+ All Categories
Home > Documents > Capturing Network Traffic...

Capturing Network Traffic...

Date post: 20-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
42
Capturing Network Traffic Dynamics Small Scales Stochastic Systems and Modelling in Networking and Finance Part II Dependable Adaptive Systems and Mathematical Modeling Kaiserslautern, August 2006 Rolf Riedi Dept of Statistics
Transcript
Page 1: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Capturing Network Traffic DynamicsSmall Scales

Stochastic Systems and Modelling in Networking and FinancePart II

Dependable Adaptive Systems and Mathematical ModelingKaiserslautern, August 2006

Rolf Riedi

Dept of Statistics

Page 2: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Model and Physical Reality

PhenomenonPhysical System

StatisticalModel Physical

Model

StochasticModel

Convergence of ON-OFF to fBm

LRDSelf-similarity

Queuing predictionEstimation of LRD

User responsiblefor bursts at large scale

Large scaleswell understood

Page 3: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Failure of classical prediction

• Interarrival times – Not exponential– Not independent

Paxson-Floyd, 1995

Page 4: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Multiscale

Hurst

Page 5: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Measured Data• Time series (Ak,Zk) collected at gateway of LAN

– k= number of data packet– Ak= arrival time of packet– Bk= size of packet

• Work load until time t:

••Working arrival per m time units

Page 6: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Long Range Dependence

• High variability at large scales caused by correlation

• Auto-covariance function

• LRD– Slowly decaying auto-covariance

• Cox: for ½ < H < 1 (presence of LRD)

– Var-time-plot: simple first diagnostics for LRD

Page 7: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

ON-OFF: Physical Traffic Model

(Taqqu Levy 1986)

Page 8: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

fBm Historic facts• Brown (1820): observes particle motion• Markov (1900+): Markov chains • Einstein (1905): Heat equ for Brownian motion• Wiener (1923): continuous Markov process• Kolmogorov (1930’s): theory of stochastic processes• Kolmogorov (1940): fBm• Levy, Lamperti: H-sssi processes (1962)• Mandelbrot & VanNess: integral representation (1965)

• Adler: fractal path properties of fBm• Samorodnitsky & Taqqu:

self-similar stable motion

Page 9: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Connection-level Analysis and

Modeling of Network Traffic

Page 10: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Aggregate Traffic at small scales• Trace:

– Time stamped headers– Sender-Receiver IP !!

• Large scales– Gaussian– LRD (high variability)

• Small scales– Non-Gaussian– Positive process– Burstiness

Objective :– Origins of bursts

Auckland Gateway (2000)Aggregate Bytes per time

Gaussian: 1%Real traffic: 3%

Kurtosis - Gaussian : 3- Real traffic: 5.8

Mean

99%

0 0.5 1 1.5 2 2.5 3x 105

0

50

100

150

200

250

300

350

400

450histogram

Gaussian: 1%Real traffic: 3%

0 2000 4000 60000

0.5

1

1.5

2

2.5

3x 105

time (1 unit=500ms)nu

mbe

r of b

ytes

Mean

99%

Page 11: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

• ON/OFF model – Superposition of sources– Connection level model

• Explains large scale variability: – LRD, Gaussian– Cause: Costumers– Heavy tailed file sizes !!

Bursts in the ON/OFF framework

• Small scale bursts:– Non-Gaussianity– Conspiracy of sources ??– Flash crowds ??

(dramatic increase of active sources)

Page 12: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Non-Gaussianity: A Conspiracy?

