+ All Categories
Home > Documents > Carbon 12 Impacting on Oxygen 16 - Dr. Myron Evans · Carbon 12 Impacting on Oxygen 16 Wood - Saxon...

Carbon 12 Impacting on Oxygen 16 - Dr. Myron Evans · Carbon 12 Impacting on Oxygen 16 Wood - Saxon...

Date post: 28-Feb-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
5
Carbon 12 Impacting on Oxygen 16 Wood - Saxon Potential (data from (Hamada Nuclear Physics A 859 (2011) 29-38) From Hamada, the data for a carbon 12 nucleus hitting an oxygen 16 nucleus is given as: v0 = 93.89 MeV rr = 1.18*10 -15 Rr = rr (At 1 3 + Ap 1 3 ) where At, Ap are target and projectile atomic mass numbers ar=0.454*10 -15 is the diffuseness of the potential The principle calculation is the integration Θ= ExpB 2 Μ V 0 h ( -1 1+ExpB r-R a > +V c - Λ)] where Λ= e V 0 and V c = z 1 z 2 e 2 4 ΠΕ 0 rV 0 r>R V c = z 1 z 2 e 2 8 ΠΕ 0 RV 0 ( 3 - I r R M 2 ) r<R
Transcript
Page 1: Carbon 12 Impacting on Oxygen 16 - Dr. Myron Evans · Carbon 12 Impacting on Oxygen 16 Wood - Saxon Potential (data from (Hamada Nuclear Physics A 859 (2011) 29-38) From Hamada, the

Carbon 12 Impacting on Oxygen 16� Wood - Saxon Potential (data from (Hamada Nuclear Physics A 859 (2011) 29-38)

From Hamada, the data for a carbon 12 nucleus hitting an oxygen 16 nucleus

is given as:

v0 = 93.89 MeV

rr = 1.18*10-15

Rr = rr (At

1

3 + Ap

1

3) where At, Ap are target and projectile atomic mass

numbers

ar=0.454*10-15

is the diffuseness of the potential

The principle calculation is the integration

Θ = ExpB 2 Μ V0

h

( -1

1+ExpB r-R

a>+Vc - Λ)]

where

Λ =e

V0

and

Vc =z1 z2 e2

4 Π Ε0 r V0 r>R

Vc =z1 z2 e2

8 Π Ε0 R V0 ( 3 - I r

RM2

) r<R

Page 2: Carbon 12 Impacting on Oxygen 16 - Dr. Myron Evans · Carbon 12 Impacting on Oxygen 16 Wood - Saxon Potential (data from (Hamada Nuclear Physics A 859 (2011) 29-38) From Hamada, the

If we write

Η =r

R then if

Η0 =a

R

Θ = ExpB 2 Μ V0 a

h á -1

1+ExpB Η-1

Η0

> - Λ + Νc âΗ where

Νc =z1 z2 e

2

4 Π Ε0 R V0 Η Η < 1

Νc =z1 z2 e

2

8 Π Ε0 R V0

( 3 - Η2) Η > 1

Clear@ΛD;

v0 = H93.89 * 10^6 L * H1.602 * 10^H-19LL;

h = 1.054571726 H47L ´ 10^H-34L;

rr = 1.18 * 10^H-15L;

At = 15.9994;

Ap = 12.011;

Rr = rr * HAp^H1 � 3L + At^H1 � 3LL;

ar = .454 * 10^H-15L;

vs = -v0 � H1 + Exp@Hr - RrL � arDL;

Μ = At Ap * 1.6005 * 10^H-27L � HAt + ApL;

Coulomb potential from Hamada

k = 8.99 * 10^9;

zt = 8;

zp = 6;

q = 1.602 * 10^H-19L;

rc = 1.25 * H10^H-15LL;

Η0 = ar � Rr;

vc11 = k * zt * zp * q^2 � Hv0 Η RrL;

vc22 = Hk * zt * zp * q^2L * H3 - Η^2L � H2 * v0 * RrL;

vcc = Piecewise@88vc11, Η >= 1<, 8vc22, Η < 1<<D;

2 Carbon 12 Impacting on Oxygen 16- Hamada data extended g.nb

Page 3: Carbon 12 Impacting on Oxygen 16 - Dr. Myron Evans · Carbon 12 Impacting on Oxygen 16 Wood - Saxon Potential (data from (Hamada Nuclear Physics A 859 (2011) 29-38) From Hamada, the

f3 =

-1

1 + ExpB Η-1

Η0F

- Λ + vcc ;

