+ All Categories
Home > Documents > Case Studies Using Falling Weight Data with · Case Studies Using Falling Weight Deflectometer Data...

Case Studies Using Falling Weight Data with · Case Studies Using Falling Weight Deflectometer Data...

Date post: 29-Sep-2018
Category:
Upload: dangphuc
View: 218 times
Download: 0 times
Share this document with a friend
24
Case Studies Using Falling Weight Deflectometer Data with MechanisticEmpirical Design and Analysis l f Design and Analysis International Symposium on Pavement Perf ormance Trends, Advances, and Challenges December 5, 2011, Tampa, FL Presented by: Linda M. Pierce, PhD, PE
Transcript

Case Studies Using Falling WeightDeflectometer Data with Mechanistic‐Empirical 

Design and Analysis

l f

Design and Analysis

International Symposium on Pavement PerformanceTrends, Advances, and Challenges

December 5, 2011, Tampa, FL

Presented by:Linda M. Pierce, PhD, PE

Outline

• Project purposeProject purpose

• Use of deflection data in the MEPDG

• Case studies

Project Purpose

• FHWA study DTFH61‐06‐C‐00046FHWA study DTFH61 06 C 00046

• Release of MEPDG and heightened need for 

characterizing existing 

layersy

• COTR ‐ Nadarajah “Siva” 

Sivaneswaran

Project Reports

Use of Deflection Data in MEPDG

• Backcalculated moduli onlyBackcalculated moduli only

• Level 1 materials characterization only

– No internal MEPDG forward or backcalculation 

proceduresp

Flexible Pavements

• Dynamic modulus of HMA layersDynamic modulus of HMA layers

• Resilient modulus of chemically stabilized layers

• Resilient modulus of unbound layers

– Non‐linear considered, but not calibrated, and not , ,

recommended

• Elastic modulus of the bedrock layer

Rigid Pavements

• Elastic modulus of the concrete and base layersElastic modulus of the concrete and base layers

• Subgrade k‐value

• Concrete flexural strength

– Determined from the backcalculated concrete 

elastic modulus

Characterization of HMA Layer

1. Conduct FWD testingg

2. Determine mix properties from cores (air voids, AC%, 

d ti i it t )gradation, viscosity parameters)

3. Determine undamaged dynamic modulus

4. Estimate fatigue damage (using results from step 1 & 3)

5. Calculate α’ – f (mix gradation parameters)5. Calculate α   f (mix gradation parameters)

6. Determine field damaged dynamic modulus

Characterization of HMA Layer

Characterization of PCC Layer

• Effective k‐valueEffective k value

– Composite stiffness of all 

layers beneath the base

– Internal conversion from 

backcalculated layer moduli

– Backcalculated subgrade modulus not directly 

used in the MEPDG

Characterization of Stabilized Layer

• Backcalculated moduliBackcalculated moduli

– Assumed to be at time of overlay application

– Reduced based on current condition of stabilized 

layer and surfacey

– f (alligator cracking, reflective cracking)

Characterization of Stabilized Layer

Characterization of Unbound Layers

• Backcalculated moduliBackcalculated moduli

• Adjusted to laboratory values

– 0.67 for granular layers

– 0.40 for subgrade layersg y

– Other materials see Table 1

Case Studies

• LTPP sectionsLTPP sections

• Backcalculation methods

– Flexible:  Evercalc, MODTAG, MICHBACK

– Rigid:  AREA methodg

• MEPDG v 1.003

– Nationally calibrated models only 

Case Studies ‐ HMA

• LTPP Section 30‐0100LTPP Section 30 0100

– Great Falls, Montana

– Interstate 15

– 4‐in HMA over 8‐in aggregate basegg g

– Overall pavement condition: Fair condition

– Rutting

• Rehabilitation type evaluated:  HMA overlayyp y

Case Studies ‐ HMA

S i Layer Moduli, MPa (lb/in2)Scenario y , ( / )HMA Base Subgrade

A. MEPDG Default Internal calculation

262(38,000)

100(14,500)calculation (38,000) (14,500)

