+ All Categories
Home > Documents > Caso Rotura

Caso Rotura

Date post: 08-Aug-2018
Category:
Upload: imebla
View: 225 times
Download: 0 times
Share this document with a friend
200
* * ISSN 1018-5593 European Commission physical sciences High-temperature crack growth in steam turbine materials Report EUR 14678  EN
Transcript

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 1/200

* *ISSN 1018-5593

European Commission

phys ica l sc ien ces

High -temp era ture c rack growthin s team turbin e mate ria ls

Report

EUR 14678  EN

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 2/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 3/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 4/200

' „ ^ s j ; ' * -  .•»i?»'*

j  »

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 5/200

European Commission

phys ica l sc iences

High -temp era ture c rack growthin s team turbin e materia ls

J .  EwaldSiemens Power Genera t ion Group KWU

Mülheim-Ruhr — Germany

T. HollsteinFraunhofer Inst i tut für Werkstoffmechanik

Freiburg — Germany

G. A. Webster and F. DjavanroodiImper ia l Co l lege of Sc ience and Techno logy

London — United Kingdom

S. R. HoldsworthGEC-Alsthom Turbine Generators Ltd

Rugby — United Kingdom

Edited by:

J .  B. Marriott, Secretariat for COST  501  and COST 505,JRC,  Petten, The Netherlands

Supported by the

European Commissionthrough Contract Nos

COST 0032-D.. .1COST 0014-D.. .2.3

COST 0015-UK...4 / July 1992

5

AÍ çhot AltZbr

Science, Research and u]e>ftMtøe£UR0P. Biblìotfl.D ¡ rectorate-G e n IfãrTTT""

1994 ( S j ç EUR 14678 Erv

cl ~

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 6/200

Publish ed by theEUROPEAN COMMISSION

Directorate-Genera l XI I ITe lecommunica t ions , In format ion Market and Exp lo i ta t ion of Research

L-2920  Luxembourg

LEGAL NOTICENeither the European Commission nor any person acting on behalf

of the Commission is responsible for the use which might be made of thefollowing information

Cataloguing data can be found at the end of this publication

Luxembourg: Office for Official Publications of the European Communities, 1994

ISBN 92-826-7536-X

© ECSC-EC-EAEC, Brussels • Luxembourg, 1994

Printed in Italy

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 7/200

Abstract

Modern steam turbines must retain a very high reliability throughout their service lifeof typically 200 000 hours, which in p ractice extends over m ore than 25 years. One of thefeatures which must be considered at the design and manufacturing stages and during theassessment of  fitness carried ou t periodically during the service life is the growth of themanufacturing type defects at temperatures up to about 550°C.

Within the concerted action research programme CO ST 505, Materials for SteamTurbines one coordination group studied this problem with a view to enabling a moreaccurate evaluation of defect acceptability on the basis of data gathered using laboratorytest-pieces. The work of the group was structured under three headings which form thethree Parts of this Monograph:

* Part I - Cree p Crack Initiation and Growth in terms of K* Part n - Creep Crack Growth in  1 % C T M O V  steel and Alloy 800H -

an evaluation of the results of the COST 505 and an EGFRound Robin

* Part HI - High Tem perature Fatigue Crack Growth in Steam TurbineMaterials.

In each part solutions are given according to the current state-of-art. None can beregarded, however, as giving a well established methodology for practical application.Further data will have to be determined together with results from complex, simulativebenchmark tests which remain to be conducted, before th ere will be sufficient critical

evidence upon which to base general rules for practical applications.

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 8/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 9/200

HIGH TEMPERATURE CRACK GROWTH IN STEAM TURBINE MATERIALS

~ Preface

Materials for power engineering applications have been important for various concertedaction research programmes throughout the 20 year history of COST. Within this field,one of the areas to which specific attention has been devoted in recent years has beenMaterials for Steam Turb ines; COST 505 . The countries represented in this programm e

were Austria, Belgium, Denmark, Finland, Germany, Italy, Sweden, Switzerland andUnited Kingdom together with the Joint Research Centre of the Commission of theEuropean Communities. Jointly, organisations from these countries tackled a range ofproblems concerned with the improvement and reliability of steam turbines.

One of the coordination groups containing the 7 organisations Usted in Table A on page7 was involved with high temperature crack growth. They had the overall objective to

enable a more accurate evaluation of defect acceptability in full scale power plantcomponents on the basis of data gathered using laboratory test-pieces. The defects wereunderstood to be those associated with the manufacturing process rather than defectsinitiated by creep exhaustion.

The work of this group was structured under three headings:* creep crack initiation and (early) growth* creep crack growth* high tem pera ture fatigue crack growth

These subjects formed the basis of reports in which the work was reviewed and evaluated

in the light of presen t day literatu re and experience in studies which were conducted withsome financial assistance from the Commission of the European Communities. Theround robin work in the second heading was also integrated into a task being undertakenby the European Group for Fracture (now ESIS) and reported by them in 1990.

The three constituent pa rts which make u p this Monograph a re independ ent in terms ofchapters, literature references, table and figure numbering. They are , however, precededby a common Executive Summary and an integrated list of the symbols and abbreviationsused throughout

Acknowledgement must be given to the input which all of the participants made

throughout the investigations and also when the reports were being prepared. Theassistance of Dr. S.R. Holdsworth with the preparation of the list of symbols is alsogratefully acknowledged.

J.B. Marriott

Secretariat for COST Projects 501/505EUCO/MST/01/92JBM/tp/1/1397Petten, July 1992

V -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 10/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 11/200

Contents

Executive summary 1

List of symbols used throughout 11

Part I Creep Crack Initiation and Growth in Terms of K 21

1. Basic considerations upon the use of K 23

2. Crack tip/farfield models 27

3. Test results on creep crack growth 33

A . Discussion of results 38

5. Conclusions 43

References 44

Table 46

Figures 47

Pa rt II Creep Crack Growth in 1% CrMoV Steel and Alloy 800H -an evaluation of the results of the COST 505and an EGF Round Robin 69

1. Introduction 71

2. Material 73

3. Specimens and test procedure 76

4. Param eter determination 78

5. Num erical investigations 79

6. Results 83

VII

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 12/200

7. Discussion 84

8. Con clusions 91

References 92

Tables 96

Figures 104

Pa r t H I High Tem peratu re Crac k Growth in S team Turb in e M ater ia l s 129

1. Introdu ction 131

2.  Fatigu e crack growth regimes 131

3.  High tem pe ratu re fat igue crack growth correlat ion pa ram ete rs 132

4.  Low strain fatigue 134

5.  H igh stra in fatigue 138

6. High tem pe ratu re crack growth in we ldmen t micro structures 139

7. G en era l observat ions 140

8. Con clusions 141

References 143

Tables 145

Figures 147

VIII

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 13/200

COST 505

HIGH TEMPERATURE CRACK GROWTH IN STEAM TURBINE MATERIALS

Executive SummaryJ. Ewald. Coordinator

Introduction

Within COST 505  Materials for Steam Turbines , the High Temp eratu re Crack GrowthWorking Group contained 7 research groups, Tab le A. They investigated 1% CrMoV,2 1/4 Cr 1 Mo and 1 Cr 0,5 M o steel forgings, castings, and p ipes with respect to staticcreep crack initiation and growth and to cyclic crack growth, between 530 and 550°C,Table B. In addition to the mechanical testing, 2 groups (D22 and UK18) performedfinite element analyses to control the validity range of C application and to investigatewhether cracked specimens creep under plain strain or plain stress conditions.

Principal Findings

The m ain conclusions which can be drawn from the results and evaluations of the workof the group can be summarised as follows:

In spite of the undoubted plane strain situation which exists near to the crack tip,the overall structure is exposed to creep under a plane stress condition, whichmeans that the load line displacement rate of the specimens - which is decisivefor the amount of C* - is dominated by plain stress behaviour.

The behaviour of the specimen within the range of the tails and during the earlycreep crack stage may be described in terms of K with additional geometry factorssuch as a crack tip/farfield ratio.

The real creep crack behaviour with higher creep crack rates can best bedescribed by means of C*2  which is a version of C* including the load linedisplacement due to creep. However, it is probable that these displacement ratescan rarely be measured in service for low stress, long time loadedspecimens/components.

Cyclic crack growth is accelerated by hold time. The hold tim e cyclic crack growthrates lie between the cyclic crack growth and the static crack growth curves.Numerical accumulation rates

da/dN total  = d a / d N ^ + da/dN ,creep

based on an equivalent AK, considering the cyclic crack closure effects and C forhold time effects were investigated and used to describe the cyclic crack growthbehaviour.

- 1 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 14/200

The solutions given in of this Monograph have been obtained according to the currentstate of the art, but none can be regarded as giving a well established methodology forpractical application. In the area of static high tempera ture crack growth further data willhave to be determined for specimens with different shapes and sizes under loading

conditions which lead to long crack initiation times and low crack growth ra tes for m oreor less creep ductile materials. A broad data base will have to exist before the finaldecision can be made about the most economic and appropriate evaluation method.

With respect to high temperatu re fatigue crack growth the situation is similar. Th ere aremany data, a considerable level of mechanistic understanding and various proposals forevaluation methods, but even here there remains a lack of critical evidence upon whichto base general rules for practical applications. Furthermore, it is necessary to have agood data base for creep crack growth because according to the proposed accumulationrules for load controlled cyclic crack growth with hold times both static and dynamictypes of data are required.

However, there still remains the complex loading condition of strain controlled cyclesarising from therm al stresses with superimposed stress relaxation. This type of behaviouris frequently met in service and so far it has not been possible to model the behaviourusing relatively simple laboratory tests. At p resent the only way to obtain information isby performing expensive tests which closely follow the actual load cycles.

These conclusions have been established on the basis of three studies, which wereconducted with partial financial assistance from CEC, DG XH-Gl, to review the workof the Group and to examine separate aspects of the field. The summaries of thesereports follow in the order:

Part I - Creep crack initiation and growth in term of K by J. Ewald;

Part n - Creep crack growth in 1 % CrMoV steel and Alloy 800 H - an evaluationof the results of the OCST 505 and E G F round robin by T. Hollstein,G.A Webster & F. Djavanroodi;

Part HI - High tem pera ture fatigue crack growth in steam turbine materials by S.Holdsworth

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 15/200

P a r t i

Creep Crack Initiation and Growth in Terms of KJ. Ewald

Siemens, Power Generation Group KWU, Mülheim-Ruhr, Germany

It is clear that two schools of thought exist about the selection of the appropriateparameter for creep crack initiation and growth. There are the protagonists of C*, whofeel supported by the fact that C* is the loading param eter which is reasona ble from thephysical point of view. On the other hand there are the people who try to apply creepcrack initiation and growth data in terms of K for the description of components whichhave thick walls, long loading times, and low loading stresses. With respect to crackinitiation it can be concluded:

Ky,, (the fictitious or ideal elastic stress intensity factor) seems to be basicallyusable to describe the crack tip situation for crack initiation.

The time for crack initiation increases with decreasing crack tip driving force(K lid), Fig. A.

Specimen size and shape determine the damage m ode and the related specimenbehaviour. Therefore, it is necessary to use  Kj¡d  together with the parameter Gn

(nominal stress or net section stress) to describe the farfield loading situation,because within the creep range time dependent changes in stress distribution,exhaustion and damage occur both at the crack tip and in the farfield (ligament).

Consequently, crack initiation can be described basically by means of a twocriteria diagram for creep crack initiation which covers the rang e of the tailsfrom å = f (K Iid) plots and which is able to demonstrate the influence of differentcrack tip/farfield ratios K E d/G n.

Creep ductility dramatically influences the creep crack initiation and growthbehaviour. Notch weakening m aterials should be avoided, since they tolerate onlyextremely short defects. The related data base for these materials is not yetavailable.

The creep crack growth behaviour when there is only a limited crack increment may bedescribed by plots of K,¡d over t with param eter lines for a, similar to Fig. A. However,with such diagrams, which are only valid for CTl-specimens, it is hardly possible toestimate the influence of specimen shape and thickness. Thus, crack growth with smallincrements should be rated with diagrams like Fig. B which shows the influence ofspecimen shape and specimen thickness, e.g. lateral constraint If it is necessary todescribe the behaviour of cracks of greater depth, the crack tip/farfield method with V0

= Kjjd/G,, or some kind of description by means of C* may be used. This aspect isconsidered in greater detail in Part II of this Monograph.

- 3 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 16/200

The most important point for the future is to generate further data on specimens withdifferent shapes and sizes with long crack initiation times and low crack growth rates.This would allow a final decision to be made about the most economic and appropriateevaluation method.

P a r t i i

Creep Crack Growth in 1  CrMoV Steel and Alloy 800H - an eva luation of the resultsof the COST 505 and an EGF Round Robin

T. Hollstein*, GA .  Webster**, F. Djavanroodi**

* Fraunhofer Institut für Werkstoffmechanik, Freiburg, Germ any

** Imperial College of Science and Technology, London , UK

Experiments and analyses have been performed on a 1% CrMoV steel and on Alloy800H which have shown that creep crack growth in these materials is described mostsatisfactorily by the creep fracture mechanics parameter C*. Recommendations havebeen made about how to obtain the most reliable estimates of C* from experimentalmeasurements. These have been supported by numerical computations, Fig. C. It hasbeen found that the use of 20% side grooves (10% of the total thickness each side) incompact tension specimens, and a seven-point polynomial fît to obtain crack growth anddisplacement rates, produces the most consistent correlations.

It has been dem onstrated for the 1% CrMoV steel that all the cracking took place underplane stress conditions, Figs. C and D . Increased scatter, due to 'tails' in the early stagesof cracking, Fig. D , has bee n shown to be caused mainly by the progressive build up ofdamage at the crack tip until a steady state distribution is reached. This can take up to30% of the life of a specimen and can be important in practical applications. However,little evidence of a 'tail' was noticed for Alloy 800H.

Comparisons have been made with data obtained in other test programmes on the 1%CrMoV steel. These have reinforced the findings of this investigation.

Part III

High Temperature Fatigue Crack Growth in Steam Turbine MaterialsS.R. Holdsworth

GEC Alsthom Turbine Generators Ltd., Rugby, UK

Th e high temperature fatigue crack growth (HTFC G) p roperties of a number of steamturbine m aterials have be en reviewed. Many of the results were gathered by membersof the COST 505 High Temperature Crack Growth Working Group who were active

- 4

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 17/200

during the period 1985 to 1988, but additional information has also been collated fromthe published literature to complete the overview.

High temperature low and high strain fatigue crack growth rates may be considered interms of two components, one due to cyclic loading and the second due to creep, ie

da/dN total  = d a / d N ^ + d a / d N ^

The da/dNjydj,. term is a power law function of A K ^ (the equivalen t cyclic stressintensity) and may be influenced by crack tip damage due to oxidation and prior creeploading. ăa dNmep is expressed in terms of the C* parameter. 

At 530/550°C  and for a range of steam  turbine forging, casting and pipe steels, there is no apparent effect of creep on low strain fatigue crack growth rates for frequencies  in excess of 1Hz. 

HTFCG threshold AK levels increase with decreasing frequency due to  oxide blocking and crack closure whereas at somewhat higher AKs, low strain fatigue crack growth rates increase with decreasing frequency due to enhanced oxide growth. 

For  frequencies  less than  1Hz, da/dn,otai  is still mainly influenced  by oxide assisted growth effects on d a / d N , ^ at relatively low AKs. However, with increasing AK, the role of  oxidation  diminishes  and  creep  becomes  more  important  through  its  effect  on  da/dN^y,. and its contribution in terms of d a / dN^ ^ . 

In a simple engineering model d a / d N ^ ^ for a given AKeq, increases to a maximum as the crack tip damage zone develops to  the critical condition necessary for th e onset of creep crack growth. The prior hold time necessary to achieve this peak acceleration increases with increasing creep ductility. 