• The number of active connections is close to Gaussian; provides no indication of bursts in the load

• Indication for:- No conspiracy of sources- No flash crowds

Load: Bytes per 500 ms

Number of active connections

Mean

99%

Mean

99%

Page 13: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Non-Gaussianity: a case studyTypical bursty arrival(500 ms time slot)

Histogram of load offered in same time bin per connection:One connection dominates

150 Kb

Typical Gaussian arrival(500 ms time slot)

Histogram of load offered in same time bin per connection:Considerable balanced “field” of connections

10 Kb

Page 14: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Non-Gaussianity and Dominance

• Dominant connections correlate with bursts

Circled in Red: Instances where one connections contributes over 50% of load(resolution 500 ms)

Mean

99%

Page 15: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Non-Gaussianity and Dominance

Systematic study: time series separation• For each bin of 500 ms:

remove packets of the ONE strongest connection• Leaves “Gaussian” residual traffic

Overall traffic Residual traffic1 Strongest connection

= +Mean

99%

Page 16: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Separation on Connection Level

Definition:• Alpha connections:

Peak rate > mean arrival rate + 1 std dev

• Beta connections: Residual traffic

• Findings are similar for different time series– Auckland (2000+2001), Berkeley, Bellcore, DEC– 500ms, 50ms, 5ms resolution

Page 17: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Alpha Traffic Component

• There are few Alpha connections – < 1% (AUCK 2000: 427 of 64,087 connections)

– 3% of load

Alpha is extremely bursty

Beta is little bursty

Overall traffic is quite bursty

• Alpha connections cause bursts:

Multifractal spectrum:Wide spectrum means bursty

Balanced (50% alpha) very bursty

Page 18: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Multifractal spectrum: Microscope for Bursts

α=.7 α=.9 α=.8

• Collect points t with same α :

aLarge Deviation type result

Page 19: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Beta Traffic Component

• Constitutes main load• Governs LRD properties of overall traffic• Is Gaussian at sufficient utilization (Kurtosis = 3)

• Is well matched by ON/OFF model

Beta traffic Number of connections = ON/OFF

Variance time plot

Mean

99%

Page 20: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Simple Connection Taxonomy

Careful analysis on connection level shows : this is the onlysystematic reason

Bursts arise from largetransfers over fast links.

RTTrate

bandwidth =But:

Page 21: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Cwnd or RTT?

Correlation coefficient=0.68

RTT has strong influence on bandwidth and dominance.

103

104

105

106

10-1

100

101

102

peak-rate (Bps)

1/R

TT (1

/s)

Correlation coefficient=0.01

103

104

105

10610

2

103

104

105

peak-rate (Bps)

cwnd

(B)

Colorado State University trace, 300,000 packets

cwnd 1/RTT

ratepeak →

Beta Alpha Beta Alpha

Page 22: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Examples of Alpha/Beta Connections

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

-200

0

200

400

600

800

1000

1200

1400

one beta connection

packet arrival time (second)

pack

et s

ize

(byt

es)

forward direction

reverse direction

41.3 41.35 41.4 41.45

-200

0

200

400

600

800

1000

1200

1400

one alpha connection (96078, 196, 80, 59486)

packet arrival time (second)

pack

et s

ize

(byt

es)

forward direction

reverse direction

Alpha connections burst because of short round trip time, not large rate

Notice the different time scales

Page 23: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Modeling Network Traffic

Physical Model• Traffic (user): superposition of ON/OFF

sources requesting files with heavy tailed size• Network: heterogeneous bandwidth

variable sending-rates (fixed per ON/OFF source)

• Explains properties of traffic:–LRD: heavy tailed transfer of beta sources (crowd)

–Bursts: few large transfers of few alpha sources

Mathematical Model•…accommodate this insight within ON-OFF?

Page 24: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Modeling of Alpha Traffic• ON/OFF model revisited:

High variability in connection rates (RTTs)

Low rate = beta High rate = alpha

fractional Gaussian noise Non-Gaussian limit??