B. MODTAG(uncorrected 3 layer)

4,195(608,500)

115(16,700)

148(21,500)

C MODTAG 4 195 72 52C. MODTAG(corrected 3 layer)

4,195(608,500)

72(10,400)

52(7,500)

D. Evercalc/MICHBACK(corrected 3 layer)

4,116(597 000)

52(7 500)

62(9 000)(corrected 3 layer) (597,000) (7,500) (9,000)

E. LTPP LaboratoryTesting Results

2,413 (350,000)

91(13,200)

27(3,900)

F MODTAG 4 075 84 43F. MODTAG(corrected 4 layer)

4,075(591,000)

84(12,200)

43(6,300)

Case Studies ‐ HMA

Predicted Distress Distress Quantity (Reliability)Predicted Distress A B C D E F

Terminal IRI (in/mi) 109(98)

97(100)

97(100)

97(100)

101(99)

98(100)

Long. Cracking (ft/mile) 5.2(100)

62.7(92)

69.5(91)

165.0(86)

49.4(93)

50.4(93)

Alligator Cracking (%) 0(100)

0(100)

0(100)

0(100)

0.3(100)

0(100)Alligator Cracking (%) (100) (100) (100) (100) (100) (100)

Transverse Cracking (ft/mi) 1(100)

1(100)

1(100)

1(100)

1(100)

1(100)

0 13 0 08 0 07 0 08 0 12 0 08HMA Rutting (in) 0.13(99)

0.08(100)

0.07(100)

0.08(100)

0.12(100)

0.08(100)

Total Rutting (in) 0.38(100

0.08(100)

0.08(100)

0.08(100)

0.16(100)

0.12(100)g ( ) (100 (100) (100) (100) (100) (100)

Overlay Thickness (in) 3 3 3.5 3 3 3

Case Studies – HMA ‐ Findings

• Until further studyUntil further study

– Use MEPDG provided field‐lab correction factors

– Use 30 Hz for equivalent frequency

Case Studies ‐ PCC

• LTPP Section 32‐0200LTPP Section 32 0200– Lander County, Nevada– Interstate 80– Interstate 80– 11.6‐in PCC over 25.7‐in base/subbase over 12‐in lime treated subgradelime treated subgrade

– Overall pavement condition: PoorTransverse cracking faulting– Transverse cracking, faulting

• Rehabilitation type evaluated:  HMA overlay, bonded 

PCC overlay, and unbonded PCC overlay

Case Studies ‐ PCC

• AlternativesAlternatives

– Laboratory determined material properties

– Backcalculated PCC dynamic elastic modulus & 

dynamic k‐value for supporting layers (all layers y pp g y ( y

beneath the base)

– Backcalculated PCC dynamic elastic modulus & 

dynamic k‐value for supporting layers (all layers y pp g y y

beneath the slab)

Case Studies ‐ PCC

AlternativePCC Elastic Modulus,

lb/in2 (MPa)

k‐value,lb/in2/in(kPa/mm)lb/in (MPa) (kPa/mm)

1. Laboratory determined 2,783,000(19,188)

NA

3 100 000 3101. Backcalculated PCC 3,100,000(21,359)

310(84)

1. Composite stiffness 3,100,000(21 359)

375(101)p (21,359) (101)

Case Studies ‐ PCC

Alt tiHMA 

O lUnbonded PCC

O lBonded PCCO lAlternative Overlay,

in (mm)Overlay,in (mm)

Overlay,in (mm)

1. Laboratory determined 12(305)

7(178)

4(100)1. Laboratory determined (305) (178) (100)

1. Backcalculated PCC 12(305)

7(178)

4(100)

1. Composite stiffness 12(305)

7(178)

4(100)

Case Studies – PCC ‐ Findings

• HMA overlayHMA overlay

– Varying subbase stiffness had little influence on 

determined k‐value

– Stiffness of base may not be included in k‐value y

calculation (possible bug)

– MEPDG possibly ignores entered k‐value (possible 

bug)g

Questions

Linda Pierce505.796.6101

[email protected]


Recommended