+ All Categories
Home > Documents > Carbohydrates

Carbohydrates

Date post: 11-May-2015
Category:
Upload: raj-kumar
View: 1,973 times
Download: 1 times
Share this document with a friend
Popular Tags:
31
Monosaccharides - simple sugars with multiple OH groups. Based on number of carbons (3, 4, 5, 6), a monosaccharide is a triose, tetrose, pentose or hexose. Disaccharides - 2 monosaccharides covalently linked. Oligosaccharides - a few monosaccharides covalently linked. Polysaccharides - polymers consisting of chains of monosaccharide or disaccharide units. I (CH 2 O) n or H -C - OH I Carbohydrates (glycans) have the following basic composition: www.freelivedoctor.com
Transcript
Page 1: Carbohydrates

Monosaccharides - simple sugars with multiple OH groups. Based on number of carbons (3, 4, 5, 6), a monosaccharide is a triose, tetrose, pentose or hexose.

Disaccharides - 2 monosaccharides covalently linked.

Oligosaccharides - a few monosaccharides covalently linked.

Polysaccharides - polymers consisting of chains of monosaccharide or disaccharide units.

I (CH2O)n or H - C - OH

I

Carbohydrates (glycans) have the following basic composition:

www.freelivedoctor.com

Page 2: Carbohydrates

Monosaccharides

Aldoses (e.g., glucose) have an aldehyde group at one end.

Ketoses (e.g., fructose) have a keto group, usually at C2.

C

C OHH

C HHO

C OHH

C OHH

CH2OH

D-glucose

OH

C HHO

C OHH

C OHH

CH2OH

CH2OH

C O

D-fructosewww.freelivedoctor.com

Page 3: Carbohydrates

D vs L Designation

D & L designations are based on the configuration about the single asymmetric C in glyceraldehyde.

The lower representations are Fischer Projections.

CHO

C

CH2OH

HO H

CHO

C

CH2OH

H OH

CHO

C

CH2OH

HO H

CHO

C

CH2OH

H OH

L-glyceraldehydeD-glyceraldehyde

L-glyceraldehydeD-glyceraldehyde

www.freelivedoctor.com

Page 4: Carbohydrates

Sugar Nomenclature

For sugars with more than one chiral center, D or L refers to the asymmetric C farthest from the aldehyde or keto group.

Most naturally occurring sugars are D isomers.

O H O H C C H – C – OH HO – C – H

HO – C – H H – C – OH

H – C – OH HO – C – H

H – C – OH HO – C – H

CH2OH CH2OH

D-glucose L-glucose

www.freelivedoctor.com

Page 5: Carbohydrates

D & L sugars are mirror images of one another.

They have the same name, e.g., D-glucose & L-glucose.

Other stereoisomers have unique names, e.g., glucose, mannose, galactose, etc.

The number of stereoisomers is 2n, where n is the number of asymmetric centers.

The 6-C aldoses have 4 asymmetric centers. Thus there are 16 stereoisomers (8 D-sugars and 8 L-sugars).

O H O H C C H – C – OH HO – C – H

HO – C – H H – C – OH

H – C – OH HO – C – H

H – C – OH HO – C – H

CH2OH CH2OH

D-glucose L-glucose

www.freelivedoctor.com

Page 6: Carbohydrates

Hemiacetal & hemiketal formation

An aldehyde can react with an alcohol to form a hemiacetal.

A ketone can react with an alcohol to form a hemiketal.

O C

H

R

OH

O C

R

R'

OHC

R

R'

O

aldehyde alcohol hemiacetal

ketone alcohol hemiketal

C

H

R

O R'R' OH

"R OH "R

+

+

www.freelivedoctor.com

Page 7: Carbohydrates

•Pentoses and hexoses can cyclize as the ketone or aldehyde reacts with a distal OH.

•Glucose forms an intra-molecular hemiacetal, as the C1 aldehyde & C5 OH react, to form a 6-member pyranose ring, named after pyran.

These representations of the cyclic sugars are called Haworth projections.