At frequencies below 13Hz when the cycle is in load control, fatigue crack growth rates 

are determined by the rate of creep crack growth (ie the magnitude of da/dN^y,. is small relative to that of åa/äSmcp).  This is not always the case when HTFCG is due to a strain controlled cycle. In these circumstances, stress relaxation occurs and da /dN^^ , is no t the dominant crack growth component until still lower frequencies. 

The resistence of a material to creep-fatigue crack growth is strongly influenced by creep ductility. The magnitudes of both cyclic and creep crack growth rate components are lower for steels with high creep ductility. 

Prior long term thermal exposure (without load) has no influence on high temperature fatigue crack growth rates, at least while th e ageing treatment is no t responsible for a significant reduction in creep ductility. 

In load controlled  tests, high temperature fatigue crack growth rates through the weld heat affected  zone  (HAZ) of a cast  lCrMoV steel are faster  than those through the parent  material  at  frequencies  of  around   0.1Hz.  The  difference  in  cracking  rates increases dramatically with the  introduction  of a hold  time at peak load, coinciding with 

5 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 18/200

a change in fracture path from the partially transformed intercritical HAZ to the fullytransformed coarse grain HAZ immediately adjacent to the fusion boundary.

High temperature fatigue crack growth rates through the weld HAZ and parentstructures of a cast 12CrMoV steel are similar in both low frequency continuous cycleand peak load hold time tests. For the test conditions investigated, all fracture paths inweldment tests are contained within the soft sub-critical HAZ.

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 19/200

Table A

Research Projects

No.D 20/21

D 22

D 35

1 3

SF 2

UK 5

UK 18/22

OrganisationSiemens

IWM Frbg.

AEG

ENEL

V i l Espoo

GEC-A

Imp. Coll.

Project ResponsibleBerger/Ewald

Hollstein

Kanbach

Ragazzoni

Rintamaa

Holdsworth

Webster/ Djavanroodi

- 7

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 20/200

Table B

Materials/Tests

ProjectNumber

D 20/21

D 22

D 35

1 3

SF 2

U K 5

UK 18/22

1%  CrMoV550°C

RoundRobin

X

X

X

X

X

X

X

Additional Materials

1%  CrM oV; 530°C

1%  CrMoV ; 550°C

1%  CrMoV cast; 530°C

1%   CrMoV (used rotor;540°C)

1%  CrMo V (used rotor;550°C)pipe mat; 550°C

2 1/4 G 1 Mo cast; 538°C

1%  CrM oV; 550°C

crack growthstatic cyclic

X X

x (+ analyticalwork)

X X

X X

X

X X

X X

(analyticalwork)

8 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 21/200

scatterband, makroscop. Creep Crack  Initiation  Siemens  1989 

100  1000   10000 loading  t ime  ( h ) 

100000  

Fig. A   Creep Crack  Initiation, 1  CrMoNiV 530°C, CT25S 

Specim.Thickn.   (mm)  D X 

+ V  Y D  A  O  o O  

CT   25/50S  , a/W   =  0.55 CT   50/1 OOS  , a/W   =  0.55 

CT100/200  , a/W   =  0.55 0  9  , a/W   =  0.40 D60  ,  a/W   =  0.40 D60  , a/W   =  0.20 D60  , a/W   =  0.10 

CT12.5  ,  a/W   =  0.50 CCP  ,  a/W   =  0.50 SENT  ,  a/W   =  0.20 

1%CrMO(Ni)V,T = 550'C 

D.60  

A  A   6 

$ 1 0 0  

0  X ¡ Q \ Hollstein  

' 2 5 / C T 1 2 . S -D^-^Jfom  a , 

50 [  3 ] 

10   10 0  1000 loading  t ime  t¡   ( h ) 

10000 

Maile/Tscheuschner   |Siemens|Ragazzoni|  Hollstein  |Holdsworth|Rintamaa c  *  +  A   Y O   A  

0.004W(CT),0.01W(OENT)  spark eroded  

B  •0,5mm  

a  O  • 0,5mm 

CT25 - , CT5 0 X 

■ 0,3mm 

D   - O  '0,2mm  

Fig. B  fatigue  precracked 

a  o - 0,5mm 

Creep Crack  Initiation  for different  specimen  thickness and size 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 22/200

2ICrMoNiV57.   T = 550°C CT12.5M0  specimen  AB2B  

tH   R  

8 -

§ ° 

pi   strain (à  10) pi . stress (á=0)  /  pi.  strain(àsO) 

y  ¿.   s 

8  - | — , — | — i — i — i — , — i — i — i — i — i — i — i — i — I   I  I  I  I  I  T~ 

°0.00   1.00  2.00   3.00  4.00  5.00  6.00  7.00  B.00  9.00  10.00  11.00 

t  .  se c  CE+06) 

F i g .  C   Exp e r i m e n t a l  a n d   n u m e r i c a l  e va l u a t i o n  o f  C *  f o r  C T   12 .5 / 40  spec imen   A B 2 B ,  w i t h  a n d   w i t h o u t  c r a c k  g r o w t h  

Q   B D 3 , B D » , B D S . B W 1 , B W 2 , B W 3 , A H J . A H * , A O S , A Q 5 , B C l , B C 2 , A N Í , A E l , A E 2 

Q   A F Î . A B 3 . A B R A M I , A H I , A l l , A I 2 , A B S , A B Í , A E S , A C 1 - 6   ( C T I 5 / S 0 ) 

S  A N 1 . A N 3 . A N « , A 0 3  ( C T 2 0 / 4 0 )  •  RR 5  (SENB  9 .5 /191 

O   AQ1 .AQ2   ( C N I 2 . S / S 0 ) 

+  ABZA .AB1B   ( C P ï . S / « a )  

M   A P I . A P 2 . A P 3  ( C T 5 0 / 1 0 0 ) 

D   AM1 .AM2  ( S E N T 1 2 / 2 0 ) 

X  BE31.BE32   ( C T 1 0 / 2 0 )   ' * 

♦  BB 1  ( C T 6 Ï .  S/137) 

o  C C P 5 .C C P Í   (CN2S /S0 ) 

.  A   A1G.A17  ( C Z 1 5 / Ï 0 ) 

■  RR 7  ( C T  13 /16 ) 

*t / S 

-•  <■ 

CT j / f c n 2« ] 

F i g .  D   C r a c k  g r o w t h  r a t e   â  i n  1  C r M o V  s t ee l  a t  550°C  as   a  f u n c t i o n   o f  C * . 

10  -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 23/200

List of symbols and abbreviations used throughout the Monograph

symbol or abbreviation

a

a0

Aa

Aa¡

á

â.

A

A,

(bk

b(t„,  er)

B

B .

B .

C

C(f,  t„, er)

C '

meaning

crack length

initial crack depth

crack extension

crack initiation criterion

crack growth rate per unit time

initial creep crack growth rate

steady state creep crack growthrate .

uniaxial elongation at fracture

impact energy

remaining ligament (w-a)constant in creep crack growthEquation.

function of hold time and ductilityin creep crack growth expression

specimen thickness

effective B = B - (B-BJ2/B

net section thickness

constant in Paris FCG law

function of frequency, hold timeand creep ductility in  d a / d N , ^law

constant in Norton minimum creeprate law

Part where used

i;n;mI;H

n

i

I;II; da/dt usedin IIIn

n

II ; El also usedb y n

n

n  \m l

m

I;II;m

n

i;n

m

ra

n;m

- 11

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 24/200

symbol or abbreviation

C*

C*

c*2

CCP   .CN   \-

CNT   J

CT

CTOD

ACTOD

ACTOD0

da/dN

d a / d N ^

d a / d N ^

da/dN,,^

da/dt

dr

ds

DENT

meaning

parameter characterising stress and

strain rate fields at crack tip increeping solid

C* determined using Kumar-Shinbased solution

experimentally determined C*

centre notched specimen

compact tension specimen

crack tip opening displacement

cyclic CTOD

threshold  ACTOD

crack growth rate per unit cycle

da/dN  due to creep loading

da/dN due to cyclic loading

total da/dN due to both creep andcyclic loading

crack growth rate per unit time

crack tip ligament

arc length on r

double edge notched tensionspecimen

Part where used

I;II;m

I

I; included inC byü

i;n

i;n;m

m

m

m

m

mm

m

lu; å used ini;nn

nr,n

12 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 25/200

symbol or abbreviation

E

E '

El

f

F

FCG

G

gi(7w,ß)

gi(7W,n)

H

HAZ

HSF

HTFCG

In

ICHAZ

meaning

elastic modulus

elastic modulus includinglateral contraction (i.e.including pi. e)

uniaxial elongation atfracture

frequency;  dN/dt

load

fatigue crack growth

elastic strain energyrelease rate

geometry function inKumar-Shih J solution

geometry function inKumar-Shih based C* (orC*i) solution

constant in cyclichardening law

heat affected zone

high strain fatigue

high temperature fatiguecrack growth

non dimensional functionof n

intercritical HAZ

Parts where used

m

i

II; A also used by

m

I;H; P used in m

mn

m

I;ffl

m

m

m

m

n

m

i;n

13 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 26/200

symbol or abbreviation

J

AJ

k,

K

AK

Kc

K *

A K ^

Kt

K M

K W o

Kno

Knm

Kniin

A K C

A K «

meaning

path independent lineintegral characterising

stress and strain fields atcrack tip in plasticallydeforming solid

cyclic J

theoretical elastic stressconcentration factor

elastic stress intensityfactor

cyclic K

apparent elastic K

critical value of K leadingto instability

effective K

cyclic K ^

initial K

fictitious (ideal) K

K M  at a0

creep crack initiation K

maximum K

m i n i m u m K

equivalent A K

total AK

Parts where used

i ;m

m

I

I;II;m

mIH;  referred to as KM

i n i

m

I

m

H; referred to as K ^ in I

I; referred to as KA in UI

I

I; referred to as K¡ in II

i n

m

m

m

14

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 27/200

symbol or abbreviation

AK„

LSF

M

WJt»  O

n

N

P

* D E

* D S

^ m a x

min

Po

q

r c

R

R '

meaning

fatigue crack growththreshold A K

low strain fatigue

exponent in Paris law

exponent in da/dN cycliclaw

stress exponent inNortons (minimum creeprate) law

number of cycles

load

load at end of dwellperiod

load at start of dwellperiod

maximum load

minimum load

crack opening load

exponent in creep crackgrowth rate law

effective load range

creep damage zone size

load ratio  (R=KmJKaJ

geometrical variablerelated to crack  tip -farfield condition ie.R' =( K 2 / 0

Parts where used

m

m

m

m

I;II;m

n i

HI; F used in I;II

m

m

m

m

m

m

m

n

HI;  also used for radialdistance from centre ofbar in H

I

- 15 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 28/200

sym b ol or ab b r e v i a t i on

R "

RA

Rpo.2

Rpi

R »

Rff

RK

R«,«

S E N B

S E N T

S C H A Z

t

»d

tf

»h

ti

t .

' i

m e a n i n g

ac t i vat i on e ne r gy t e r m

uni ax i a l r e duc t i on o f ar e aat fracture

0 . 2% pr oof s t r e ngth

1 %   pr oof s t r e ngth

te ns i l e s t r e ngth

stress rat io  (o^JR^

stress intensi ty rat io(Kftjo/Km))

c r e e p r uptur e s t r e ngth

s i n g l e e d g e n o t c h e d b e n ds p e c i m e n

s i ng l e e dge notc he dt e n s i o n s p e c i m e n

subcr i t icai HAZ

t i m e

t ime at which crack t ipc r e e p dam age f i r s t for m s

t ime to fai lure

hold t ime

time at w hic h crack tipc ondi t i ons ar e r e spons i b l efor creep crack ini t iat ion

t ime to rupture

tr ans i t i on t i m e

P a r t w h e r e u s e d

n

H; Z also used by II fors a m e p u r p o s e

i;n

n

n

i

i

I; re ferred to as a 0  in II

I;II;m

n

m

I;ü;in

m

II;   referred to as tr  in I

m

I;ÜI

I; referred to as t f  in II

i;n

- 16

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 29/200

symbol or abbreviation

T

ú ¡

U*

5U*/ ía

V

vL

AVL

v.

v.

w

w*

X

Y

Z

ß

e

meaning

temperature

traction vector (T¡ =  a^np

displacement rate vector

energy term

energy dissipation rate

load line displacement

crack openingdisplacement

load line displacement

cyclic VL

crack tip farfield ratio^ o   =  ^ D d o / f f i i o a e b e l

load line displacement

rate due to creep

specimen width

stress work ra te

distance

compliance/geometryfunction in K solution

uniaxial reduction of areaat fracture

exponent in cyclichardening law

strain

part where used

n

nn

n

n

I; H; referred to as VL

m

m

Iu ; referred to as V in

m

I

i;n

i;n;ra

n

n

m

H; RA also used by H

m

i;n;m

in

I

17

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 30/200

symbol or abbreviation

e c r

« o

e r

« * f

«*.

A e p

A e T ( 0 P )

é

¿ c r

¿ S

'min

« « f

de/dt

D

Oc

a

meaning

creep strain

strain parameter inprimary term of creepstrain expression

uniaxial creep ruptureductility

multiaxial creep ductility

ductility exhausted in theligament prior to the

arrival of the crack

cyclic plastic strain

nominal total outer fibrestrain range

creep strain rate

creep strain rate

strain rate tensor

minimum creep rate

creep strain rate atreference stress inuniaxial specimen

creep strain rate

factor from limit loadanalysis

factor depending ontestpiece geometry

stress

Part where used

n

n

n;m

n

n

m

m

I;II; referred to as ¿„inn and de/dt in m

II;see comments above

n

n

I

III;  referred to as £ ini;n

n

i;n

i;n;m

18

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 31/200

symbol or abbreviation

La

ff  STM

» .

»«*

a n ã c b c l

» u n d i c i

°0

°ra

aY

r

meaning

cyclic stress

nominal stress as definedby ASTM

nominal stress forcomponents, net sectionstress for specimens

net section stress

nominal stress accordingto Siebel

a„ úax¡  for initial crackdepth a„

plain specimen rupturestrength

reference stress

yield strength

integration path aroundcrack tip connecting lower& upper crack face in acounter clockwisedirection

Part where used

m

I

I; for tensile specimens,alternatively referred toas ona   in IÜ

HI; see comment above

I

I

U; referred to as R,,,, in I

I

m

n

- 19

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 32/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 33/200

HIGH TEMPERATURE CRACK GROWTHIN STEAM TURBINE MATERIALS

Parti

Creep Crack Initiation and Growth in Terms of K

J. Ewald

Siemens, Power Generation Group KWU,

Mülheim-Ruhr, Germany

21

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 34/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 35/200

1.r Basic considerations upon the use of K

Creep crack initiation and growth has been broadly described by

means of C*, which is a path independent line integral round

the crack tip and/or the energy dissipation rate for a specimen

with a fatigue crack, creeping under steady-state creep conditions

[1,2].  This means that the specimen is assumed to have a completely

redistributed stress condition which enables it to have a steady-

state creep crack growth rate.

To determine C*, most researchers use the version of C*, which

incorporates the load line displacement rate due to creep, V ,

(this C* is designated below as C* 2) [3].

This gives the following formula:

C* ' =  t e  B (W-a) <')n

where F is load, B is net section thickness,  n  is a factor,

depending on test piece geometry and on the creep exponent n

of the Norton creep law.

Details of the numerical and physical background of C* and of

the determination o f ^ are described in [ 3] .

From the basic evaluations in [1] and from recent finite element

calculations [5] it is obvious that there exists a distinct

time at which a specimen reaches the steady-state condition,

this being the lower bound validity limit for C*. The equation for

fc1 =  (n+1) C* Ë1"  ( 2 )

includes the power exponent n of the Norton steady state creep

law in addition to two parameters describing the stress state

at the crack tip - K and C*. It is clear that the use of theNorton law for the description of the creep behaviour is a rough

simplificaction, because it is not able to describe the primary

creep range. A further problem which has also to be taken into

consideration is that the Norton exponent - basically defined

for the secondary creep range - changes with both stress and

test time and it is not possible to describe the increasing

stress redistribution portions which occur with ongoing time

within the secondary creep range by the Norton creep law.

