+ All Categories
Home > Documents > Capturing Effective Permeabilities of Field Compaction bands

Capturing Effective Permeabilities of Field Compaction bands

Date post: 05-Jul-2015
Category:
Upload: stvsun
View: 1,222 times
Download: 2 times
Share this document with a friend
Description:
Introduction: Effective permeability of a field compaction band formed in an Aztec sand-stone is computed via a hierarchical lattice Boltzmann/finite element (LB/FE) scheme. As observed in reconstructed 3D images (N. Lenoir, et al., GeoX, 2010), the formation of compaction bands may reduce the number of flow channels and cause a significant portion of pore space become isolated. This isolated pore space is the focus of this study. In particular, we show that (1) isolated pore space is the main cause of the sharp permeability difference inside/outside the compaction band and (2) the speed and accuracy of the multi-scale framework can be significantly improved if the isolated pore space is captured prior to permeability calculations. Method: The calculation of effective permeability involves three steps. First, the topology of the isolated pore space is captured via a level set evolution scheme (Chunming, Li, et al., IEEE, 2005). The key idea is to obtain the signed distance function and use it to separate the micro-channel from the isolated pore space. As pore-fiuid trapped inside the pore space remains undrained, size of the pore-scale LB simulation can be reduced by neglecting the discrete distribution function inside the isolated pore space. Furthermore, by knowing the topology of the isolated pore space, we eliminate any chance of mistaking an isolated pore space as a flow channel in a representative elementary volume and hence enhance the accuracy of the permeability calculation. Secondly, LB simulation is conducted in a representative elementary volume to compute local permeability. Finally, permeability acquired from the pore-scale LB simulation is extracted as input for the macro-scale Darcy\'s flow problem solved via finite element. Components of the macroscopic effective permeability tensor are then inversely computed from the known homogenized Darcy\'s velocity and pressure fields. Result: LB simulations and LB/FEM hybrid simulations are both run on images reconstructed from Aztec sandstone specimens inside and outside a field compaction band. The effective permeability computed via both simulations are in agreement. Although the difference on porosity inside/outside compaction band is only about 5%, we observe a dramatic difference on permeability inside/outside compaction band. This change is nevertheless consistent with the increase of proportion of isolated pore space inside the compaction band. Conclusion: We propose a multi-scale framework to capture the permeability of a field compaction band. Unlike the pore space numerically constructed by randomly distributed disk, real pore space inside field compaction band is narrower and less interconnected. This feature severely limited the number of possible paths pore-fluid can travel in and therefore makes the isolated pore space significant on permeability calculations.
29
Capturing Effective Permeabilities of Field Compaction bands with Level Set and Hybrid Lattice Boltzmann/Finite Element Simulations WaiChing Sun, Northwestern University Prof. Jose E. Andrade, California Institute of Technology
Transcript
Page 1: Capturing Effective Permeabilities of Field Compaction bands

Capturing Effective Permeabilities of Field Compaction bands 

with Level Set and Hybrid Lattice Boltzmann/Finite Element Simulations

WaiChing Sun, Northwestern UniversityProf. Jose E. Andrade, California Institute of Technology

Page 2: Capturing Effective Permeabilities of Field Compaction bands

Motivation2

Aztec Sandstone, Holcomb et al 2007

7/24/2010 WCCM/APCOM 2010, Sydney, Australia 

Significant porosity and permeability reductions are 

observed in compaction bands 

Are compaction bands efficient flow barriers?

If so,  What are the geometrical features that lead to permeability reductions?

Page 3: Capturing Effective Permeabilities of Field Compaction bands

Effective Permeability Measurement via Lattice Boltzmann method

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  3

( )ij ij

k v xh

13 211 8.6 10

0.21f

k m

13 211 1.8 10

0.13f

k m

intrinsic permeability tensor of REV is computed by finding volume average velocity of Lattice Boltzmann cube with prescribed hydraulic gradient on a 150x150x150 voxels

Reynold’s number must be less than 1 to ensure the validity of Darcy’s law

Flow outside CB Flow inside CBFlow in transition zone13 2

11 2.4 10

0.15f

k m

Page 4: Capturing Effective Permeabilities of Field Compaction bands

Question:

