688.

Thomas,A.,Baillie,G.l.,Phillips,A.M.,Razdan,R.K.,Ross,R.A.,&Pertwee,R.G. (2007).CannabidioldisplaysunexpectedlyhighpotencyasanantagonistofCB1andCB2receptoragonistsinvitro.British Journal of Pharmacology,150,613–623.

Thomas,B.F.,Gilliam,A.F.,Burch,D.F.,Roche,M.J.,&Seltzman,H.H. (1998).Comparativereceptorbindinganalysesofcannabinoidagonistsandantagonists.Journal of Pharmacology and Experimental Therapeutics,285,285–292.

VanderMei,I.A.,Ponsonby,A.l.,Dwyer,T.,Blizzard,l.,Simmons,R.,Taylor,B.V.,Butzkueven,H.,&Kilpatrick,T.(2003).Pastexpo-sure to sun, skin phenotype, and risk of multiple sclerosis: case-controlstudy.British Medical Journal,327(7410),316.

Wade,D.T.,Collin,C.,Stott,C.,&Duncombe,P.(2010).Meta-analysisoftheefficacyofSativex(Nabiximols),onspasticityonpeoplewithmultiplesclerosis.Multiple Sclerosis Journal,16,707–714.

Whyte,l.S.,Ryberg,E.,Sims,N.A.,Ridge,S.A.,Mackie,K.,Greasley,P.J.,Ross,R.A.,&Rogers,M.J.(2009).TheputativecannabinoidreceptorGPR55affectsosteoclastfunctioninvitroandbonemassinvivo.Proceedings of the National Academy of Sciences of the United States of America,106,16511–16516.

Yin,H.,Chu,A.,li,W.,Wang,B.,Shelton,F.,Otero,F.,Nguyen,D.G.,Caldwell,J.S.,&Chen,Y.A.(2009).lipidGprotein-coupledrecep-torligandidentificationusingβ-arrestinPathHunterassay.Journal of Biological Chemistry,284,12328–12338.

Zajicek, J. P., Sanders, H. P., Wright, D. E., Vickery, P. J., Ingram, W.M.,Reilly,S.M.,Nunn,A.J.,Teare,l.J.,Fox,P.J.,&Thompson,A.J.(2005).Cannabinoidsinmultiplesclerosis(CAMS)study:safetyandefficacydatafor12monthsfollowup.Journal of Neurology, Neu-rosurgery and Psychiatry,76,1664–1669.

Zhornitsky,S.,&Potvin,S.(2012).Cannabidiolinhumans:thequestfortherapeutictargets.Pharmaceuticals (Basel),5(5),529–552.


Recommended