H O

OH

H

OHH

OH

CH2OH

H

OH

H H O

OH

H

OHH

OH

CH2OH

H

H

OH

-D-glucose -D-glucose

23

4

5

6

1 1

6

5

4

3 2

H

CHO

C OH

C HHO

C OHH

C OHH

CH2OH

1

5

2

3

4

6

D-glucose (linear form)

www.freelivedoctor.com

Page 8: Carbohydrates

Fructose forms either a 6-member pyranose ring, by reaction of the C2 keto

group with the OH on C6, or a 5-member furanose ring, by reaction of the C2 keto

group with the OH on C5.

CH2OH

C O

C HHO

C OHH

C OHH

CH2OH

HOH2C

OH

CH2OH

HOH H

H HO

O

1

6

5

4

3

2

6

5

4 3

2

1

D-fructose (linear) -D-fructofuranose

www.freelivedoctor.com

Page 9: Carbohydrates

Cyclization of glucose produces a new asymmetric center at C1. The 2 stereoisomers are called anomers, & .

Haworth projections represent the cyclic sugars as having essentially planar rings, with the OH at the anomeric C1:

(OH below the ring) (OH above the ring).

H O

OH

H

OHH

OH

CH2OH

H

-D-glucose

OH

H H O

OH

H

OHH

OH

CH2OH

H

H

OH

-D-glucose

23

4

5

6

1 1

6

5

4

3 2

www.freelivedoctor.com

Page 10: Carbohydrates

Because of the tetrahedral nature of carbon bonds, pyranose sugars actually assume a "chair" or "boat" configuration, depending on the sugar.

The representation above reflects the chair configuration of the glucopyranose ring more accurately than the Haworth projection.

O

H

HO

H

HO

H

OH

OHHH

OH

O

H

HO

H

HO

H

H

OHHOH

OH

-D-glucopyranose -D-glucopyranose

1

6

5

4

32

www.freelivedoctor.com

Page 11: Carbohydrates

Sugar derivatives

sugar alcohol - lacks an aldehyde or ketone; e.g., ribitol.

sugar acid - the aldehyde at C1, or OH at C6, is oxidized to a carboxylic acid; e.g., gluconic acid, glucuronic acid.

CH2OH

C

C

C

CH2OH

H OH

H OH

H OH

D-ribitol

COOH

C

C

C

C

H OH

HO H

H OH

D-gluconic acid D-glucuronic acid

CH2OH

OHH

CHO

C

C

C

C

H OH

HO H

H OH

COOH

OHH

www.freelivedoctor.com

Page 12: Carbohydrates

Sugar derivatives

amino sugar - an amino group substitutes for a hydroxyl. An example is glucosamine.

The amino group may be acetylated, as in N-acetylglucosamine.

H O

OH

H

OH

H

NH2H

OH

CH2OH

H

-D-glucosamine

H O

OH

H

OH

H

NH

OH

CH2OH

H

-D-N-acetylglucosamine

C CH3

O

H

www.freelivedoctor.com

Page 13: Carbohydrates

N-acetylneuraminate (N-acetylneuraminic acid, also called sialic acid) is often found as a terminal residue of oligosaccharide chains of glycoproteins.

Sialic acid imparts negative charge to glycoproteins, because its carboxyl group tends to dissociate a proton at physiological pH, as shown here.

NH O

H

COO

OH

H

HOH

H

H

RCH3C

O

HC

HC

CH2OH

OH

OH

N-acetylneuraminate (sialic acid)

R =

www.freelivedoctor.com

Page 14: Carbohydrates

Reducing Sugars• Sugars that contain aldehyde groups that are oxidized

to carboxylic acids are classified as reducing sugars. • Common test reagents are :

• Benedicts reagent (CuSO4 / citrate) • Fehlings reagent (CuSO4 / tartrate)

• They are classified as reducing sugars since they reduce the Cu2+ to Cu+  which forms as a red precipitate, copper (I) oxide.

• In order for oxidation to occur, the cyclic form must first ring-open to give the reactive aldehyde.

• So any sugar that contains a hemi-acetal will be a reducing sugar.