- 23 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 36/200

Nevertheless, t ]  is an estimate of the time from which C* can

be used. For t i m e s * t., the basic mathematical formulation

shows that C* is path dependent and then the use of C [4] or

simply K is allowed.

The practical application of the C* 2  integral is limited bythe current availability of'7 solutions for different geometries

[7,8]. This means that additional expensive analysis is required

for non standard configurations and complex components. In addition,

the measurement of V for real existing cracks in a component

or specimen loaded to a low stress and for a long duration is

rather difficult or even impossible because of the small displace

ment rates involved. It therefore makes sense to try to use

the fictitious stress intensity factor K T. . to describe thelid

conditions at the crack tip. This is done in spite of the knowledge

that its use is incorrect in physical terms. Nevertheless, K... ,

serves as a vehicle to describe the geometrical situation near

the crack tip for a specimen/component. However, because we

are considering creeping bodies, it is not sufficient to use

K-., as the only parameter to describe the crack tip behaviour

of the component.

A single parametric approach to describe the crack tip such

as K or J can only be used in the sub-creep regime where the

yield strength, which depends on temperature but not on time,

is the decisive material characteristic. Within the creep range

the situation is different because - as mentioned before - time

dependent changes in stress distribution occur both at the crack

tip and in the farfield  (ligament).  Consequently, exhaustion

and damage of the material have to be considered not only at

the crack tip but also in the farfield as time goes on.

This means that a crack tip/farfield concept must be employedto assess crack initiation and growth in the creep range. Models

covering the crack tip/farfield situation have been developed

and proposed step by step since 1979  [9-13].  A "two criteria

diagram of creep crack initiation" was developed in 1984  [10,11],

which can be used to assess the crack initiation behaviour of

ductile CrMoV grades of steel and which can also be adapted

to other steel grades.

24

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 37/200

Later in 1987 [12,13] attempts were made to describe the creep

crack growth behaviour in a consistent manner by a crack tip/far-

field ratio, K Ţ. J / G too. In  [14] similar  concepts  to describe 

the specimen behaviour  in terms of K were developed. 

It was clear  from the  very beginning  that the use of K for speci-mens and  components with  large ligaments such as castings with 

thick walls and  rotors wich are subjected  to long  loading  times 

at  relatively  low  stresses does not seriously  affect the validity 

conditions of the K-parameter.  This was because, according  to 

[1],  K may  be used  if the material  is creep ductile, but the 

creep  zone, in spite of the  long  loading  times, is small in 

relation to the crack  length  and/or the specimen width  (as a 

result of  low net  section  stress). 

The other  validity  conditions  for K which exclude the use of 

C* are: 

-  the material  is creep  brittle  (low creep deformation  capacity), 

-  the material  is creep  ductile, but the creep  zone is still 

small due to short  loading  times  ( t < t . ) . 

For ductile materials  the latter condition may  also support 

the trend  to apply K, at least in the range of  ongoing  stress 

redistribution  and crack  initiation.  

The need to use a 2nd parameter  for the  farfield, which  is the 

nominal  stress, is supported  in total by  3 facts [11]: 

1. The time dependence of the material  characteristics, as mentioned 

before. 

2. The possible  existence  of different farfield  stresses in 

specimens of different  sizes and  shapes  in spite of a constant 

crack  tip parameter  K  (Fig. 1) . 

3.  The  finding  from  finite element calculations  that the experi-

mental  results were best  fitted  by assuming  plane  stress 

conditions  [3,5]  (Fig. 2 ) . This means  that  in spite of  the 

undoubted  existance of a plane strain  condition within  the 

near crack  tip  region, the farfield  with  its plane stress 

condition dominates  the behaviour  of the specimen. 

The  last  finding  gives  an additional  hint, why  the  C*2-version 

with V  (load  line displacement due to creep) describes  the 

specimen  behaviour  best  and why  the other C*-version  based on 

the Norton's  power  exponent n: 

- 25 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 38/200

C*, =  a-  n

n\  ,3) 

does not fit the experimental  results  in a satisfactory manner.  

The  reason  is that V  describes the overall specimen  behaviour 

by  combining  the influences  of  stress and time at the crack 

tip and  in the  farfield.  Unfortunately,  the C*2  = f  (V  )-version 

is  less practicable  in long  time/low  stress situations, for 

the reasons-outlined  above. 

In  the following  chapters  the different crack tip/farfield  models 

for crack  initiation and growth will be described  and  specific 

data which were evaluated  in the course of the work of the COST 

505 High Temperature Crack Growth Group  [15-20] or are available 

in the literature will be summarised  and  their usefulness ex-

plained. 

Basically  it is the aim of these models to use K in a manner 

similar to the employment of the elastically determined  stress 

concentration  factors, K  , in the plastic and creep  range in the German design  rules  [9,26,27].  

In order to distinguish  this K used  in the creep  range  from 

LEFM  K, it is called K T. , [19]. lid 

With  the use of K Ţ . , as the crack  tip geometry describing  factor 

and  the farfield  nominal  stress  it is believed  that the basic 

stress  features of  a specimen/component   are  fixed  so that it 

should  be possible  to describe  the creep  behaviour  of a specimen 

or a component  using  the data of other  specimens or  components 

which  have  the same stress  features.  In this case, it  is un-

important that  the use of K Ţ. , may  not be correct  in physical 

terms over the whole  loading  range. 

26 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 39/200

2.) Crack  tip/farfield  models 

2.1  Basic  considerations 

As explained  above, in addition to the application  of K . , as 

the parameter describing  the crack  tip situation, the nominal 

stress within  the  farfield  has to be taken  into consideration. 

According  to ASTM  E 616-82,  the nominal  stress within  the ligament, 

i.e. the  farfield, of the usual  fracture mechanics  specimen 

is determined  as follows:  ■ 

For  symmetrically  loaded  specimens  (DENT, C N T ) , 

^ASTM = F / B  ( W- a )-  ( 4 ) 

For  specimens with  bending  fractions, (e.g. C T ) , ^ASTM  =  F / ( B  ( W _ a ) )  ( 1  3 (W + a)/(W-a)).  (5)  

In specimens with  tensile  loading  and bending, the  linear  elastic 

bending  stress  fraction  is added  to the tensile  stress  in accor-

dance with  ASTM, Fig.  3. In  tensile specimens, however, the 

completely  balanced  (redistributed)  tensile  stress  in the  ligament 

is used, Fig. 4; this  is not consistent. As  introduced  by  Siebel 

[16],  the bending  stress should  also be used  as a fully redistri-

buted  stress, which means  that the  linear bending  stress  fraction 

must be divided  by  1.5  (maximum  general  yield  coefficient  for 

bending, Fig.  3 ) . The nominal  stresses determined  in this way 

for  specimens with  bending  fractions are  referred  to as O  „. , ,, ^3  n Siebel 

contrary  to stresses according  to ASTM. 

At  this point, reference must also be made to two  peculiarities 

associated  with  the use of K T. , and G~  „. ,  . as crack  tip and lid  n Siebel  r 

farfield parameters: 

(1) With  increasing  specimen  size, the K T. ,/G~ „.  ,  , ratio ^  ^  lid  n Siebel 

increases  for the  same K I. , (similar  relationships  arise lid   r 

for the C*/S .  ratio) Fig.  1. This means  that  large n Siebel  — ^  3 

CT-specimens  have  lower  farfield  stresses  for the same K T. ,, lid' 

i.e., these specimens  are more  likely  to exhibit  crack  tip 

damage. 

27 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 40/200

(2) Attention must also be drawn to the influence of crack growth,

A a,  on the shape/geometry function for specimens with

differing sizes. It is clear that if, in geometrically similar

CT-specimens, the crack growth rate is constant, the increase

in a/W as a function of time is different for each specimen

size. Of course, different values of the shape function

result from different a/W ratios. If the change in shape

function with respect to time for given constant increments

in A a for three CT-specimens with different sizes is determined,

the curves shown in Fig. 5 result. The diagram also shows

that the increase of the shape function is approximately

the same for the different CT-specimens up to an a/W ratio

of 0.57, while it increases more rapidly for the smallerspecimens beyond this value. This is logical, as a crack

growth increment of 1 mm in the ligament of the large speci

men is "hardly noticed", while the ligament of a small specimen

is altered profoundly by such a change. To show the influence

of the shape function, the experimentally determined crack

growth behaviour of a real CT100-specimen was transferred

to CT50-  and CT25-specimens, Fig. 6. All specimens were

assumed to have the same initial fictitious elastic stress

intensity factor K-. ,. Due to the different changes of theshape function, different slopes of the a = f (K_..) curves

are obtained for the different specimens.

2.2 Thinking model [9,10]

In the following, the significance of the two parameters K-. ,

and is explained by means of a model distinguishing between

ligament damage (related to Ç" ) and crack tip damage (related

to K...). In Fig. 7, both the creep strength of smooth specimens

and the creep crack initiation resistance in terms of K_., are

plotted independently as a function of the loading time.

If a component with a large flaw (high K... ,) was approaching

the end of its life (say at 10 h) due to a net section stress C" ,

then Fig. 7a shows that creep crack initiation would be caused

relatively early with subsequent creep crack growth into a low

pre-stressed farfield. This high K T. ,/ situation would lead3  lid n

to a failure mode of crack tip damage, promoting leak before

fracture.- 28 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 41/200

If the same component  had  a relatively  small  flaw  (low K T. ,) 

(Fig. 7 b ) , creep  crack  initiation with  subsequent  crack growth 

into a highly  pre-stressed  farfield  would  only occur at a very 

late stage  in  life. This would  lead  to a ligament damage mode 

with  low K  . ,/Œ ratios. When  this mode of  ligament damage is dominant, the  first  indication of  failure of the component would 

be given by  the overall  component deformation. This  final  failure 

could, however, occur  in a sudden manner. 

2.3 Two criteria diagram  [10,11] 

The correlations which  are based on the model explained  above, 

may be summarized  analogously  in a  two criteria  diagram  for 

creep crack  initiation . Such a diagram  is shown  in Fig. 8.  

It describes  the decisive damage modes  for a material with 

sufficiently  high creep deformation  capacity.  (The creep defor-

mation capacity  should  be adequately  high  if the material  suffers 

no notch weakening). The diagram  has normalized  axes with  the 

respective  time dependent materials  characteristics  (R(j- = b n c /Rm t 

and  R_, = K T . , / K T T r J . C  indicates  the nominal stress  in the K  lido  IID  no farfield  of  a precracked  component, Fig.  9, or the net  section 

stress in a specimen.  R  is the creep  rupture strength  of  smooth 

tensile specimens. K T. ,  is the  fictitious elastic K-value at lido the crack  tip within  the component, Fig.  9, or a specimen. 

K Ţ Ţ  denotes  the creep  crack  initiation  value of the material, 

which  is a kind  of material  characteristic.   It depends, however, 

on temperature, shape  and  size of the  specimens. Because K--

describes  the crack  tip damage  behaviour, it has to be evaluated 

from  specimens with  deep cracks, which means  specimens with high  ratios KT. , / C  , such as is  found  in CT 1-specimens. 

^  lido  no   r 

The value  1 on  the abscissa, Fig. 8,  indicates  that the  fictitious 

elastic stress  intensity  K.. ,, which  is obtained  in a component, 

corresponds  to a materials macroscopic  creep  crack  initiation 4 

value, K T T  , for a certain  time, e.g.  for  10  h. The  respective IID  4 

net  section  stress  normalized  with  the creep  strength  for  10  h 

is plotted  on  the ordinate. 

The diagram  distinguishes  between  three  fields of damage, which 

are  separated  by  ratio-lines  K . ,/G . The meaning  of the  ratios 

has been explained  by  the  thinking  model (Section 2.2) . 

- 29 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 42/200

The damage modes are:

- ligament damage;

- crack tip damage;

- and a mixed damage.

The ratio lines of K T. ,/5"  in Fig. 8 were estimated on the basis oflid n — 3

available results. Taking account of the different fields of the

diagram it is possible to estimate the failure mechanism to be

expected each time. Crack initiation can only be expected outside

of the hatched boundary for the respective damage mechanism.

Inside different stages of exhaustion and increasing microscopic

damage are expected, Fig. 10. For such estimation, the time

dependent materials data R . and K_Tr> are required.mt IID

Special attention has to be paid to the creep deformation capacity,

because it influences strongly the K T. ,/5" -ratio-lines and thelid n

whole structure of the diagram. Fig. 11 shows as an example

a schematic "two-criteria diagram" for a notched weakening 1 %

CrMoV material. The necessary data are not yet available to

support and quantify it. We can learn from this diagram, however,

that ligament damage is not to be expected in notch weakeningmaterials except for crack free ( K T J  -> 0) components. The most

important damage mode is crack tip damage but with earlier crack

initiation than for creep ductile materials (the latter cannot

be seen from the diagram, but it results from the fact thatKTTr.  , .... < K T , _ , ... for a certain  time).IID creep brittle IID creep ductileAnother important fact is the influence on creep crack initiation

of the lateral constraint for specimens, resp. components of

large thickness/size. This can greatly influence the crack initi

ation time of specimens with equal K x. , and K T. ./G" -values.

^ ^ lid lid nThus, the effect of the constraint should be taken into account

by differing materials K T---values (see chapter 4, below).

2.4 Description of crack growth by a crack tip/farfield concept [12,131

Although the description of crack growth by means of the C*-

integral results in narrower scatterbands than the comparable

description with K . , [ 4] , the description in terms of C* 2  will

not be further discussed in this paper because of its inferior

practicability, as outlined above.

30

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 43/200

According  to Fig.  12  [14], small scale  specimens  show a tendency 

to faster  crack growth  than  larger  ones, with  the crack tip 

farfield  ratio, KT .  ,/<S c  u i < increasing  with  specimen size. lid  n Siebel  =  c 

In accordance with  the  finding  [9,10] that different  specimen 

shapes must  also have  different crack tip/farfield  stresses, 

Fig.  1, the crack growth  results were normalized  by the crack 

tip/farfield  ratio, V  = Kx. , /(T  „. .  ,, of the  initial  crack o  lido' no Siebel' 

[12]. For this purpose, the  stress intensity  factor was plotted 

versus the crack  tip/farfield  ratio of different specimens  for 

a  constant crack growth  rate of, say á =  1 x  10  mm/h. 

Fig.  13  [12,13] shows  such a plot  for a creep ductile  1 % CrMoV 

steel at  600 C. The diagram  shows the stress intensity  factor 

over  the crack  tip/farfield  ratio V  for crack growth rates, •  -3  •  -3 ° a =  1 x  10  mm/h  and  a = 5 x  10  mm/h. Joining  the data points of this diagram  results  in a horizontal  line  for low crack tip/far-field  ratios V  ; thus there  is a constant K T. , for  specimens 

o'  lid  ^ 

with  different  (but low) crack  tip/farfield  ratios. The value 

of K Ţ . , then  rises with  growing V  ratio and  is expected  to 

reach another plateau  for high V  ratios.  

It might be expected  that the mechanisms  of damage defined  in 

the two-criteria  diagram, i.e. crack tip damage, ligament damage, mixed  mode damage, could  be  identified  again  in this diagram. 

This  is indeed  the case. 

