+ All Categories
Home > Documents > Capitulo IV

Capitulo IV

Date post: 19-Feb-2016
Category:
Upload: cristhian-j-sosa-quintana
View: 6 times
Download: 0 times
Share this document with a friend
Description:
Capitulo IV
Popular Tags:
19
Ing. RICHARD EDUARDO ANGELES BAZAN CAPITULO IV PROGRAMA DE PERFORACIONES
Transcript

Ing. RICHARD EDUARDO ANGELES BAZAN

CAPITULO IV

PROGRAMA DE PERFORACIONES

En el caso de terrenos blandos no abrasivos y perforaciones cortas, la evacuación del detritus puede hacerse mecánicamente utilizando una barra helicoidal (sistema "auger"), tal y como se indica en la figura 31. Los principales inconvenientes de este sistema son el desgaste del labio de la hélice si el terreno es mínimamente duro o abrasivo y los altos pares de rotación exigidos, sobre todo si el diámetro de perforación es grande.

5. TECNICAS DE EVACUACION DEL DETRITUS

Salvo en terrenos extremadamente blandos, es más aconsejable la utilización de un fluido de barrido, que, además de actuar como agente refrigerante, debido a la presión hidrostática y a sus propiedades reológicas, puede favorecer la estabilidad de las paredes del sondeo.

Este fluido puede ser aire, agua, lodo o espuma. La capacidad de sustentación en cada caso dependerá de:

• La densidad del fluido.

• La viscosidad.

• La forma, tamaño y densidad del detritus.

• La velocidad relativa del fluido respecto al detritus en suspensión.

El aire es el fluido más usual por estar siempre disponible, pero obviamente proporciona una baja densidad y viscosidad. Su limitada capacidad refrigerante lo hace inadecuado para su utilización en la perforación con útiles de diamante.

Los lodos son básicamente emulsiones coloidales de un producto natural (arcilla) o artificial (polímero) en agua que, además de las funciones mencionadas de evacuación del detritus y refrigeración del útil de corte, proporcionan un revestimiento impermeable del sondeo que ayuda a mantener las paredes del mismo. Se utiliza en circuito cerrado (Figura 32 B) con una balsa de decantación, donde se separa el detritus transportado hasta la superficie por el lodo.

Las espumas son dispersiones coloidales de aire en agua. Las espumas ideales para el caso de la perforación son las formadas por celdas poliédricas de aire separadas por finas películas de agua. Son espumas "secas", con un pequeño contenido de agua, que se estabilizan mediante la adición de un espumante. Por su alta capacidad de sustentación se utilizan en aquellas aplicaciones donde existe una gran superficie anular entre varillaje y las paredes del sondeo que, caso de utilizar otro tipo de fluido, exigiría caudales excesivamente altos (por ejemplo en la perforación de pozos de agua).

Un barrido insuficiente no permite la correcta evacuación del detritus, y, como consecuencia:

• Se reduce la velocidad de perforación.

• Se aumenta el riesgo de atranques.

• Se aumenta el desgaste del útil de corte.

Por otra parte, un barrido excesivo puede: • Erosionar y socavar las paredes del sondeo • Producir abrasión del varillaje. Con el fin de hacer compatible estos requerimientos con los distintos diámetros de sondeo y varillaje, existen dos variantes en la circulación del fluido de barrido: • Circulación directa • Circulación inversa

Circulación directa

Circulación inversa

6. TECNICAS DE TESTIFICACION La técnica más usual consiste en la obtención de una muestra de roca de forma cilíndrica en el interior de un tubo testiguero como se describirá a continuación (testigo continuo). Entre la corona y el tubo se intercala una pieza llamada calibrador, de diámetro ligeramente inferior al de la corona, que dispone de unas estrías diamantadas, cuya misión es mantener el diámetro del sondeo, si este tendiera a cerrarse.

6.1. TESTIFICACIÓN CONTINUA El tubo testiguero es un tubo de longitud variable entre 0,5 y 3 m que, situado en la sarta de perforación detrás de la corona, recoge la muestra cilíndrica de roca cortada por ésta. Un muelle troncocónico que se acuña entre el testigo y la pared del tubo impide la pérdida de la muestra al extraer la sarta. El porcentaje de muestra recuperada respecto a la capacidad total del tubo testiguero se denomina "grado de recuperación" y depende entre otras circunstancias del diámetro y la friabilidad de la muestra y de las características del tubo testiguero.

• Según el tubo sea simple o doble (figura 35), el testigo estará en contacto con el fluido de barrido a lo largo de toda su longitud (Figura 35 A) o sólo al final (figura 34 B). Si el tubo doble es rígido, tanto el exterior como el interior giran solidariamente junto con la corona (figura 35 B), el testigo, que no gira, rozará con el tubo interior corriendo el riesgo, si no es muy duro, de desmenuzarse. En cambio, si el tubo es del tipo giratorio, el interior va montado sobre unos rodamientos (figura 36 A), con lo que permanecerá inmóvil junto con el testigo, girando sólo la corona y el tubo exterior. De esta forma no se produce la fricción anteriormente mencionada.

• Si el tubo doble es además de salida frontal (figura 36 B), la doble pared se prolonga hasta el labio de la corona, con lo que el fluido de barrido no llega a estar en contacto con la muestra. Todas estas circunstancias afectan favorablemente al grado de recuperación de testigo.

• Para retirar el testigo y volver a introducir el tubo vacío, este sistema requiere lógicamente extraer toda la sarta de perforación cada vez que el tubo testiguero se ha llenado.

6.3. TESTIFICACIÓN POR CAPTACIÓN DEL DETRITUS

• Equipos de sondeos de superficie y de interior • La captación de los detritus de cualquier perforación proporciona

también una cierta información de los terrenos atravesados que aunque no es comparable con la obtenida con el testigo continuo es en ciertos casos suficiente.

• Esta técnica consiste en separar periódicamente del fluido de barrido el detritus transportado por éste como muestra representativa del terreno y correspondiente a un determinado tramo del sondeo. Lógicamente, la clasificación, gravimétrica y por tamaños, que tiene lugar dentro del sondeo y la posible contaminación del detritus por materiales arrastrados de las paredes del mismo hace que la información proporcionada sea mucho menos fiable y completa que la que se obtiene del testigo continuo. Por otra parte, el simple hecho de no tener que extraer periódicamente el tubo testiguero para recoger la muestra permite una perforación más rápida y económica.

Este sistema se ha perfeccionado con la introducción de la llamada "circulación inversa", que consiste en la utilización de un varillaje de doble pared de tamaño muy próximo al del sondeo. Por el anular de este doble tubo se introduce el aire, que mediante efecto Venturi aspira el detritus del fondo del taladro y lo sube por el tubo interior eliminando así la posibilidad de contaminación por contacto con las paredes del sondeo. Esta variante permite también la testificación por polvo en terrenos en los que por la existencia de grandes fracturas u oquedades la "circulación directa" daría lugar a grandes pérdidas de fluido y por lo tanto de información.


Recommended