• But glycosides which are acetals are not reducing sugars.

www.freelivedoctor.com

Page 15: Carbohydrates

Glycosidic BondsThe anomeric hydroxyl and a hydroxyl of another sugar or some other compound can join together, splitting out water to form a glycosidic bond:

R-OH + HO-R' R-O-R' + H2O

O

H

HO

H

HO

H

OH

OHHH

OH

-D-glucopyranose

O

H

HO

H

HO

H

OCH3

OHHH

OH

methyl- -D-glucopyranose

CH 3-O H+

methanol

H2O

www.freelivedoctor.com

Page 16: Carbohydrates

Cellobiose, a product of cellulose breakdown, is the otherwise equivalent anomer (O on C1 points up).

The (1 4) glycosidic linkage is represented as a zig-zag, but one glucose is actually flipped over relative to the other.

H O

O H

H

O HH

O H

CH 2O H

H

O H

O H

H

O HH

O H

CH 2O H

H

O

HH

1

23

5

4

6

1

23

4

5

6

m altose

H O

O H

H

O HH

O H

CH 2O H

H

O O H

H

H

O HH

O H

CH 2O H

H

H

H

O1

23

4

5

6

1

23

4

5

6

cellobiose

Disaccharides:

Maltose, a cleavage product of starch (e.g., amylose), is a disaccharide with an (1 4) glycosidic link between C1 - C4 OH of 2 glucoses.

It is the anomer (C1 O points down).

www.freelivedoctor.com

Page 17: Carbohydrates

Other disaccharides include:

Sucrose, common table sugar, has a glycosidic bond linking the anomeric hydroxyls of glucose & fructose.

Because the configuration at the anomeric C of glucose is (O points down from ring), the linkage is (12).

Lactose, milk sugar, is composed of galactose & glucose, with (14) linkage from the anomeric OH of galactose. Its full name is -D-galactopyranosyl-(1 4)--D-glucopyranose

www.freelivedoctor.com

Page 18: Carbohydrates

Sucrose

www.freelivedoctor.com

Page 19: Carbohydrates

Lactose

www.freelivedoctor.com

Page 20: Carbohydrates

Lactose Intolerance

• Lactose or milk sugar occurs in the milk of mammals - 4-6% in cow's milk and 5-8% in human milk. It is also a by product in the the manufacture of cheese.

• Lactose intolerance is the inability to digest significant amounts of lactose, the predominant sugar of milk. This inability results from a shortage of the enzyme lactase, which is normally produced by the cells that line the small intestine. Lactase breaks down the lactose, milk sugar, into glucose and galactose that can then be absorbed into the bloodstream.

www.freelivedoctor.com

Page 21: Carbohydrates

Polysaccharides

Plants store glucose as amylose or amylopectin, glucose polymers collectively called starch. Glucose storage in polymeric form minimizes osmotic effects.

Amylose is a glucose polymer with (14) linkages. It adopts a helical conformation.

The end of the polysaccharide with an anomeric C1 not involved in a glycosidic bond is called the reducing end.

H O

OH

H

OHH

OH

CH 2 OH

HO H

H

OHH

OH

CH 2 OH

H

O

HH H O

OH

OHH

OH

CH 2 OH

HH H O

H

OHH

OH

CH 2 OH

H

OH

HH O

OH

OHH

OH

CH 2 OH

H

O

H

1

6

5

4

3

1

2

a m y lo s e

www.freelivedoctor.com

Page 22: Carbohydrates

Amylopectin is a glucose polymer with mainly (14) linkages, but it also has branches formed by (16) linkages. Branches are generally longer than shown above.

The branches produce a compact structure & provide multiple chain ends at which enzymatic cleavage can occur.

H O

OH

H

OHH

OH

CH2OH

HO H

H

OHH

OH

CH2OH

H

O

HH H O

OH

OHH

OH

CH2

HH H O

H

OHH

OH

CH2OH

H

OH

HH O

OH

OHH

OH

CH2OH

H

O

H

O

1 4

6

H O

H

OHH

OH

CH2OH

HH H O

H

OHH

OH

CH2OH

HH

O1

OH

3

4

5

2

amylopectin

www.freelivedoctor.com

Page 23: Carbohydrates

Glycogen, the glucose storage polymer in animals, is similar in structure to amylopectin. But glycogen has more (16) branches.