Creep  crack growth  at a crack-like defect  is the next step in 

the sequence of  events after  the creep  crack  is initiated.   Thus, a  specimen with  a distinct K T . , /G ratio wich gives  rise to ^  lido  no  = the appropriate  damage mode will continue to have crack growth 

with  the  same specific mode. Therefore, the crack  tip/farfield 

ratio  should  be the dominating  quantity  in the crack growth 

diagrams depicted  in Figs.  13-15. According  to Figs.  14 and 15,  for the  ligament damage and  crack  tip damage  plateau  regions, 

creep  crack growth  is found  to be  independent  of geometry and 

specimen width  ( K Ţ - J = const.).  An  influence of  specimen width 

is only  found  in the  regime of mixed  mode damage, which can 

be described  in the example  of Fig.  13 by  the  relation of K_. , 

=  100 V  + const. The  transition  point between  ligament  damage 

and  mixed  mode damage  appears  to be at V  2.5,  that of mixed 

mode damage  to  farfield  damage  at V  *- 6.5. 

- 31  -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 44/200

As further evaluations of this type show  [12,13],  the slope

of the relation, K.. , = m V + const., is a function of

- the material conditions, i.e., whether it is creep ductile

or not,

- the temperature, and

- the class of materials (1 % CrMoV; 12 % CrMoV).

It can be derived from the evaluations shown above that the

two parameters K-. , and  G may be applied to describe the crackgrowth behaviour of laboratory specimens of various sizes and,

ultimately, also of components on the basis of the ratio V =

KIido/'''ño Siebel'  I n  ' 1 3 ' such a method which needs further

confirmation is described.

However, some boundary conditions have to be observed:

Specimens and/or components

(a) have to be in the same range of applicability of K T., Æ " „. , ,

? ft- i  lido no Siebel

with regard to the main modes of damage. While the modes

of failure are probably clear in the areas of ligament damage

and crack tip damage, ductile large specimens (DENT with

65 x 100 mm cross section, Fig. 15) lying within the mixed

mode regime can show normal cracking behaviour side by side

with crack branching, which indicates superposition of the

two failure modes in this case  [22,23].  Crack branching,

which means "good natured" cracking behaviour, does not

necessarily have to occur. As can be seen from Fig. 15,

for the two specimens with crack branching, the test results

lie in the general scatterband when the stress intensity

factor for branched cracks, K , f = K/ ] 2 , is substituted.

Another DENT-specimen, "D" in Fig. 15, had no crack branching.

32

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 45/200

Moreover, it surely is not permitted to describe a behaviour

in the regime of dominant ligament damage with data from

specimens exhibiting crack tip damage or mixed mode damage

with high K I i d / Ç ; s i e b e l  ratios,

(b) must have identical thickness B, i.e., have the same lateral

constraint,

(c) must show roughly the same sufficiently high creep rupture

ductility (no notch  weakening).

(d) may not have an excessive crack increment in order not to

change the V = K T. , / 5 ~ „. ,^ o lido no Siebis based on initial crack size

change the V = KT. , / 5 ~ . , value too much, since this

o lido no Siebel

3. ) Test results on creep crack growth

After having proposed and explained the two-parametrical models

using K... as crack-tip paramter, the creep crack initiation

and growth results evaluated in the COST 505 working group on

HT crack growth will be summarized and evaluated in relationto the proposed models. Figs. 16 and 17 show basic results for

creep crack initiation and growth as plots of "a" over loading

time, for CT-specimens [5,15,18] and CCP-specimens [18] at 550

2 TIÒ  530°C. Both materials are of 1 % CrMoV grade, but all the

GEC-results [18] and the IWM-results [3,5] were performed with

the Round Robin material, while the Siemens/KWU tests, Fig. 17,

were made with another cast, described in [ 15 ] , and with the

Round Robin material (specimen AE1, Fig. 16 ). The conditions

of the tests and their evaluations are described in detail in

the respective final reports  [5,15-20].

33 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 46/200

3.1 Creep crack initiation results

From the plots, Figs. 18 and 19, it can be seen that the time

for crack initiation depends on the criteria which is used to

define the crack initiation time. A broad scatterband for crack

initiation originates from the different initiation criteria,

Fig. 18. A rough evaluation of these results and of other

available results from the literature [20-24] shows the following

tendencies:

1. The tighter theAa. limit for crack initiation, the lower

the t./t ratio,i r

2. The time of crack initiation depends on the creep ductility.

For very creep ductile materials, the majority of life is

occupied by the initiation process: high t./t ratio. For

creep brittle materials it is proven that crack propagation

is very fast and crack initiation occurs rather early but

- because of the limited number of test results - it is unclear

whether this results in a higher or a lower t./t ratio.

An evaluation of some tests on 1 % CrMoV material ends up with

the following relations t./t , shown in Table 1.

34

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 47/200

Fig. 19 shows all Siemens/KWU data at 530°C together with 2 data

points of COST 1 % CrMoV cast material [ 16 ] , as a plot of K .,

over loading time with crack depth parameter points of da. =

0,5; 1 and 2 mm. If a crack depth of ¿la. = 0,5 mm gives the

engineering crack initiation criteria, then the lower bound

line represents the crack initiation times of CTI-specimens

at 530 C. This lower bound curve is supported by the great number

of data with<d a. = 1 and 2 mm, and here especially by one point

of a 1 % CrMoV forged material [9,10] which reached  A a. = 1 mm

after about 30,000 h. It would, therefore, seem to be allowable

to extrapolate the scatterband boundary lines up to 10 h.

Fig. 20 depicts a summary of all crack initiation data fromCOST 505 partners and also the results of a further German research

group [21-23] for 1 % CrMoV at 550°C.

All partly solid points are from COST 505 Round Robin small

scale specimens. The specimens were fatigue precracked with

an intended crack initiation criteria of 0.2 to 0.5 mm crack

extension.

In addition, the picture includes specimens with differing size

and shape  [21-23], detailed in Fig. 2 1, which had spark erodedcrack  tips. Some preliminary tests, Fig. 19, [15] showed that

spark eroded crack tips delay the crack initiation noticeable,

but not too much compared with the usual scatter, if a creep

ductile material is applied.

For technical applications, a creep crack initiation criteria

of A a. = 0,5 mm is adequate, because it represents a smaller

crack growth increment than is detectable by nondestructive

evaluation methods, for example by UT for thick walled casings

or rotors. From the diagram in Fig. 21 it is obvious that specimens

with different shapes and sizes result in specific crack initiation

times.

35

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 48/200

From Figs. 20 and 22 which are plots for K . . versus time for 

crack  initiation  it can be derived  that the large scale specimens 

with deeper cracks, a , and  larger thickness, in other words 

with predominant crack tip damage  (ratios V  = K  .,/G >4,5) 

and higher lateral constraint  (thick specimens, 50-100 nun, Fig. 22), 

create the upper boundary.  The small scale specimens  (V  = 1 7-3

with short cracks and a smaller specimen thickness  (- 25 mm) 

form the lower bound of the data band. This is consistent with 

the expected behaviour of the different damage modes, mentioned 

above, according  to which specimens with ligament damage fail 

with  faster crack growth than specimens with crack tip damage 

(deeper cracks) in the case of equal Kj..,-values  (Fig. 12 ■ 

Medium  size specimens lie in the middle of the crack initiation 

range. In addition an attempt was made to include in this diagram 

those medium  size specimens  [3,5] for which initial cracking 

rates,á a.  were defined and which were correlated  in terms 

of K_.. (because stress redistribution may not yet have been 

completed). Here, the crack initiation times were calculated 

with the assumption thati a.~0.3 mm was accumulated with the 

initial cracking  rates, a.. The initiation curve evaluated by 

this method  falls into the lower middle zone of the band. 

According  to Fig. 20 it seems to be possible to rank the specimens 

by the KT. ,/(T  ratios. Of course, there is some scatter, but this I i d n is not unexpected  in considering  the different kinds of crack tips, 

the different heats of  1 % CrMoV material, the specimen thick-

ness B, the different crack initiation criteria, and methods* used. 

From the test results described above it can  be concluded  that: 

- KT•j seems to be basically  usable to describe  the crack tip lid  J  r 

situation  for crack  initiation, Fig. 19, 

-  the time for crack  initiation  increases with decreasing  crack 

tip driving  force  K J - J J ) »  Figs.  18-22, 

-  specimen size and shape determine the damage mode and the 

related  specimen behaviour, which appears to be described 

basically  by means of the  two criteria diagram for creep 

crack  initiation, Fig. 7 and  10, with its crack tip/farfield 

ratios and with some additional  notice of the specimen thickness, 

Figs. 20 and 22, 

♦Evaluation of crack initiation by: -  interrupted  tests and metallographic  evaluation  [14] 

- evaluation of potential drop and/or COD curves  [5,16-19] - compliance measurement at RT with  test interruption  [15] - 36 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 49/200

- the crack initiation times and the ratio of crack initiation

to rupture times depend on the creep ductility,

- due to the differing methods and criteria used to determine

crack initiation, the scatter of data is considerable, Fig. 18

[18], Table 1, but the data are rather reproducible when usingthe same evaluation methods and material heats, Fig. 19.

3.2 Creep crack growth results

Fig. 23 includes most COST 505 Group 6 data on crack growth

at 550°C  [5,15-20].  In spite of the number of specimens and

the different specimen sizes, the crack growth scatterband in

terms of KT. , is not too wide. It shows that for most of thelid

specimen types the curve has a crack initiation tail.

Fig. 24 shows all Siemens/KWU data on CTI-specimens at 530 Ctogether with some D35 data [16] from cast 1 % CrMoV and from

the heat affected zone of a weldment made with the same steelgrade*. At first view the base material of the cast 1 % CrMoV

version fits well into the crack growth bands of the forged

version. However, it should be remembered (Fig. 19) that these

data points represent crack depths,¿a, of 3.5 and 6 mm. This

is relatively deep compared with the bulk of the data points

from the forged material which for similar K-. .-values have

crack depths in the range of A a = 2 mm (Fig. 19). The heat affectedzone data of the casting weldment is weaker and shows still

higher crack growth rates.

The Siemens/KWU data within Fig. 25 include specimens in the

as-received condition as well as specimens with long term annealing

(560°C/10 h which is equivalent on the basis of Larson-Miller

to 530°C and 10 h) and with fatigue precracks which were initiated

at 530°C. Both pretreatments did not influence the crack growthrate. This means that creep crack growth or fatigue crack initi

ation after long term annealing (or low accumulated creep strains)at service temperature do not increase the subsequent crack

growth rate compared to the as-delivered condition [15].

Fig. 26 depicts the crack growth scatterbands based on the data

points of Fig. 25 together with parameter lines of certain crack

growth de pt hs¿a = 0.5; 1 and 2 mm (for individual data points see

Fig. 27). This figure clarifies once again tnat the tails are

part of the  k - t  (K T. J-curves which represent the stress re

distribution and creep crack initiation phase within the life

of a precracked creeping specimen.

* Crack tip within the HAZ [16]

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 50/200

Conclusions from the'crack growth data are:

- Tails represent stress redistribution and crack initiation

portions of the specimen life, which lasts 30-50 % of the

rupture life for a creep ductile material.

- In a similar manner to crack initiation, the crack growth

behaviour with low crack growth rates and smaller resulting

cracks (¿a = 2-3 mm) may be described in terms of K-. ,.

- The different crack growth rates due to specimen shape and

size seem to be normalized by the crack tip/farfield ratios V .

- Long term annealing and fatigue crack growth at 5 30 C does

not accelerate crack initiation and growth rate compared to

the as-delivered condition.

- Cast 1 % CrMoV tends to have slightly earlier crack initiationand higher growth rates than similar forged materials.

- The heat affected zone of weldments in castings shows faster

crack growth than the respective base material.

- Crack growth at 550°C is faster than at 530°C, Fig. 23 and 25.

4 -) Discussion of results

For the application of crack initiation and growth data some

basic questions arise:

1 . Is it sufficient to use a one parameter model?

2. Which mathematical formalism is adequate to describe crack

initiation and growth?

3. How can the specimen shape and size dependent constraint

be taken into consideration?

4. How can the influence of creep ductility be introduced?

These factors will now be considered.

4 .. 1 The parametric model

From the explanations given above it has to be concluded that

it is necessary to use a two parameter model and to pay attention

to the different damage modes.

- 38

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 51/200

In addition it seems possible to describe the influence of the

different damage modes by means of the crack tip/farfield ratio,

V = KT. , /CT _. , ,. Therefore, the models for use of theo lido no Siebel

two parameters are:

- the two criteria diagram for creep crack initiation

- and the normalisation of crack growth data with the V ratio.^ o

4.2 The load parameter

At least for creep ductile specimens with higher crack tip/farfield

ratios (V = 3.0) it seems to be possible to use the fictitiouso

elastic stress intensity factor, K . ,, for the description of

the crack tip situation. The use of K.., may be allowed up to

4a = 2-3 mm crack growth at deeper notched specimens. (For CT-spe-cimens the size effect due to the shape/geometry factor is negli

gible up to a/WPs0.57). For specimens with shallow cracks, the

net section stress G~ of the ligament becomes the dominating

parameter because the damage mechanism changes to ligament damage.

But for the transformation of test results from one specimen

to another specimen or to a component it is necessary to useboth loading parameters KT. , and G" _. . ,. Furthermore, it

^ ^ lid n Siebel

is important to compare only specimens with broadly equal damage

modes and related creep crack initiation and growth behaviour.For creep crack initiation this can be achieved by using the

two criteria diagram.

For creep crack growth, many researchers prefer to use C* instead

of K .,, but the use of C* has the disadvantages mentioned abovelid

which are due to the inexactness of the solutions based on the

Norton's law, including the exponent n, on the one hand, and

on the other hand there is the fact that it is rarely possible

in practicable applications to evaluate the load line displacementrate V .c

Another attempt, which uses a C*-value for the description of

crack behaviour at high temperature, comes from the CEGB [25]

and is referred to as the R5 procedure.

This procedure distinguishes, in a similar manner to the "two

criteria diagram for creep crack initiation", between

- the overall structure behaviour which is defined above as

ligament damage and

- local events at the crack tip (crack tip damage).

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 52/200

The overall structure behaviour is controlled by means of the

reference stress,GT., the local events (crack tip damage)

are proposed to be assessed by C*, which is expressed in the

following form:

<c* = 5~ , 2 .  R'   (6)

ref ref

Where £ , is the strain rate that occurs in a uniaxial creep

test at the reference stress 5" ,.

ref

The quantity  R' is "a geometrical variable which relates the

stress/strain conditions near to the crack tip, to the nominal

conditions in the structure". This C* is proposed in particularfor use for materials showing creep brittle behaviour. For creep

ductile materials the use of 5"  c  is recommended.

ret

This R5-version of C* consequently includes with the quantity R'

a parameter which relates to the crack tip/farfield situation

of the specimen/component. From another CEGB-paper [7] it transpires

that a good approximation of  R Ì S  obtained by using the stress

intensity factor K, so R is defined as

R ' = K 2 /5"ref 2 ( 7 )

which tends in the direction of the square value of V ( R ~ V  2 )o o

of the crack tip/farfield ratio. Thus, R tends in the same

direction as V but gives higher differences (square values)

between the different specimen shapes than V .

It should be noticed that reference [7] gives the same reasons

for not using the C*.«-*ţjn  - g .  (3) and C*,~V  (1) versions 

of C* when  it is stated  that  unfortunately,  displacement  rates 

can rarely  be measured  in service  and estimates of C*  cannot 

be  readily  derived  from equation  (1) . The equation  for C*. 

(3) is also said  to be  inconvenient  as detailed  finite element 

solutions are  requested  to generate g-i - Thus, the opinion of 

the CEGB  authors with  respect  to the use of  the usual  C*-version 

is completely  in  line with  this author's opinion. 

40 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 53/200

4.3  Specimen  shape and  size effects 

The graphs of a versus K  i d  or C* 1, which are normally  used 

to describe  the crack  growth  behaviour, have the disadvantage 

that  for  large deeply  precracked  specimens such as CT50 or CT100 

the inclination of the crack growth  curve  is very  steep as a 

result of the small change of  K Ţ. , or of C* when there is only 

a  slight  increase of 4 a. Only  the C*   version which  includes 

V  gives  appreciable  inclined  slopes of a over C*~. 