Plot3D@f3, 8Η, 0, 5<, 8Λ, 0, .1<, PlotRange ® 80, .1<,

AxesLabel ® 8"Η", "Λ", "V-E"<, ColorFunction ® "RustTones",

PlotStyle ® Directive@Yellow, Specularity@White, 20D, [email protected],

ExclusionsStyle ® 8None, Red<, Mesh ® None, AxesLabel ® Automatic,

BaseStyle ® 8FontWeight ® "Bold", FontSize ® 16<,

PlotLabel ® "Region of Positive Potential", LabelStyle ® HFontFamily ® "Arial"LD

Region of Positive Potential

0

2

4

Η

0.00

0.05

0.10

Λ

0.00

0.05

0.10

V-E

The above figure shows the region for which the term V - E is positive,

defining the lower limit on Η for a real value for V - E in

the calculation of Θ. The integral then requires the value of Η for

a given Λ for which the value of V - E is zero, as a lower limit on Η.

Clear@ΛD;

factor =

2 Μ v0 ar

h

;

The integration limits are found by solving

-1

1+ExpB Η-1

Η0F - Λ + vcc=0

Carbon 12 Impacting on Oxygen 16- Hamada data extended g.nb 3

Page 4: Carbon 12 Impacting on Oxygen 16 - Dr. Myron Evans · Carbon 12 Impacting on Oxygen 16 Wood - Saxon Potential (data from (Hamada Nuclear Physics A 859 (2011) 29-38) From Hamada, the

Λ = .025;

f11 = factor * f3 �. Λ ® %;

NSolve@f11 � 0, Η, RealsD;

Part@%, 1D;

Part@%%, 2D;

Θ = Exp@NIntegrate@Sqrt@f11D, 8Η, Η �. %%, Η �. %<DD;

T = Re@4 � H2 Θ + 1 � H2 ΘLL^2D;

8%%%%%%%, %<data = 880.0005`, 0.02176012479519214`<,

80.001`, 0.07213624355101142`<, 80.002`, 0.16307940033942034`<,

80.003`, 0.2300024746731435`<, 80.004`, 0.2801129596788937`<,

80.005`, 0.3190894141225901`<, 80.006`, 0.350404674923039`<,

80.007`, 0.3762235620795487`<, 80.008`, 0.39795520763321846`<,

80.009`, 0.41655571840976424`<, 80.01`, 0.43269759657240314`<,

80.015`, 0.4899448288544386`<, 80.02`, 0.5255241995191092`<,

80.025`, 0.550156209639818`<, 80.03`, 0.5683651022991135`<,

80.04`, 0.5936299660802987`<, 80.05`, 0.6103213636258508`<,

80.06`, 0.6220478262258062`<, 80.07`, 0.6305710799764025`<,

80.08`, 0.6368984488821532`<, 80.081`, 0.6374385952626274`<,

80.082`, 0.6379643874555523`<, 80.083`, 0.6384763913628796`<,

80.084`, 0.6389751561873208`<, 80.085`, 0.6394612142178806`<,

80.086`, 0.6399350806112528`<, 80.0861`, 0.6399818160279523`<<;

ListLinePlot@data, AxesLabel ® 8"Λ", "T"<, PlotLabel -> "Transmission Coefficient",

LabelStyle ® HFontFamily ® "Arial"L, BaseStyle ® 8FontWeight ® "Bold", FontSize ® 16<D80.025, 0.550156<

0.02 0.04 0.06 0.08Λ

0.1

0.2

0.3

0.4

0.5

0.6

T

Transmission Coefficient

The thermal energy of the carbon nucleus in a 6000 degree plasma has a Λ

of

4 Carbon 12 Impacting on Oxygen 16- Hamada data extended g.nb

Page 5: Carbon 12 Impacting on Oxygen 16 - Dr. Myron Evans · Carbon 12 Impacting on Oxygen 16 Wood - Saxon Potential (data from (Hamada Nuclear Physics A 859 (2011) 29-38) From Hamada, the

The thermal energy of the carbon nucleus in a 6000 degree plasma has a Λ

of

ethermal = 1.3806503 * 10^H-23L * 6000 � v0

5.50748´ 10-9

The transmission coefficient in traditional theory is essentially zero for

this input energy.

Carbon 12 Impacting on Oxygen 16- Hamada data extended g.nb 5


Recommended