+

=

+

+

=

Page 25: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Modeling of Alpha Traffic• ON/OFF model revisited:

High variability in connection rates (RTTs)

Low rate = beta High rate = alpha

fractional Gaussian noise Non-Gaussian limit

0 2000 4000 60000

0.5

1

1.5

2

x 105

time (1 unit=500ms)

num

ber o

f byt

es

0 2000 4000 60000

0.5

1

1.5

2

2.5

3x 105

time (1 unit=500ms)

num

ber o

f byt

es

Page 26: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Towards mathematical models

Renewal reward processes

Page 27: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Stable distributions• Parameters:

• Equivalent definitions:– Stable– Limit of iid sums

• Known special cases:– Gaussian– Cauchy

• Characteristic fct

Page 28: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Page 29: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

High Multiplex vs Large Scale

Page 30: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Different Limits for ON-OFF model

• Recall limitsof ON-OFF sourcesmultiplexed

• Possible limits of renewal reward aggregateWillinger Paxson R Taqqu

Page 31: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

ON-OFF traffic model

…revisited

Page 32: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Modeling of Alpha Traffic• ON/OFF model revisited:

High variability in connection rates (RTTs)

Low rate = beta High rate = alpha

fractional Gaussian noise stable Levy noise

+

=

+

+

=

Page 33: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Impact: Simulation

• Simulation: ns topology to include alpha links

Simple: equal bandwidth Realistic: heterogeneousend-to-end bandwidth

• Congestion control• Design and management

Page 34: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Inpact: Understanding• LRD

– Large time scales – approx. Gaussian – Client behavior– Bandwidth over Buffer

• Multifractal– Small time scale– Network topology– Control at flow level– Simulation

Structure: Multiplicative AdditiveModel: hybrid tree

Mixture of Gaussian - Stable

packetscheduling

sessionlifetime

networkmanagement

round-triptime

< 1 msec msec-sec minutes hours

Page 35: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Impact: Performance• Beta Traffic rules the small Queues• Alpha Traffic causes the large Queue-sizes

(despite small Window Size)

Alpha connections

Queue-size overlapped with Alpha PeaksTotal

traffic

Page 36: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Self-similar Burst Model• Alpha component = self-similar stable

– (limit of a few ON-OFF sources in the limit of fast time)

• This models heavy-tailed bursts – (heavy tailed files)

• TCP control: alpha CWND arbitrarily large – (short RTT, future TCP mutants)

• Analysis via De-Multiplexing:– Optimal setup of two individual Queues to come closest to

aggregate Queue

De-Multiplexing:Equal critical time-scales

Q-tail ParetoDue to Levy noise

Beta (top) + Alpha

Page 37: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

ON-OFF Burst Model• Alpha traffic = High rate ON-OFF source (truncated)• This models bi-modal bandwidth distribution• TCP: bottleneck is at the receiver (flow control

through advertised window)• Current state of measured traffic• Analysis: de-multiplexing and variable rate queue

Beta (top) + Alpha Variable Service Rate Queue-tail Weibull(unaffected) unless

• rate of alpha traffic larger than capacity – average beta arrival • and duration of alpha ON period heavy tailed

Page 38: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

On-off parameters

• Free parameters in on-off model?– File size = duration * rate : these variables are dependent– Assuming two of them are independent leads to following models:

• Simulation: same “behavior” for entire traffic results in poor match. Different models (power/patience) for alpha and beta?

Power modelFile size and rate independent

Patience model:File size and duration independent

Real trace Real trace

Simulation using observed size and rate independently

Simulation using observed size and duration independently

Page 39: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Duration (s)

Rat

e (b

ytes

per

sec

)

Duration and Rate (Beta)

0.1 10 1000 10

1k

100k

0

10

20

30

40

50

60

70

80

90

Size (bytes)

Rat

e (b

ytes

per

sec

)

Filesize and Rate (Alpha)

10 1k 100k 10M 10

1k

100k

0

2

4

6

8

10

12

14

16

Size (bytes)

Rat

e (b

ytes

per

sec

)

Filesize and Rate (Beta)

10 1k 100k 10M 10

1k

100k

0

10

20

30

40

50

60

70

80

90

Duration (s)

Rat

e (b

ytes

per

sec

)

Duration and Rate (Alpha)