To overcome  these difficulties, it  is proposed  to use K_. , versus 

loading  time plots with  parameter  lines of Constantsa, see 

Fig.  19. These curves can then be applied  in a similar manner 

as creep  curves for smooth  specimens, by means of which the 

total  strain of the specimen or of  the component  is described. 

In addition, these kinds of  curves can be  limited  to those crack 

depths  for which  K Ţ. , may  be adapted.  They  are also  applicable 

for the determination  of  the influence of  specimen  size and 

shape  either  for creep  crack  initiation. Fig. 20 and  22, or -

when  the data are available  - for different accumulated  creep 

crack  depths  in reading  the times for the different  crack  depths 

from the diagram. 

The data of the type as shown  in Fig. 20 supply  also the  necessary 

values, K Ţ Ţ_,  for creep  crack  initiation, which may  be  introduced 

as materials  characters  for specimens with  different  size and 

lateral constraint  into the two criteria  diagram  for creep  crack 

initiation. 

41 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 54/200

4.4 Creep ductility

From the statements in Section 4.2 and from Part 2 of this brochure

[5] it becomes clear that creep ductility dramatically influences

the creep crack initiation and growth behaviour.

Creep brittle materials are able to tolerate only extremely

short defects, whereas creep ductile materials withstand a

reasonable defect size without a decrease in rupture time. This

service experience teaches us to avoid the use of notch weakening

materials.

The best method to evaluate a potential notch weakening behaviour

is to test smooth and notched specimens (K. «"4.5).

If a material shows no notch weakening (rupture times for notched

specimens equal to or longer than those for smooth samples)

the above mentioned models and design curves in terms of K may

be used. The application of notch weakening materials should

be avoided. If, in extreme situations, such materials have to

be used, a detailed investigation of the creep crack initiation

and growth behaviour is necessary.

42

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 55/200

5. )  Conclusion 

It  becomes  obvious  that  two  schools  of  thought  exist  about  the 

selection  of  the  appropriate  parameter  for  creep  crack  initiation 

and  growth.  There  are  the  protagonists  of  C*,  who  feel  supported 

by  the  fact  that  C*  is  the  loading  parameter  which  from  the 

physical  point  of  view  is  reasonable .  On  the  other  hand  there 

are  the  people  who  try  to  apply  creep  crack  initiation  and  growth 

data  in  term  of  K Ţ . ,  for  the  description  of  components  which 

have  thick  w a l l s ,  long  loading  t i m e s , and  low  loading  stresses . 

For  such  applications,  the  use  of  K  . , together  with  the  parameter 

C  to  describe  the  farfield  is  recommended.  Crack  initiation n 

should  be  handled  with  the  two  criteria  diagram  for  creep  crack initiation which  covers  the  range  of  the  tails  from  the  a  = f 

(K Ţ . ,) plots .   The  creep  crack  growth  behaviour  with  limited 

crack  increment  may  be  described  by  plots  of  K Ţ - J over  t  with 

parameter  lines  for  A  a,  similar  to  Fig.  19 . With  such  d i a g r a m s , 

which  are  only  valid  for  CTI-specimens,  however,  it  is  hardly 

possible  to  estimate  the  influence  of  specimen  shape  and  thick-

n e s s B .  Thus,  crack  growth  with  small  increments  should  be  rated 

with  diagrams  like  Fig.  20  (specimen  shape)  and / or  Fig.  22  (speci-

men  thickness,  e.g.  lateral  constraint ) .   If  it  is  necessary 

to  describe  the  behaviour  of  cracks  of  greater  depth,  the  crack 

tip/farfield  method  with  V  =  K T. , / G , Figs .  13-15,  or  some o  lid  n  ' 

kind  of  description  by  means  of  C*  [5]  may  be  used.  The  most 

important  point  for  the  future  is  to  generate  further  data  on 

specimens  with  different  shapes  and  sizes  with  long  crack  initi-

ation  times  and  low  crack  growth  rates,  upon  which  a  final  decision 

for  the  most  economic  and  appropriate  evaluation  method  can 

be  made. 

- 43 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 56/200

References 

[1] H.  Riedel and J.R.  Rice, ASTM STP  700, pp.  112-130, 1980. 

[2] K.M. Nikbin, D.J.  Smith  and G.A.  Webster, Proc. ASME Int. Conf. on Advances  in Life Prediction Methods, Albany, pp. 249-258,  1983. 

[3] R.  Hollstein  and R. Kienzler, Numerical  simulation  of  creep crack  growth  experiments, COST  505-D22, Institut  für Werk-stoffmechanik, Freiburg, FRG, January  1987. 

[4] A. Saxena, EPRI Meeting, Sess. 6, Raleigh, North Carolina, Sept.  12-14, 1984. 

[5] T.  Hollstein, G.A. Webster and  F. Djavanroodi, Creep Crack Growth  in  1 % CrMoV  Steel, an Evaluation of COST 505 Creep Crack  Growth  Round  Robin, Prepared  for the EEC, August  1989. 

[6] J.  Ewald, K.-H. Keienburg  and K.  Maile, Estimation of manu-facturing  defects  in the creep range, Nucl. Engrg. Des. 87, pp.  389-398, 1985. 

[7] J.W.  Goodall  and  R.A.  Ainsworth, Structural  Assessment of Metal Components, Paper No. 6, Conference of the  Institute of Metals  on  Materials  and  Engineering  Design , London, 1988. 

[8] K.H. Kloos, K.  Kußmaul, J.  Granacher, K.  Maile, R.  Tscheuschner und W. Eckert, Kriechrißeinleitungs- und  Kriechrißwachstums-verhalten  unter Berücksichtigung   des Größeneinflusses, Ab-

schlußbericht AIF-Vorhaben

 Nr.

 6038, 1988.

 

[9] J.  Ewald, K.-H. Keienburg  und K.  Kußmaul, Hinweise auf Mechanismen  und  Einflußgrößen  zur Beurteilung  des Bauteil-verhaltens  im Kriechbereich  anhand  von Kleinproben, VDI-Bericht Nr. 354, pp. 39-57,  1979. 

[10] J.  Ewald  and K.-H. Keienburg, A two criteria diagram for creep  crack  initiation, Int. Conf. on Creep, Tokyo, pp. 173-178,  14-18 April  1986. 

[11] J.  Tscheuschner, Anriß- und Rißfortschrittsverhalten  zeit-standbeanspruchter  warmfester  Schmiedewerkstoffe,  Dr.-Ing. 

Dissertation  DI 7, Darmstadt, 1988. [12] J.  Ewald, Evaluation of the creep  crack growth  behaviour 

by means of a K Ţ-concept, presented  at the European Croup on Fracture, Task Group, Freiburg, May  21/22, 1987. 

[13] J.  Ewald, K.  Maile and R. Tscheuschner, Creep  crack  growth assessment  by means of a crack  tip/farfield  concept, Nucl. Eng. and Design  117, pp.  185-195, 1989. 

[14] K.H. Kloos, J.  Granacher  und R.  Tscheuschner, Kriechrißfort-schrittsverhalten  des Stahles  28 CrMoNiV  49, Z.  Werkstoff-techn.  18, pp. 390-398, 1987. 

- 44 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 57/200

[15] J. Ewald, C. Berger and H. Brachvogel, Investigation oncrack initiation and propagation under static, cyclic andcombined loading conditions of 1 CrMoNiV steels at 530 C,COST 505 D20/D21 Final Report, Siemens Report No. TW 1187/89,June, 1989.

[16] H. Kanbach, Crack growth in welded turbine materials atelevated temperatures, COST 505 D35 Final Report, AEG,April,  1989.

[17] I. Ragazzoni, COST 505 13 Final Report, ENEL, to be issued.

[18] S.R. Holdsworth, High temperature crack growth in turbinesteels, COST 505 UK5 Final Report, CEG Alsthom Report No.RM 8 72/8 9, November, 1989.

[19] G.A. Webster and F. Djavanroodi, Elevated temperature crackgrowth in steam turbine materials, COST 505 UK18 Final

Report, Imperial College (Mech. Eng. Dept.),  January, 1989.[20] G.A. Webster and F. Djavanroodi, Determination of the crack

growth behaviour and failure mode of pre-exposed material,COST 505 UK26 Final Report, Imperial College (Mech. Eng.Dept.),  January, 1989.

[21] R. Tscheuschner, W. Eckert und J. Ewald, Bewertung vonBruchmechanik-Parametern zur Beschreibung des Kriechrißwachstums, Arbeitsgemeinschaft für Warmfeste Stähle, 11.Vortragsveranstaltung "Langzeitverhalten warmfester Stähle",25.11.88, Herausgeber: VDEh.

[22 ] J. Granacher, R. Tscheuschner, K. Maile, W. Eckert undJ. Ewald, Ermittlung und Beschreibung des Rißausbreitungsund Rißwachstumsverhaltens bei hohen Temperaturen, DVM,Vorträge 21. Arbeitskreis Bruchvorgänge, Bad Nauheim, 1989.

[23] R. Tscheuschner und W. Eckert, Kriechrißverhalten von Klein-und Großproben bei betriebsnaher Langzeitbeanspruchung,DVM, Vorträge 21. Arbeitskreis Bruchvorgänge, Bad Nauheim,1989.

[24] S.M. Beech, J.W. Selway and A.D. Batte, Factors influencingcrack development in 1 % CrMoV steam turbine rotor forgingsteels, Proc. Internat. Conf. on Creep and Fracture of

Engineering Materials and Structures, Swansea, 1984.

[25] J. Milne and J.W. Goodall, Defects: can we live with  them?,CEGB Research, pp.  48-59, May, 1988.

[26] K. Wellinger and H. Dietmann, Determination of "Formdehngrenzen", Materialprüfung 4, pp. 41-43, 1962.

[2 7] Hütte I, Ingenieur-Taschenbuch, 2 8. Auflage 6, Abschnitt:Festigkeitslehre, pp. 847-851.

45

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 58/200

Table 1

Author

Holdsworth

Slemens/KWU

^ Malle°>   Tscheuschneri

Tscheuschner

Beech

Literature

18

15

22

11

24

Material Condition

partly creep ductile

creep ductile

partly creep ductile

ductilepartly creep ductilecreep brittlecreep brittle

partly creep ductile

Temp. °C

550

550550

550

550

Type of Specimen

CCPl fatigueCT ) precrack

CT) fatigueCT) precrack

CT eroded crack tip

CT eroded crack tip

CCP short cracks

aQ  = 1-3 mm

tl/tr

0.50.3

0.4-0.750.3-0.4

0.3

0.11-0.180.2-0.50.15-0.50.22-0.48

0.1

a j *  mm

~ 0.2^  0.2

'v 0.5'v 0.5

¿ 0.5

¿ 0.1á 0.1

•v 0

*¿iaA: criteria for crack Initiation

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 59/200

F i g .

2 0 0 4 0 0 6 0 0 8 0 0  1 0 0 0

n o m i n a l ( n e t - s e c t i o n ) s t r e s s [ N / m m 2 ]

Stress Intensity and Nominal Stress as Function ofSpecimens Size

47

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 60/200

21CrMoNiV57. T=550°CCT12.5/40 spec men AB2Bé m i n = l 3 - I O - 2 0 < J 6 5 [ h - , l ,  O  inMPa

Fig . 2a .

-1 1 1 1 1 1 1 1 1 r~

'o.CO 1.00 2.00 3.00   4 .00  5.00  6.00 7.00 8.00 9.00 10.00 11.00

i .  see (E+06ÌExperimental and numerical evaluation of C forCT 12.5/40 specimen AB2B, with and without crackgrowth, creep law [3] .

o -c'

3*"

o -r

o -o í

21CrMoNiV57, 550°CCT 12.5/40, AB2 B

x : Experiment"  /

—  :  E q ( 1 5 )

f-*tt-¿V  '

3000

Fig. 2b.  Experimental and numerical values of crack growth [3]- 48 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 61/200

F  

ò ° ASTI 

Q  JfnK; 

0\  f n Siebel T T T I  

Q  

ab at 

I l  u 

F   F  

F'  , .  .  .,  w  + a ,  F  (7ASTM ~  r— ;  - ( 1 + 3  )  (7nSiebel=  r —  

B ■  (w   -  a  w  — a  B ( w  — a ) w  —a 

,  a  -  _  _fc.  c ASTM for—  —0.5  ^ 

W   f » Siebel 

'1 .43 

Fig. 3.  Nominal  Stresses  in the Farfield  of Specimens with Bending Portions.  

F  On  =  ^  =  ^ASTIVI 

à  

comple te ly  redistr ibuted 

general  yield   condi t ion

Fig. 4.  Nominal  Stress  in symmetrically  loaded Specimens.  

49 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 62/200

4 0 0

a

aia.aci/ì

10'

K ' ^ " a / W l

1

I /W.157  J°  _,

1

CT 25 / f CT 50

(C T 100

>icfTr t ie t / h

i>\d

Fig . 5. Shape Function f(a/w) as a function of time for differentspecimen sizes in case of equal crack growth rate.

F m"'-r  "-1  -£\

4)

8.r.

o¿3

8 irf1-P KJ -o8- I

ò3 . TO"-

i

1ji

1r(i

f

¿V

7

— 30

c/w

. V

=

...  -V -

357

... - v -

A CT KW. e«p .

F i g . 6 .

.10'  KJ1

Stres s Intens ity Foctor K^ / MPoV ñT

Theoretical creep growth characteristic of differentspecimens with identical crack increase.

- 50

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 63/200

K.gf  On ™ h igh rat io  —  p redominan t crack t i p damage

^ S

Ig loading t ime t -

Fig. 7a. Scheme of Creep Loading Conditions with PredominantCrack Tip Damage,  ^n¿/ n̂  -  Ratio is high.

Ig loading t ime t -

Fig. 7b. Scheme of Creep Loading Conditions with PredominantLigament Damage, Kii(j/on - Ratio is low.

51

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 64/200

c r a c k t ip d a m a g e ^ >

— ^ —t h o u t j ; w i t h

( l e a k a g e )

— T -

0.5

w i t h o

a c r . c r e e p c r a c k1.0 1.5 2.4 3.9

_ K j ,de« K

" UD

Fig. 8. Two-Criteria-Diagram for Creep Crack Initiation,Creep Ductile %CrMoV-steel, 530 °C.

Fig.  9. Explanation of the Normalized Values R for Stressand Stress Intensity.

- 52

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 65/200

wi t h  wi t hou t 

micro crack  init. 

□ 

O  

■  

macro  crack  init. 

o  I • eng. crack  ¡nit. A  1 

SENT, duct i le  britt le  (Beech . Se lway .  Bane ) 

smal l manufactur ing  defects in  smooth   spec 

(Taylor,  Bat te l 

castings  w i t h  manufactur ing defects  (duct i le) 

D E N T ' . 30x 112. a/w -  0.45 

OENT *. 40 x 65 . a/w -  0.1  and 0.4 

*)  wi t h  spark-eroded   crack- t ip 

I  crack tip damage ~>  i io  ~i\jfZT without J5 with 

acr. creep crack 

>12 Ki*/o„M0 O 

Ç  |  leakage) 

0.5  1.0  1.5  2.4 3.9 

KiidoU) 

Fig. 10.  Two-Criteria-Diagram  for Creep Crack  Initiation

Creep Ductile l CrMoV-steel 530 °C. 

R  -5=.

0,5 

burst 

1  CrMoV-Steel;  530 CC 

mixed damage 

ñv crack tip damage  J> 

—1  rw i t h  creep  crack  

0,5 K  no 

Fig. 11.  Draft  for a Two-Criteria-Diagram  for Creep  Crack 

Initiation  for Notch Weakening Materials. 

- 53 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 66/200

Fig. 12.

250 500 K,« (N/mm3/2| 1000 1500

Creep crack growth rate, J, as a function of the

stress intensity factor,  K I ¡ J , for different specimenshapes and specimen sizes (IfCrMoV steel, CT compact

tension specimen, K notched round bar specimen) [14].