The highly branched structure permits rapid release of glucose from glycogen stores, e.g., in muscle during exercise. The ability to rapidly mobilize glucose is more essential to animals than to plants.

H O

OH

H

OHH

OH

CH 2OH

HO H

H

OHH

OH

CH 2OH

H

O

HH H O

OH

OHH

OH

CH 2

HH H O

H

OHH

OH

CH 2OH

H

OH

HH O

OH

OHH

OH

CH 2OH

H

O

H

O

1 4

6

H O

H

OHH

OH

CH 2OH

HH H O

H

OHH

OH

CH 2OH

HH

O1

OH

3

4

5

2

glycogen

www.freelivedoctor.com

Page 24: Carbohydrates

• Which hormone signals the release of glycogen into glucose?

• What was the mechanism of signal transduction?

www.freelivedoctor.com

Page 25: Carbohydrates

Cellulose, a major constituent of plant cell walls, consists of long linear chains of glucose with (14) linkages.

Animals lack the enzymes needed to break down these linkages.

How does the structure in cellulose affects it bonding?

.

.

c e l lu lo s e

H O

OH

H

OHH

OH

CH 2 OH

HO

H

OHH

OH

CH 2 OH

HO

H H O

O H

OHH

OH

CH 2 OH

HH O

H

OHH

OH

CH 2 OH

H

H

OHH O

O H

OHH

OH

CH 2 OH

HO

H H H H

1

6

5

4

3

1

2

www.freelivedoctor.com

Page 26: Carbohydrates

answer

• The van der Waals interactions cause cellulose chains to be straight & rigid, and pack with a crystalline arrangement in thick bundles called microfibrils

• The role of cellulose is to impart strength and rigidity to plant cell walls, which can withstand high hydrostatic pressure gradients. Osmotic swelling is prevented.

www.freelivedoctor.com

Page 27: Carbohydrates

•Similar to cellulose(14) linkages.

•The monomer is N-acetyl-D-glucosamine•Plays a structural role •Structural components of exoskeleton of invertebrates

Chitin

www.freelivedoctor.com

Page 28: Carbohydrates

O-linked oligosaccharide chains of glycoproteins vary in complexity.

They link to a protein via a glycosidic bond between a sugar residue & a serine or threonine OH. 

O-linked oligosaccharides have roles in recognition, interaction, and enzyme regulation.

H O

OH

O

H

HNH

OH

CH2OH

H

C CH3

O

-D-N-acetylglucosamine

CH2 CH

C

NH

O

H

serine residue

Oligosaccharides that are covalently attached to proteins or to membrane lipids may be linear or branched chains.

www.freelivedoctor.com

Page 29: Carbohydrates

H O

OH

O

H

HNH

OH

CH2OH

H

C CH3

O

-D-N-acetylglucosamine

CH2 CH

C

NH

O

H

serine residue

•N-acetylglucosamine (GlcNAc) is a common O-linked glycosylation of protein serine or threonine residues. •Many cellular proteins, including enzymes & transcription factors, are regulated by reversible GlcNAc attachment. •Often attachment of GlcNAc to a protein OH alternates with phosphorylation, with these 2 modifications having opposite regulatory effects (stimulation or inhibition).

www.freelivedoctor.com

Page 30: Carbohydrates

N-linked oligosaccharides of glycoproteins tend to be complex and branched. First N-acetylglucosamine is linked to a protein via the side-chain N of an asparagine residue in a particular 3-amino acid sequence.

H O

OH

HN

H

H

HNH

OH

CH2OH

H

C CH3

O

C CH2 CH

O HN

C

HN

O

HC

C

HN

HC

R

O

C

R

O

Asn

X

Ser or ThrN-acetylglucosamine

Initial sugar in N-linked glycoprotein oligosaccharide

www.freelivedoctor.com

Page 31: Carbohydrates

Many proteins secreted by cells have attached N-linked oligosaccharide chains.

Carbohydrate chains of plasma membrane glycoproteins and glycolipids usually face the outside of the cell.

They have roles in cell-cell interaction and signaling, and in forming a protective layer on the surface of some cells.

www.freelivedoctor.com


Recommended