0.1 10 1000 10

1k

100k

0

2

4

6

8

10

12

Free parameters: statistical analysis

Alpha Beta

Duration- Rate

Size- Rate

X

• Beta users: rate determines file size• Alpha users are “free”

Page 40: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

0 1000 2000 3000 4000 5000 6000 70000

1

2

3

4

5

6

7

8

9x 10

5 Bytes per time (overall)

Time bin (1 unit = 500ms)

Byt

es

0 1000 2000 3000 4000 5000 6000 70000

1

2

3

4

5

6

7

8

9x 10

5 Bytes per time (Alpha)

Time bin (1 unit = 500ms)

Byt

es

0 1000 2000 3000 4000 5000 6000 70000

1

2

3

4

5

6

7

8

9x 10

5 Bytes per time (Beta)

Time bin (1 unit = 500ms)

Byt

es

0 2000 4000 60000

2

4

6

8

x 105 Bytes per time (overall)

Time bin (1 unit = 500ms)

Byt

es

0 2000 4000 60000

2

4

6

8

x 105 Bytes per time (Alpha)

Time bin (1 unit = 500ms)

Byt

es

0 2000 4000 60000

2

4

6

8

x 105 Bytes per time (overall)

Time bin (1 unit = 500ms)

Byt

es

Scheme RD:Rate Durationindependent

Total

Scheme SD:Size Durationindependent

Scheme SR: Size Rate

independent

Alpha

Beta

0 2000 4000 60000

0.5

1

1.5

2

2.5

3

x 107 Bytes per time (overall)

Time bin (1 unit = 500ms)

Byt

es

0 2000 4000 60000

1

2

3

4

5

6

x 107 Bytes per time (Beta)

Time bin (1 unit = 500ms)

Byt

es

0 2000 4000 60000

2

4

6

8

10x 10

6 Bytes per time (Beta)

Time bin (1 unit = 500ms)

Byt

es

0 2000 4000 60000

2

4

6

8

x 105 Bytes per time (Alpha)

Time bin (1 unit = 500ms)

Byt

es

0 2000 4000 60000

2

4

6

8

x 105 Bytes per time (Beta)

Time bin (1 unit = 500ms)

Byt

es

Real Trace

0 2000 4000 60000

2

4

6

8

x 105 Bytes per time (overall)

Time bin (1 unit = 500ms)

Byt

es

Free parameters: SIMULATION

Page 41: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Network-User Driven Traffic model

CONCLUSION: • Rates for alpha drawn to be large, beta drawn to be

small but:– Alpha: power model: Rate independent of Size– Beta: patience factor: Rate independent of Duration

• New limiting results needed for novel ON-OFF settings

0 1000 2000 3000 4000 5000 6000 70000

1

2

3

4

5

6

7

8

9x 10

5 Bytes per time (overall)

Time bin (1 unit = 500ms)

Byt

es

0 1000 2000 3000 4000 5000 6000 70000

1

2

3

4

5

6

7

8

9x 10

5 Bytes per time (overall)

Time bin (1 unit = 500ms)

Byt

es

Original trace (Bellcore) Alpha (SR) + Beta (RD)

Page 42: Capturing Network Traffic Dynamicsrudolf.riedi.home.hefr.ch/Publ/TALKS/Riedi-TUK-TrafficSmall-Web.pdf · High Multiplex vs Large Scale. Rudolf Riedi Rice University stat.rice.edu/~riedi

Rudolf Riedi Rice University stat.rice.edu/~riedi

Model and Physical Reality

PhenomenonPhysical System

StatisticalModel

ON-OFF withasympt. regimes. Renewal Reward.

StochasticModel

Two component model(alpha/beta users)

Self-similar limitsare fBm (multiplexed beta)or Levy stable (fast alpha)

Queuing predictionDetection of alpha users User responsible

for bursts at large scale

Small scalessufficiently understood.

Choice of physical model not clear


Recommended