1000

soo

200

Fig. 13.

AGA

AGB 28CrMoNIV49, 600 °C

Ligament

Damage Crack-Tip Damg.

a  — 5 • 10s mm/h

i - 1  •  10'mm/h

60 0 "C

10  101  10

s  10 ' (h)

K8   1 Notched Round Bar

K1 7 j  (T.-rVAit

CT  with Side Grooves2 3 4 6 6 7 8 9

Creck.Tip/Farf.eld Ratio V0 -  Kuo/o«, »«  (mm1)  ((Tnosj#|>#| _ ,,„ „̂.43,

K,,J  for constant crack growth rate,  å versus the,-d  for constant crack growth rate,  a vi

initial crack tip far field ratio, Vg = Kj;j/a

for creep ductile l CrMoNV material, 600 *CnO'

-  54

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 67/200

1 5 0 0

bE

2

1 0 0 0

5 0 0

1

m r

2 0 0 -

1  \  C r M o N i V . 5 5 0 °C . c r e e p d u c t i l e

Lig.  D.

I -™

1

111111

11  .

«  y^

1

1 0

  1n / hi KB

— M —

M i x e d M o d e D a m a g e C ra c

K, -Al i d

• / ^* ^ Í »

*  /X

CTO. 5

-4—

s   120- V

x  ,X*

jr

>•

<*s¿^^^ ^ *

C T 0. 5 ( W - 4 0 )

HC T I C T 2

- ^ + n r - L - T -

k-T ip D¡

^

m a g e

«

C T 4

-4-

0 5 -  I O 3  m m / h A G A

9 1 1 0 ' m m / h (T s c h e u s c h n e r ) / 8 /

• 1 • I O " * m m / h

550 " C

1

I O '  | h | 1 0 «

<^ à -  1  • 1 0  J  m m / h / 9 /

A M A ( M a i l e )

A » —  6 • I O ' 5  m m / h

A - C T I

£ - C T 0 . 5 ( W - 4 0 m m )D 2 2 ( H o l l s t e i n / K i a r u i e r ) / 10 /

2 3 4 5 6 7 8 9

C r a c k - T i p / F a r f i e l d R a t i o V 0  — K u o i O n O b M i ( m m , / 2 )

Fig. 14. K ^ d  for constant crack growth rate,  å,  versus theinitial crack tip/farfield ratio, V Q

for l%CrMoNiV, 550 °C.Klid /crnO'

- 55 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 68/200

2000

»EE^̂zs

s?

1500

1000

500

T1 2 3 4 5 6 7 8 9

C'ock-T ip/Farl ie ld Ratio Vo ~ K<„jo <7>io s» i» i (m m" 2 )

Fig. 15. K^id f ° r c o n s t a n t  growth rate  à  versus the initialcrack tip far field ratio, V Q  = K l i d / a n 0 , for 12% Crsteel,  550 °C, creep ductile.

56

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 69/200

35

—   30

EE

O)  ¿

°c0)

ü(D

o 20

15 '

CCP

» «« r » " * = «

100

•4

X A

CT25/50S   [15]

CT25/50S   [18]

CCP25  [18]

ROUND ROBINCT25/50S   [ 5 ]

1%CrMo(Ni)V , T = 550°C

1000 10000

loading time ( h )

—i  1 t  1——

100000

Fig. 16.  COST 505 - Res u lts

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 70/200

Su mma r i z e d Da t a

Ol00

35

DAY

X

+

Seg.3 as rece ived condit ionSeg.4 as rece ived condit ionSeg.6 aged 560°C, 10000hSeg.9 as rece ived condit ion precrac ked a t 530°CSeg.10 as rec e ived con ditionSeg.10 as rec e ived con dition f rom p ot, drop me as m.

1000 10000loading t ime   ( h  )

Fig.  17 . Cre e p Cra c k Growth , 28CrMoNiV49(KWU 1508), 530°C, CT25S

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 71/200

KA  - ^Pa/m 

50 

20 

10  

10  

10M( iV  \ Rotor  steel 

v  

■  ♦ 

-i • 

- rv 

a / w = 0 . 3 6  

-TCT251 -

N  S.  s 

■-

  ^  

• V _

a«  

i fSfâo-craã -= -1 

±_.-

 =•7  

•>. s 

♦ 

^ D E N T 1 :  i 5 

7  * • 

=02mm 

ì : 1 

S.   i  N . 

v ^  / ^ O O m m ^ - ^ -  -. : 

\^Aa=0-5mm (Ref.lSl.  -::: 

^^^rcT25,530oC-:  : 

JM  L 

^  AasO-Olmni i lRefZy lb ] : - - - . -^ ~- . — _ : _ ; ; _ : ^ _ . L  =±..~~ 

.  j  u-y.íí  .  : -  ~Ş fes--

•  ::==.:;•  . . i  ¡=1-5-. 

:  ■  ::

)\i  -:.  = i r = ' 

1   :  • •  ~~  -~ : 

10*  103   10^  105 Time   fo  i n i t i a t i on -hou rs 

Example 

Depend i ng  on  I n i t i a t i o n  c r i t e r i o n  s e l e c t e d .  I n i t i a t i o n  t ime may  v a r y  be tween  20h  (Aai=0.01mm)  and  2 0 , 0 0 0 h  ( ai=2ram)  a t K«. = 20MPa/m . 

F i g .  1 8 .  C r e e p  c r a c k  i n i t i a t i o n   t i m e s  i n  l C rMoV   r o t o r  s t e e l s  [ 18 ] 

59 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 72/200

o

60

50

c o

Q .

1  40

30 -l

20

10

0.5 mm

D

A

X

A a

0.5 mm

1.0 mm

2.0 mm

s p a r k e r o d e d

c ra c k ti p

cas t mat . [16]1 mm forged [6]

s c a t t e r b a n d , m a k r o s c o p .Cre e p Cra c k I n i t i a t i o nS i e m e n s 1 9 8 9

1001 1 1 1  1—i—i—i

-

1000 10000load in g t ime ( h )

T — T — I — I -

100000

Fig. 19 . Cre e p Cra ck In i ti a t ion, 1 %   CrMoNiV530°C, CT25S

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 73/200

6 0 -

50  

ra  Q . 

_  4 0 -

30  

20  

10  

1 CrMo Ni)V,T = 550°C  

a/W   =  0.55 a/W   =  0.55 

, aAV   =  0.55 a/W   =  0.40 aAV   =  0.40  aAV   =  0.20 aAV   =  0.10 

,  aAV   =   0.50  ,  aAV   =   0.50  ,  aAV   =  0.20 

Hollstein  C T 1 2 . 5 - 5 0  

J r o m   à , [  t  ] 

10000 loading time 

Creep Crack Initiation  a Criteria 

Fig.  20 

■} 

M  a i I e/Ts c h euschner D. x  +  A  Y □  A  

0.004W CT),0.01W DENT) 

spark eroded  

Siemens H  

-0,5mm  

Ragazzoni a   <►  

-  0,5mm 

Hollstein CT25 - , C T 5 0   X 

0,3mm 

Holdsworth  D  o 0,2mm 

Creep Crack Initiation  with Parameter  K  Ur i  I fatigue precracked 

Rintamaa 

u  e u 0,5mm 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 74/200

K. 

iH/mrrO  

tf -

3*10* 

30 CrMoNiV  4 11, AMA, 550 °C A - Cs25. q/tø=0.55 

7- 0 9 . q/W=0,4 

a = CT100.q/W=0.55 

O - Cs50. q/ty=0.55  

O - D60. (v^W=0.* 

B -0 6 0 . q^W=02 • = D60.(VVi=O.1 

10

F i g .  2 1 .   S t r e s s  I n t e n s i t y  v e r s u s  c r a c k  i n i t i a t o r  t i m e fo r a R  = 0,01 W ,  l C r M o N i V ,  5 5 5 ° C [ 2 1 ] 

6 2 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 75/200

u> 

60  

5U 

ra  o. Z .  40 

30  

2 0 -

10  

CT   25/50S CT   50/1  OOs CT100/200  D  g D60 D60 D60 

CrMo(Ni)  V,T =  SSO C  

10  

a/W   =   0.55 a/W   =   0.55 a/W   =   0.55 a/W   =   0.40 a/W   =   0.40  a/W   =   0.20 a/W   =   0.10 

a/W   =   0.50 a/W   =   0.50 a/W   =   0.20 

/Ho l ls te in CT12 . 5 - 50 J r om   à , [  3  ] 

10000 

loading   t ime 

Creep  Crack  Initiation  Criteria  

Fig.  2 2 

• > 

Mai le/Tscheuschner □  x  +  ▲  Y D  A 

0.004W CT ,0.01W DENT

spark  eroded  

Siemens B 

~  5mm 

Ragazzoni 

a ~  5mm 

Hollstein  CT25 - ,CT50  X 

3mm 

Holdsworth  

2mm fat igue  precracked 

Rintamaa  

y  e ~  5mm 

Creep Crack  Initiation  with Parameter  Spec. Thickness 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 76/200

10°

10"

E

reT3

10"

10"

.XDA

Y+

CT 12CT 25

CT 50C C P 2 5SENT 12

1%CrMoV,T = 550<'

:

Y BB B

T  B

S u aB

Y B

' CT U

m B B

BB A V

B  j y k «  ^ B BB

  ^ s P3   a a  B

QìÉ i - iW B

ET  aB B B

0   + B+

B

10 20 K|id   ( MP a Y m) 50 100

Fig. 23. COST 505-Group 6, Summa rized Data

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 77/200

O ) UI  

10

10 -2 

E  E  

ra ■D  

10

10 -4 

1 0

DA+XY  D 20,  T =  53 0 °C  (forged new  material) D 35 , T =  530 °C  (casting) 

1 CrMoV 

10 

welded,HAZ 

^  4. y  + + 

¿ti 

Y Y 

20  K, id  (MPa\/m)  50  100 

Fig. 24.  COST 505-Group 6, Summarized Data, CT25  

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 78/200

O)  O)  

•o 

1

1

E  10-

1

1

Summa r i z e d  a ta 

D  A  

Y X + 

Seg.3  as  received  condition  Seg.4  as  received  condition  Seg.6  aged 560°C, 10000h  Seg.9  as  received  condition fatigue  precracked at 530°C  Seg.10 as  received condition 

/ / 

*  / 

9  X  2/  

■ ^ 

v  

1 20  K||d  MP a t f m )  50  100 

Fig. 25.  Creep Crack Growth, 28CrMoNiV49 KWU 1508), 530 °C, CT25S 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 79/200

10 

cr> 

RI  ■o  

1  CrMoNiV-Steel 530 °C , CT 25s 

¿a * o t 

2 .0   m m  

1.0   m m  0 .5   m m  

r a m e t e r l i nes  fo r a c c u m u l a t e d c r a c k  d e p t h  ¿fa to t 

crack  g ro w t h curves  

2 0  Kild  ( MPa i/rfT)  5 0  ■  i  i 

1 0 0  

Fig. 26.  Creep Crack  Initiation and Growth 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 80/200

10

O)  00  

10 -2 

j e 

7o T3  

10

10-

10

c*/\ 

SP  

♦ 

Aaqe s 

. 2,0 mm  

1,0  mm  

0,5  mm  

i  i  i 

♦ D  

■ 

i  i 

10  20   K||d  ( M P a ^ m )  50  100 

Fig. 27.  Creep Crack Initiation, 28CrMoNiV49 KWU  (1508), 530°C, CT25S 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 81/200

HIGH TEMPERATURE CRACK GROWTHIN STEAM TURBINE MATERIALS

Parti i

Creep Crack Growth in 1% CrMoV Steel and Alloy 800H

an evaluation of the results of the COST 505 and an EGF Round Robin

T. Hollstein*, G.A. Webster**, F. Djavanroodi**

* Fraunhofer Institut für Werkstoffmechanik, Freiburg, D

* * Imperial College of Science and Technology, London, UK

69 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 82/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 83/200

ABSTRACT

The report presents the results of a Creep Crack Growth Round

Robin conducted by the COST 505 Group 6 "High-Temperature

Crack Growth" and an EGF Working Party within Task Group 1

"Elastic Plastic Mechanics". Data from twenty-five

laboratories are compared, 'as-determined' by the participants

and following a unified evaluation. For the two materials

tested, Alloy 800 H at 800°C and 1% CrMoV steel at 550°C, it

is shown that the most satisfactory correlations of creep

crack growth rate are achieved with the creep fracture

mechanics parameter C* when a unified evaluation procedure is

adopted. Precautions for obtaining reliable experimental data

and interpretations are discussed and supported by numerical

analysis and models of the cracking process. Little influence

of specimen shape and size is observed and it is demonstrated

that all the cracking occurs under plane-stress conditions. In

the 1% CrMoV steel, transient effects in the early stages of

cracking are shown to be caused by a build-up of creep damage

at the crack tip.

INTRODUCTION

In recent years, an increasing interest has developed in being

able to predict the behaviour of high-temperature components

containing flaws. Such analyses are required to assess defect

acceptability at the design stage, to predict remaining life

and in failure diagnosis.

Depending on the circumstances under consideration, various

approaches are available which may be based on net section

rupture or fracture mechanics methodology. When crack

propagation occupies a significant portion of the lifetime,

creep crack growth rates have been characterised in terms of

the stress intensity factor K, the J integral, the C* integral

71

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 84/200

and the C. and C(t) functions, see for example Ref. [ 1] . There

are advantages and disadvantages with the use of each of these

parameters. For example, K is easy to calculate but is notably

geometry dependent in situations where the crack tip stress

field is redistributing at a faster rate than the defect is

propagating. In contrast, C* appears to be able to correlate

creep crack growth rates under steady-state conditions

relatively independently of geometry, but it is more difficult

to apply to the analysis of real components.

With this background, twenty-five laboratories  [2-26],

proceeded to conduct a Creep Crack Growth Round Robin to make

an inter-comparison of data generated in differentlaboratories according to agreed procedures. The aims of the

programme were:

- to compare different methods of measuring crack initiation

and growth,

- to evaluate appropriate fracture mechanics field para

meters such as K and C*, and

- to determine the limits of acceptability of fracture

mechanics concepts for high-temperature crack growth

characterization.

The overall objective of the Round Robin was to evaluate the

consistency of the results gathered from different

laboratories and to establish the ability of the field

parameters to correlate creep crack growth rates in a range of

testpiece geometries and ultimately in service components. To

assist in this exercise, two laboratories [3,7] performed

analytical and numerical investigations to produce an

appropriate unified evaluation procedure.

Also included in the report are data which were collected on

the same material under similar testing conditions in other

Round Robin investigations that were organized by the American

Society for Testing and Materials (ASTM) [27] and the Japanese

- 72

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 85/200

Society for the Promotion of Science (JSPS) [ 2 8 ] .

Collaboration was achieved through the Versailles Agreement on

Advanced Materials and Standards (VAMAS) [ 2 9] . The data were

analysed together with the EGF results to provide a rigorous

check of the evaluation procedures being developed and a

comprehensive database.

MATERIAL

1% CrMoV steel

The test material was a round bar of a 1% Cr steel(21 CrMoV 5 7) with a diameter of 28 6 mm. The bar was supplied

by Buderus Edelstahlwerke, Wetzlar, identification number

3/22282-Z. Details of the test material given by the

steelmaker are compiled in Table 1.

To check the homogeneity of the material with respect to 0.2%

proof stress R . _ and ultimate tensile stress R ,po .2  m

conventional tensile tests were conducted at room temperature

and 550°C at two different positions along the bar and at four

radial locations (see Fig.  1) .  The results are compiled in

Table 2 and Fig. 2. They show no signifcant difference between

the values for the two axial positions but a fairly strong

decrease of the R . _ and R values towards the centre of thepO. 2  m

bar. This is especially conspicuous for the values in the

region AA. It is expected that the strong decrease of the

0.2%-proof  stress and ultimate tensile stress near the centre

of the bar (below 0.23 R) will not influence the creep crackgrowth test results, because all the fracture mechanics

specimens were taken from the bar with the crack tips at

approximately 0.5 R.