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  4

1. How does the micro‐structural change cause permeability reduction? 

2. How about scale effect?

3. How can we verify our results?

Page 5: Capturing Effective Permeabilities of Field Compaction bands

Outline1. Background2. Tools used to study 

characteristics of compaction band

i. Medial Axis (use level set)ii. Tortuosity (use weight 

graph)iii. Isolated Pore Space (use 

graph)iv. Effective permeability (use 

FEM/LBM)3. Results on Aztec 

sandstone4. Conclusion

Raw Tomography Images

Binary Images

Medial Axis

Shortest Flow Path

Isolated Pore Space

Effective Permeability

5

Image Segmentation

SPS Algorithm

FEM/LBM

Level Set Method

Recursive Function

7/24/2010 WCCM/APCOM 2010, Sydney, Australia 

Page 6: Capturing Effective Permeabilities of Field Compaction bands

Image Segmentation

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  6

Raw Tomography Images

Binary Images

Medial Axis

Shortest Flow Path

Isolated Pore Space

Effective Permeability

Image Segmentation

Dijkstra’s Algorithm

FEM/LBM

Level Set Method

Recursive Function

Page 7: Capturing Effective Permeabilities of Field Compaction bands

Aztec Sandstone Specimen 3D tomographic images are taken from Aztec sandstone collected at Valley of Fire 

State Park,  Nevada. 

A threshold is defined to distinguish pore space and 

skeleton.

A binary 3D images are crated from the original 3D 

images.

Connected and isolated pore space are not distinguished.

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  7

Aztec Sandstone Image, Leonir, et al 2010

Work conducted by Dr. Leonir

Page 8: Capturing Effective Permeabilities of Field Compaction bands

Level Set Method

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  8

Raw Tomography Images

Binary Images

Medial Axis

Shortest Flow Path

Isolated Pore Space

Effective Permeability

Image Segmentation

Dijkstra’s Algorithm

FEM/LBM

Level Set Method

Recursive Function

Page 9: Capturing Effective Permeabilities of Field Compaction bands

Medial Axis of Flow Paths

• Medial axis is the spine of a volume filling object• Media axis  is a union of curves that represent the topology and geometry of the volume 

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  9

Sirjani and Cross, 1991L

Le

Page 10: Capturing Effective Permeabilities of Field Compaction bands

Relation between Level Set Function and Medial Axis 

• Local minimum of the signed distance function  are located at medial axis. 

• Use level set scheme to obtain signed distance function

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  10

Page 11: Capturing Effective Permeabilities of Field Compaction bands

Locating Medial Axis of Flow Path via Level Set

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  11

Convert binary image into level set via semi‐implicit scheme

Extract Local minimum of level set function

Page 12: Capturing Effective Permeabilities of Field Compaction bands

Formulation of Variational Level Set Method

• Action functional (Li et al 2005)

• Governing  equation

• Semi‐Implicit Finite Difference Scheme

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  12

Penalize  the deviation of from a signed distance function 

Drive  = 0 at the object boundaries

The discrete Laplacianterm is treated 

implicitly 

Page 13: Capturing Effective Permeabilities of Field Compaction bands

Shortest Path Searching Algorithm

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  13

Raw Tomography Images

Binary Images

Medial Axis

Shortest Flow Path

Isolated Pore Space

Effective Permeability

Image Segmentation

SPS Algorithm (Dijkstra, 1953)

FEM/LBM

Level Set Method

Recursive Function

Page 14: Capturing Effective Permeabilities of Field Compaction bands

Graph Theory

Extract topology 

info

Each fluid voxel as nodes

Connectednodes with 

edges

Assignweight to edges

Form weighted graph

Apply SPS algorithm

Determine shortest Flow Path

Determine Geometrical tortuosity

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  14

Page 15: Capturing Effective Permeabilities of Field Compaction bands

Weighted Graph

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  15

Distance = 

Weight  

Fluid voxel = node

Page 16: Capturing Effective Permeabilities of Field Compaction bands

[74]

Shortest Path Searching Algorithm

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  16

1

24

3

7 86

5

9

12

15

10

1311

14

1816

19

[19][19+14=33] [19+6=25]

[35] [37]

[46]

[69]

[45] [45]

[51]

[59] [55]

[66]

[70][75]17

20[78]

[56]