The impact energy of Charpy specimens tested in COST 505 -

Project D 20 [2] on the same material showed the same

tendency. The results are compiled in Figs.  3 - 6 . The FATT is

- 73 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 86/200

25°C  for  the  half  radius  position  of  both  regions  AA  and  DA, 

55° C  for  the  centre  region  of  AA  and  35° C  for  the  centre 

region  of  DA  (Figs.  4,  5 ) . The  impact  energy  over  the  cross 

section  for R/2  shows no significant variation  (Fig. 6 ) . 

A  check of the chemical composition  over cross sections  at the 

top  and  position  AA  indicated  no  significant  variation  (Table 

3, from  [2] . 

The bainitic microstructure  of the material  is shown  in Fig. 7 

for  region  AN.  The  ferritic  portion  increases  towards  the 

centre  of  the  bar  which  explains  the  deterioration  of  the 

mechanical properties.  

The  results  of  creep  rupture  tests  conducted  in  two 

laboratories  [6,30]  are  summarized  in  Tables 4  and  5  and  are 

plotted  in  Figs. 8 - 1 0 .  The  creep  rupture  tests  at  three 

different  axial  positions  show  a  marginal  reduction  of  creep 

strength towards the top of the bar  [6] which  is comparable  to 

the reduction  in tensile strength  and  Charpy  energy [2]. 

The  minimum  creep  strain  rate  e  .  determined  from  the  plots min 

in  Fig. 9  are  shown  in  Fig.  11  as  a  function  of  stress.  For stresses  between  150  and  250 MPa  c  .  can  be  described  at 

min 550°C to a good  approximation by a Norton  law 

è  .  =  1.3  • I O - 2 0  ■ <r6'5  [ h - 1],  <r in MPa.  (1) m i n  L  j r 

Over  the whole  stress  range measured,  the  exponent  in Eq.  (1) 

varies between  4 and  8. Also because of the variation  in n the 

stress  dependence  of   c  .  is  better  described  by  an min 

exponential  law  (see Fig. 1 2 ) : 

I  .  =  7.06  - 1 0 - 9  -   e ° -0 3 6 9  «■ [ h - 1 ] f  v  in MPa.  (2) 

min 

When the creep  strain and  strain rate are represented  by a law 

according  to Garofalo, to include primary  creep then, 

- 74 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 87/200

—■RI • G c r  = eo  t 1  6  I +  «min*  a n d  ( 3 ) 

i r r  = e V e A  +  l .  [h _ 1] cr  o  min  , 

where  from Fig. 13 and  14 e  and R' can be described  by 

o  -  o  ic  m - 4  Q0.0088  <r e_  = 2.16  • 10  • e o 

and  R =  3.08  • I O - 3  • o- 0' 5183  [h - 1]  (¡r in MPa) . 

Alloy  800 H 

The  test  material  was  a  32%  Ni  20%  Cr  alloy  (Alloy  800  H) 

supplied  by  Vereinigte  Edelstahlwerke,  Kapfenberg.  The 

production  procedure  is  shown  in  Table  6  together  with  the 

chemical  composition  and  some  basic  mechanical  data  given  by 

the  steelmaker.   The  corresponding  microstructure  is  shown  in 

Fig.  15. 

The  specimens  for  the  Round  Robin  investigations  have  been 2 taken  from the 28 x 103 mm  plate.  

The  minimum  uniaxial  creep  strain  rate  è  .  for  the  Alloy min 

800 H at 800°C may be described by Norton's  law with  stress  in 

MPa: 

?  .„ = 5.7  - I O - 1 6  o-6'5  [h _ 1]  (4) min  L  J 

The  constants  were  determined  on  the  basis  of  results  from Kempf  et. al  [31], see Fig. 16. A more detailed description  of 

the  material  and  its  mechanical  properties  can  be  found  in 

[31,32]. 

75 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 88/200

SPECIMENS

1% CrMoV steel

Most of the results were gathered using 25 mm thick and 50 mm

wide compact tension testpieces  (CT25/50), but other specimen

types (i.e. single-edge notched three-point bend - SENB3,

single-edge notched tension - SENT and centre-notched

tension-CN) and sizes (i.e. thicknesses from 5 to 63 mm) were

also tested. Parts of the material cut-up plans for the test

specimens are given in Fig. 17. The other specimens were cut

similarly.

All the cracks in the specimens were oriented in a radial

direction to give crack extension towards the centre of the

bar where possible. The crack tips of the CT specimens were

positioned to be at about R/2. Some basic data of the tested

specimens are compiled in Table 7. Specific details of all the

specimen dimensions and test conditions are given in the

individual participants' reports.

Alloy 800 H

Most of the results were gathered using 25 mm thick

compact-tension specimens, but some smaller compact-tension

specimens and centre-notched tension specimens were also

tested. The material cut-up plan and some basic data of the

tested specimens are compiled in Fig. 18 and Table 8,

respectively.

TEST P ROCEDURE

It was required that all the specimens should be fatigue

precracked at room temperature according to the procedures

recommended by ASTM [33,34] to a crack length to width ratio

76

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 89/200

a/W = 0.5, approximately, although shorter initial crack sizes

were allowed. It was stated that the final maximum load during

precracking was not to exceed that to be used for creep crack

growth testing.

After precracking most specimens were provided with 20% deep

side grooves (10% each  side).  A few were retained for testing

without side grooves. No guidelines were given for other

specimen geometries.

All the tests in the COST and EGF creep crack growth

investigations were conducted at 550°C. Loads were chosen

mainly to give approximately 4 mm of crack extension inapproximately 4 to 10 weeks although some testing was

performed at higher and lower loads. It was specified that all

specimens should be held at the test temperature for 16 hours

before the load was applied.

Throughout all tests, it was required that load line

displacement and crack length, using electrical potential

methods, should be recorded continuously. Other methods of

measuring the crack length were allowed in addition.

Each participant was allowed to determine the crack growth

rate, K and C* using their own preferred route. It was

instructed that all the raw data were to be transferred to a

central point to enable the results to be processed by a

single analysis route.

The ASTM and JSPS tests were carried out at 538°C and 594°C

mainly on CT specimens with 25% side grooves.

- 77

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 90/200

PARAMETER DETERMINATION

Crack Growth Rate à

The creep crack growth rate à was determined from the cracklength versus time records. In general, these were con

structed using the output from direct- or alternating- current

potential drop instrumentation. However, two participants

[3,26] also used the single specimen partial unloading

compliance method and the multiple specimen unloading

technique.

There was some disagreement between participants concerningthe existence of an incubation period prior to the onset of

crack growth, which led to further testing to resolve the

situation. However, the difference in the growth rates

calculated assuming either the presence or absence of an

incubation period did not vary by more than a factor of two.

In the unified approach à was determined from a seven point

polynomial fit to the crack length versus time recordings

[35].  In some cases, only one value could be evaluated by

linear interpolation due to insufficient experimental pointsor relatively short testing times.

Stress Intensity Factor K

The stress intensity factor K was determined according to the

formulae in the ASTM Standard [33].

C* Integral

To determine C*, participants were encouraged to use a formula

based on the relationship:

F vC* = *c F I T ' <5>

nwhere F is load, v_ is the load line displacement rate due to

- 78

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 91/200

creep alone, B is the net section thickness and b is then

uncracked ligament (i.e. (W-a) where W is the specimen   width).

T) is a factor that depends on the testpiece geometry and on

the creep exponent n, but which may in general also be

influenced to a small extent by the crack length and the

stress state. The form of Equation (5) is consistent with that

used in the J Estimation Procedure recommended in ASTM-E 813

[34], but with T) V replacing 7)V in the determination of J.

Different formulae are available for i) for the more commonc

specimen types (see e.g.  Refs.  [34, 36, 37 ] . However, for a

given geometry, the values do not differ by very much. In the

Round Robin exercises it has been found that:

''c = Tn W   V  (6)

where TJ is obtained from limit-load analysis. The values used

in the unified approach for TJ are  [34,36,37]:

for CT specimens: TI = 2+0.52 b/W

for SENB specimens: TJ = 2

for SENT , CN specimens: ij = 1.

In the unified analysis $ was obtained from a seven-point

polynomial fit to the load-line displacement versus time

records. Displacements due to creep were determined first by

subtracting the elastic contribution due to crack growth from

the total load line displacement.

NUMERICAL INVESTIGATIONS

The values of TJ obtained using the expressions listed above

have been compared in Fig. 19 with those calculated from

alternative derivations (see  Refs.  [38-42]),  including those

based on numerical simulations incorporating the material law

given by Eq.  (1) . The numerical analyses were performed for

79

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 92/200

different specimen types and stress states using line integral

and/or energy dissipation rate equations for C* [43]:

f  9ui 1

C * = ƒ [ W* dy - T ± gir ds J  (?)

The equivalence between (7) and (8) is only valid for a

viscous material under steady-state creep conditions, when

elastic strains are negligible.

•emn

W* is the stress work rate W* = T  <r. .dê. .

oJ 13 ^

V n

and U* is defined as U* = ƒ F dv ,o

where the following notations are used:

r integration path around the crack tipconnecting the lower and the upper crackface in a counter-clockwise direction,

ds arc length on r,o-ij components of the stre ss ten sor ,Ti = o-ij nj  components of the t raction vect or,eij components of the s trai n rat e ten sor ,ui components of the  displac ement rate

vector.

The summation convention is implied  for repea ted indi ces .

Subroutines  to  calculate  J and C*  integr als ha ve bee n

implemented into  the  finite-elemen t program me ADINA [44].

Since all quant ities entering Eq.  (7) are known  in the cour se

of  an FEM  calculation,  the  line integra l  can  readily  be

evaluated. More effective  and  easily extendab le  to

three-dimensional problems is the calculation of rele ase rate s

by the virtual crack ext ension method [ 45 ] . Both method s have

been employed  and  lead  to the  same results withi n  the

machine-dependent accuracy, see  [ 3 ] .

- 80

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 93/200

Several numerical simulations have been performed for

stationary and growing cracks in a material which deforms

according to the uniaxial creep laws (1) and (3).

In the short-time regime (t < t- , where t is a redistributiontime defined in [1]), C* has been found to be path dependent

as discussed in [3]. In the long-time regime (t » t ) , C* is

path independent and for a stationary crack, it is constant in

time, see Fig. 2 0, when secondary creep is reached. Here, the

creep laws (1) and (3) were used separately to demonstrate

also the influence of primary creep in the C* calculation.

Taking primary creep into consideration leads to higher

initial C* values and slightly greater redistribution times.

If, for the steady-state conditions in the centre-notched (CN)

specimen AQ1 shown in Fig. 20, ij is determined numerically by

comparing Eqs. (5) with (7) or (8 ), then TJ values of 0.81

(0.78) and 0.71 (0.64) are evaluated for the creep laws (1)

and (3), respectively. The  TJ  values without brackets hold for

plane stress conditions and those in brackets for plane strain

conditions. These values are in fairly good agreement with TI

= n/(n+l) = 0.87 determined from Eq. (6) and which were usedin the unified evaluation. In Fig. 20, the finite-element

results are compared to experimental results, which were

evaluated using an average  TI  = 0.75. The experimental results

are fitted best by the finite-element calculations assuming

plane stress situations. Both creep  laws,  Eqs. (1) and  (3) ,

yield essentially the same results.

Little difference in predictions would be achieved with the

range of  TI  values mentioned above.

In Fig. 2 1, the results of the finite-element simulations of a

particular experiment AB2B (CT 12.5/40) are shown. For

comparison of the 2-dimensional finite element calculations

with the experiments the force is related to the effective2thickness B = B-(B-B ) /B [46]. Calculations, with and

81

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 94/200

(1).  It was assumed, as determined in [3] , that after an

incubation period of 1 hour

à = 7.41 • 10~ 3 • c*0'72  (9)

with à in mm/s and C* in N/(mm>s).

These finite-element calculations gave ij values of 1.86 andc

1.82 for plane stress and plane strain, respectively, which

are in good agreement with TJ = 1.94 according to Eq. (6).

Whereas the calculations for C* without crack growth are

similar to those of CN 12.5/50 specimens AQ2 (see Fig. 20) and

decay to a constant value, those which include crack growth

rise and give good agreement between the plane-stresscalculations and the experimental results. Also, the

experimental crack growth versus time curve corresponds best

with the plane-stress predictions, see Fig. 22.

The ability to perform numerical calculations of this type is

particularly important when there is a requirement to

determine C* for non-standard testpiece geometries or real

components.  Some examples of special cases which have been

examined using these methods, for n = 6.5, are:

T) = 0.17 - elliptical surface crack loaded in tension at

infinity [40],

T) = 1.35 - circumferential crack in a tube subjected to

combined tension and internal pressure loading

[40],

ij = 1.75 - square section SENB3 testpiece, assuming only

horizontal displacement of specimen at roller

supports [47],V =  1.54 - square section SENB3 testpiece, assuming free

rotation of specimen at roller supports [47].

In all these circumstances, the values obtained for plane

stress and plane strain deformation were effectively the same.

82

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 95/200

Consequently, the finite-element analyses confirm the values

of ii adoptei

approximations.

of ii adopted in the unified approach as reasonable

RESULTS

1% CrMoV steel

Initially, creep crack growth rates were determined in terms

of K and C* by the individual participants, see  Figs.  23 and

24.  The degree of scatter associated with both loading

parameters is considerable. It can be attributed, partly, to

different interpretations of the raw data and evaluation

procedures and partly to effects of geometry, size and

pronounced crack growth rate "tails" in the early stages of

cracking. In order to determine the significance of each of

these factors, all participants were asked to submit their raw

data to one laboratory [7] in a form suitable for a unified

evaluation.

The results of applying a single standard analysis are givenfor K and C* in Figs.  25 and 2 6, respectively. It is apparent

that the unified approach has only little influence on the

extent of the à versus K correlation. However, the overall

scatter of the C* data is reduced significantly by adopting

the recommended procedure for obtaining C* from Eq.  (4) .

However, there is still appreciable scatter associated with

this loading parameter, particularly in the early stages of

cracking.

Alloy 800 H

The degree of scatter displayed by the initial creep crack

growth rate plots for the Alloy 800 H was lower than that

exhibited by the 1% CrMoV steel (the original C* data

collation for Alloy 8 00 H are shown in Fig. 2 7 ) , covering about

- 83

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 96/200

one order of magnitude on a. In part, this was due to the fact

that the database for the alloy was less extensive and that

the results were gathered using fewer specimen geometries and

sizes.  It was also due to the fact that the crack growth rate

'tails' were less pronounced for this material.

The results of applying a single standard analysis are given

for K and C* in Figs.  28 and 2 9, respectively. Using a uni fed

approach had no influence on the extent of the à versus K

databand (and hence the K results are only given once in Fig.

3 0) . The overall scatter of the C* data is reduced by about

half a decade by adopting the procedures described above.

The correlation between à and C* is about the same as

determined by [38] for the same batch of material and for

different geometries and sizes of specimens (see Fig. 3 0 ) .

That is shown by the power law correlation

à = 0.0034  • c*0,733  (10)

with  k  in mm/s and C* in N/(mm-s), which is represented by the

straight line in Figs. 29 and 39.

DISCUSSION

Unified Correlations

The collations of the creep crack growth rate results from the

Round Robin programme, 'as-determined' by the individual

partners, give poor correlations with K and, at least for the

1% CrMoV steel, with the C* parameter. The situation is not

much improved for the à versus K correlations when a single

assessment procedure is adopted, suggesting that the linear

elastic expression is not a satisfactory parameter for

describing creep crack growth data over a wide range of

cracking rates in 1% CrMoV at 550°C and Alloy 800 H at 800°C.