Page 17: Capturing Effective Permeabilities of Field Compaction bands

Shortest Flow Path Inside and Outside Compaction Bands

0.10.2

0.30.4

0.5

0.10.2

0.30.4

0.5

0.1

0.2

0.3

0.4

0.5

x, mmy, mm

z, m

m

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  17

0.10.2

0.30.4

0.10.2

0.30.4

0.5

0.1

0.2

0.3

0.4

0.5

x, mmy, mm

z, m

m0.1

0.20.3

0.40.5

0.10.2

0.30.4

0.5

0.1

0.2

0.3

0.4

0.5

x, mmy, mm

z, m

m

0.10.2

0.30.4

0.5

0.10.2

0.30.4

0.5

0.1

0.2

0.3

0.4

0.5

x, mmy, mm

z, m

m

0.10.2

0.30.4

0.5

0.10.2

0.30.4

0.1

0.2

0.3

0.4

0.5

x, mmy, mm

z, m

m

0.10.2

0.30.4

0.10.2

0.30.4

0.1

0.2

0.3

0.4

0.5

x, mmy, mm

z, m

m

INSIDE CB

= 0.14

OUTSIDE CB

= 0.21

= 2.79K= 3.4e‐13 m2

= 2.15K= 5.3e‐13 m2

= 2.56K= 4.4e‐13 m2

= 1.77K= 1.3e‐12 m2

= 1.76K= 1.2e‐12 m2

= 1.81K= 1.3e‐12 m2

Page 18: Capturing Effective Permeabilities of Field Compaction bands

Recursive Function

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  18

Raw Tomography Images

Binary Images

Medial Axis

Shortest Flow Path

Isolated Pore Space

Effective Permeability

Image Segmentation

Dijkstra’s Algorithm

FEM/LBM

Level Set Method

Recursive Function

Page 19: Capturing Effective Permeabilities of Field Compaction bands

Connected Porosity vs. Porosity• Only the connected pore space affects the 

effective permeability

• Isolated pore space should be 

treated as inactive voxels in LBM simulation 

to reduce computational 

cost

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  19

Isolated Pore Space

Connected Pore Space

Flow  Direction

Page 20: Capturing Effective Permeabilities of Field Compaction bands

Recursive Functions

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  20

1

24

3

7 86

5

9

12

15

10

1311

14

1816

19

17

20

PROGRAM MAIN1. Activate all vertices along the flow path 

as active nodes and mark them as visited vertices

2. While there exists at least one active node 

3. call the recursive function MARKNEIGHBOR

EXIT

FUNCTION MARKNEIGHBOR1. IF at least one neighbors of the active 

nodes has not yet been visited1. Activate the unvisited neighbor vertices2. Mark them as visited vertices.  3. Deactivate the old active nodes with 

unvisited neighbor(s). 4. Call the recursive function 

MARKNEIGHBOR2. ELSE

1. Deactivate the active nodes with no unvisited neighbor. 

3. EXITEXIT

Page 21: Capturing Effective Permeabilities of Field Compaction bands

Connected and Isolated Pore Space of Compaction Bands

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  21

Inside CB

Outside CB0.00E+00 5.00E‐02 1.00E‐01 1.50E‐01 2.00E‐01 2.50E‐01

OUTSIDE3

OUTSIDE2

OUTSIDE1

CB3

CB2

CB1

CONNECTED POROSITY OCCLUDED POROSITY

Page 22: Capturing Effective Permeabilities of Field Compaction bands

Finite Element/Lattice Boltzmann Hybrid Method

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  22

Raw Tomography Images

Binary Images

Medial Axis

Shortest Flow Path

Isolated Pore Space

Effective Permeability

Image Segmentation

Dijkstra’s Algorithm

FEM/LBM

Level Set Method

Recursive Function

Page 23: Capturing Effective Permeabilities of Field Compaction bands

Homogenization of Effective Permeability Across scale

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  23

LBMFEM

Page 24: Capturing Effective Permeabilities of Field Compaction bands

Lattice Boltzmann/Finite Element Flow Transport Simulation

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  24

• Statistical ensemble– Equation of state

– Balance of momentum

0f v ft

( ) 0pp F f

t m

• Macroscopic  Continuum– Balance of mass

– Balance of momentum

0vt

1( ) 0u u u pt

Kij1 Kij2

Kij3 Kij4

P1

P2

Page 25: Capturing Effective Permeabilities of Field Compaction bands

Size of Representative Elementary Volume 

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  25

Page 26: Capturing Effective Permeabilities of Field Compaction bands

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  26

Effective Permeabilities Inside and Outside Compaction Bands

K zz = 3.5e‐13 m2

K zz = 14.0e‐13 m2

Inside CB

Outside CB

FEM/LBM Scheme

Page 27: Capturing Effective Permeabilities of Field Compaction bands

Conclusion

• The geometrical changes of micro‐structure due to the formation of compaction bands are examined.

• Level set, graph theory, lattice Boltzmann and finite element methods are used as tools in this study.

• Increased tortuosity, reduction of connected porosity are main factors that lead to permeability reduction of compaction band. 

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  27

Page 28: Capturing Effective Permeabilities of Field Compaction bands

Acknowledgement

• Dr. Nicolas Leonir from Ecole des Ponts Paris Tech, Université Paris‐Est

• Dr. David Salac from Northwestern University• Prof. John Rudnicki from Northwestern University

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  28

Page 29: Capturing Effective Permeabilities of Field Compaction bands

Thank you for your attention!

7/24/2010 WCCM/APCOM 2010, Sydney, Australia  29


Recommended