84 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 97/200

The  observations, that  a  correlation  with  C*  is  improved  when 

a  standard  analysis  of  the  data  is  carried  out,  implies  that 

an  appreciable  cause  of  the  initial  scatter  was  due  to  the 

application  of  different  methods  of  data  assessment.  For 

example  in   the  present  study,  à  and  ^  were  derived  from  the crack  length  and  displacement  versus  time  records  using  a 

range  of  techniques.  These  included  manual,  cubic  spline  and 

seven-point  polynomial  curve  fitting  routines.  In   the 

calculation  of  C*,  some  participants  used  analytical 

estimates, which  are very  sensitive  to the  choice  of  n  in  the 

creep  law,  and  others  utilised  total  load  line  displacement 

rate rather than that due to creep alone  (i.e.  ) . Similarly, 

some used  gross  rather  than  net  section  thickness. The  degree 

of  scatter was  particularly  exaggerated  with  the  C*  estimates derived using theoretical  representations  of  ţ  according  to 

Ref.  [42]  in Eq.  (5). The most  consistent  interpretations  are 

obtained  using  the  preferred  standard  evaluation  route  of  the 

unified analysis. 

The  scatter  of  the  unified  analysis  can  be  reduced  by 

separating  out  data  on  specimens  of  different  size  and 

geometry.  The  effect  of  specimen  size  is shown  in Fig.  31  for 

the 1% CrMoV  steel, compact tension results. 

It can be  seen that the total  spread  in the  data  is much  less 

than  is  depicted  in   Fig.  26.  However,  there  is  still 

significant  scatter  at  the  lower  cracking  rates  observed  in 

the  initial  stages  of  a  test.  This  is  the  so-called  'tail' 

region where  a small  increase  in C*  (or K)  is responsible  for 

a  large  increase  in a. Later a linear relationship  is obtained 

in Fig. 31 with  little scatter consistent with the  form of Eq. (9) assumed  in the numerical predictions. 

A  detailed  examination  of  the  experimental  data  has  revealed 

that the tails represent a period  during which a decreasing  or 

an  approximately  constant  displacement  rate  prevails.  It  can 

occupy  up to about 3  of the  overall  lifetime  [6] of  a test. 

- 85 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 98/200

The linear region on Fig. 31 corresponds with a progressively

accelerating displacement rate and is associated with having

achieved a steady-state distribution of stress and damage

ahead of a crack tip. An approximate expression for describing

this behaviour has been given by Nikbin, Smith and Webster[48] as

à = 3 • C*°'85/e£ (11)

with â in mm/h, C* in MJ/m h and e4 is creep ductility

appropriate to the state of stress at the crack tip. This is

taken as the uniaxial creep ductility c_ for plane stress

conditions and ef/50 for plane strain. The predictions of this

expression, for an average uni-axial creep ductility from Fig.10 of e f  = 0.15 for the 1% CrMoV steel, are shown in Fig.

31. It is apparent that good agreement is obtained when plane

stress is assumed consistent with the numerical calculations

shown in Fig. 20 to 22. In addition there is no evidence of

size effects in Fig. 31 over a range of specimen thicknesses

from 10 to 63.5 mm.

Initiation of Crack Growth in 1 % CrMoV steel

An example, which sheds light on the first part of an

experiment with the 1 % CrMoV-steel specimens after loading is

shown in Fig. 32. Plotted are the evolution of the load-line

crack opening displacement V and of the final crack extension

Aa in the CT 50/100 specimens AP2 and AF3 (thickness B = 50

mm, width W = 100 mm, 20% side grooves). The crack growth was

measured also by the direct-current potential differencemethod, see Fig. 33. From these data, it can be seen that the

initial crack growth is approximately linear with time. The

microstructure in the crack tip area in the middle of specimen

AP2 is shown in Fig. 34.

In addition, extrapolation of the crack growth and potential

values, respectively, in Figs. 32 and 33 to the beginning of

86

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 99/200

the tests indicates that for these two CT 50/100 specimens an

initiation time , i.e. an incubation time to the onset of crack

growth - if any - is negligibly small. This conclusion can

also be drawn from Fig. 35, where results of three CT 25/50

specimens are plotted.

A comparison has been made by [49] between the crack growth

observed in fatigue precracked and spark-eroded notched

identical CT 25/50 specimens with 20% side grooves under the

same loading conditions. The microstructure in the crack tip

area of two of these specimens is shown in  Figs.  36 and 37.

It is apparent, from Fig. 36, that little crack growth has

occurred after 500 hours ahead of the spark-eroded notch,

indicating a significant initiation/incubation period, whereas

appreciable crack growth has taken place from the fatigue

precrack in 200 hours (Fig. 37) suggesting little evidence of

an incubation period consistent with  Figs. 32-35.

Transient Crack Growth in 1 % CrMoV steel

It is claimed that the early cracking behaviour can be

attributed to the combined effects of primary creepdeformation, the development of a creep damage zone aground

the crack tip and a redistribution of stress during the

transition from the initial elastic to the steady-state creep

conditions. An indication of the redistribution time can be

obtained from [1]

fc i = T ïS îyc * <12>

where G is the elastic strain energy release rate. Since this

formula is considered to provide an upper estimate of t.,

stress redistribution should be essentially complete for t >

t 1. In the case of the 1% CrMoV steel, t. is tyically around

10 h. Strictly speaking C* is only valid for values of t > t..

It has been found that elimination of data points with t < t.

still leaves most of the  'tail' so that some other explanation

- 87 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 100/200

is  required  of  this  behaviour.  This  can  be  obtained  as 

follows. 

Consider  Fig. 38 which  shows a creep damage  zone ahead  of a 

crack.  When  a  steady  state  distribution  of  damage  has developed  in  this  region  it  has  been  shown  [48]  that  the 

steady state creep crack growth rate å  is given by 

as =  1 - 1 )   [ Ş ^ ]n / n + 1 )

  c r c ) V n + D   (13) 

where  I  is  a  non-dimensional  function  of  n  and  state  of n 

stress and C is the proportionality factor in the Norton creep law.  In  deriving  this  relation,  it  was  assumed  that  crack 

advance takes place when the creep ductility  is exhausted at 

the  crack  tip.  Under  steady  state  conditions  progressively 

more damage exists as the crack tip is approached and little 

extra strain is required to break a ligament dr at the crack 

tip  since  it will be  almost broken before the crack reaches 

it. 

This  situation  does  not  exist  on  first  loading.   The  small ligament  dr  will  not  have  suffered  any  creep  strain  and 

failure will not occur until a time dt has elapsed, given by 

e_ = e dt 

This leads to an initial creep crack growth rate a  of 

_ . C*l n/(n+1),„'_ /< o=-b-[?] / V  ' ^dr)V(n +l)  (14) 

which  is  similar  in  form  to  the  steady-state  relation  Eq. (13) . Because the dr and r  are raised to a small fractional '  c power in Eqs. (13) and (14), 

s WIT as  < 1 5> 

For most materials therefore the initial crack growth rate is 

88 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 101/200

expected to be approximately an order of magnitude less than

that predicted from  the  steady state analysis. This  is

consistent with the experimental results shown in Fig. 31. For

each crack advance dr,  each successive ligament in Fig. 38

will progressively accumulate more damage prior to fracture.The cracking rate will increase correspondingly to

(€{"€*)[-r

/(n+1)(c'dr)VCn+D  (16)

L  n J

where e* is the creep ductility used up in the ligament prior

to the arrival of the crack. Numerical integration is required

to evaluate Eq. (16). Its prediction of some tests is shown in

Fig.  39. The  satisfactory correlation indicates that  the

majority of the 'tail' can be attributed to the build up of

damage at the crack tip during the early stages of cracking.

On similar physical grounds,  but in a  more mathematical

formulation, the  'tails' have been described by  Kubo et al

[50], Riedel [ 51], and Bassani [52].

For most tests it has been found that the build up of damageoccupies about the first 0.5 mm of crack extension. When this

cracking is eliminated from Fig. 39, as shown in Fig. 40, the

scatter in the data is further reduced.

Geometry Effects

In order to examine these effects for the 1 % CrMoV-steel, the

'tails' have been eliminated from the data for clarity. Theresults are shown in Fig. 41. It is  evident that there is

little influence of geometry on the cracking rate although the

CT data tend to be distributed towards the top of the scatter

band.  The use of CT  data  in  design should therefore be

preferred as they will result in the safest predictions. In

Alloy 800 H, a geometry effect could not be found, see Figs.

29 and 30

89

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 102/200

Comparisons with ASTM and JSPS data on 1 % CrMoV-steels

These data are summarized together with the EGF results in

Fig. 42. It can be seen that, although the test conditions

were different, broadly similar correlations are achieved.

This would be expected from Egs . (11) and (13) unless a change

in temperature causes a significant change in creep ductility.

It has been advocated that the C(t) and C. [53] parameters can

be employed to interpret creep crack growth data when t < t..

Both of these parameters tend to C* at long times. Since it

has been found that t. a 10 hours for the test conditions

imposed, it is expected that the data should mostly correlatewith C* and the use of C(t) and C. is not necessary.

Initial Cracking Rates

It can be argued that the inital cracking rates for the

1 % CrMoV stee l, with a transition time of typically 10 h or

more before stress redistribution has had time to occur,

should be described by K. The correlations for standard size

CT geometries and the other geometries are shown in Fig. 43.

It can be seen that all the data can be described

'satisfactorily by the same equation [3 ] .

90 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 103/200

CONCLUSIONS

Experiments and analyses have been performed on a 1% CrMoV

steel and on Alloy 800 H which have shown that creep crack

growth in these materials is described most satisfactorily bythe creep fracture mechanics parameter C*. Recommendations

have been made about how to obtain the most reliable estimates

of C* from experimental measurements. These have been

supported by numerical computations. It has been found that

the use of 20% side grooves (10% of the total thickness each

side) in compact tension specimens, and a seven-point

polynomial fit to obtain crack growth and displacement rates,

produces the most consistent correlations.

It has been demonstrated for the 1% CrMoV steel that all the

cracking took place under plane stress conditions. Increased

scatter, due to 'tails' in the early stages of cracking, has

been shown to be caused mainly by the progressive build up of

damage at the crack tip until a steady state distribution is

reached. This can take up to 30% of the life of a specimen and

can be important in practical applications. However, little

evidence of a 'tail' was noticed for Alloy 800 H.

Comparisons have been made with data obtained in other test

programmes on the 1% CrMoV steel. These have reinforced the

findings of this investigation.

91

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 104/200

References

[I] Riedel, H., Fracture at High Temperatures, SpringerVerlag, Berlin, Heidelberg, New York, 1987.

[2] Ewald, J., Berger, C , Brachvogel, H., Investigations onCrack Initiation and Propagation under Static, Cyclicand Combined Loading Conditions of 1% CrMoV Steels at530'C;  COST 505-D20/D21, Annual Progress Reports andFinal Report, Siemens-KWU, Mülheim, June 1989.

[3] Hollstein, T., Kienzier, R., Numerical Simulation ofCreep Crack Growth Experiments; COST 505-D22, AnnualProgress Reports and Final Report, IWM Freiburg,December 1988.

[4] Kanbach, H., Crack Growth in Welded Turbine Materialsand Elevated Temperatures; COST 505-D35, Annual Progress

Reports and Final Report, AEG Frankfurt, March 1989.

[5] Raggazzoni, S., High Temperature Crack Growth in SteamTurbine Rotor Material under Static and Cyclic Loading;COST 505-13, Annual Progress Reports and Final Report,ENEL, Milano, March 1989.

[6] Holdsworth, S.R., High Temperature Crack Growth inTurbine Steels; COST 505-UK5, Annual Progress Reportsand Final Report, GEC Turbine Generators Ltd., Rugby,1989.

[7] Webster, G.A., Djavanroodi, F., Elevated TemperatureCrack Growth in Steam Turbine Materials, COST 505-UK18,Annual Progress Reports and Final Report, ImperialCollege, London, January, 1989.

[8] Rintamaa, R., Salonen, J., Auerkari, P., Residual Lifeand Strength of Steam Pipings and Turbines, VTT, Espoo,Annual Progress Reports and Final Report, 1989.

[9] Bressers, J., JRC, Petten, priv. comm.

[10] Curbishley, J., UKEA, Risley, priv. comm.

[II] Fesneau-Falbriard, P., Héritier, J, UNIREC, Firminy,priv. comm.

[12] Guedou, J.-Y, SNECMA, Evry, priv. comm.

[13] Gooch, D.J., CEGB/CERL, Leatherhead, priv. comm.

[14] Hay, E., NEI, Newcastle upon Tyne, priv. comm.

[15] Hippsley, C.A., UKEA, Harwell, priv. comm.

[16] Huthmann, H., Interatom, Berg.-Gladbach, priv. comm.

92

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 105/200

[17] Krasovsky, A., Baumstein, M., Institute for Problems ofStrength, Kiev, priv. comm.

[18] Maile, K., MPA , Stuttgart, priv. comm.

[19] Mandorini, V., IR B, Milano, priv. comm.

[20] Nazmy, M., AB B, Baden, priv. comm.

[21] Pique s, R., ENSMP, Evry, priv. comm.

[22] Rant ala, J., Imatran Voima, Vantaa, priv. comm.

[23] Remke, M., RWTÜV, Essen, priv. comm.

[24] Rõdig, M., IRW-KFA, Jülich, priv. comm.

[25] Saxena, A., Ha n, J., Georgia Tech., Atlanta,priv. comm.

[26] Tscheuschner, R., Granacher, J., IfW, Darmstadt,priv. comm.

[27] American Society for Testing and M ateri als, ASTMCommittee E  24.04:  Cooperating Program on Creep CrackGrowth, Chairman: A. Saxena.

[28 ] Japane se Society for the Promotion of Science  (JSPS),Committee 129 and National Research Institute for Metals(NRIM), Chairman: A.T. Yokobori.

[29] VAMAS : Creep Crack Growth - A State of the Art Repor t,Issue 1, February 19 89, Ed. T.B. Gibb ons,NPL,  Teddington.ton.

[30] Tscheuschner, R., IfW, TH Darmstadt, priv. comm.

[31] Kempf, B., Bothe, K., Gerold, V., Study of Fatigue andCreep-Fatigue Interaction in a High-Temperature Alloy, COST501-D11, Final Report , Stuttgart, 1987.

[32] Drossier, E., Danzer, R., Aigner, H., Mitter, W.,Lebensdauer von Alloy 800H unter kriechnahen Bedingungen,COST 5 01-Al, Endbericht, Leoben, 1987.

[33] ASTM-E 399-78 , Standard Method of Test for Plane StrainFracture Toughness of Metallic Materials, Annual Book ofASTM Standards, Section 3, Vol. 03.01.

[34] ASTM-E 8 13-8 1, Standard Test for Jic, A Measure ofFracture Toughness, Annual Book of ASTM Standards,Section 3, Vol . 03.01.

- 93

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 106/200

[35] Saxena A., Han, J., Evaluation of Crack Tip P arametersfor Characterising Crack Growth Behaviour in CreepingMaterials, ASTM Task Group Report, Joint Task Group:E24.08.07/E24.04.08, 1987.

[36] Webster, G.A., Crack Growth at High Temperatures, inEngineering Approaches to High Temperature Design, Eds.B.  Hilshire and D.R.J. Owen, Pineridge Press, 1983.

[37] Hollstein, T., Djavanroodl, F., Webster, G.A.,Holdsworth, S.R., High Temperature Crack Growth in Alloy800 H and 1% CrMoV Steel - The Results of an EGF RoundRobin; in: Failure Analysis - Theory and Practice,   ECF7,Ed. E. Czoboly, EMAS (1988) Vol. II, 656-668.668.

[38] Hollstein, T. and Kienzier, R., Fracture MechanicsCharacterization of Crack Growth Under Creep and FatigueConditions, IWM Report W 2/87, Freiburg, February 1987.

[39] Kienzier, R. and Hollstein, T., Experimental andNumerical Investigations of Creep Crack Growth, Proc.3rd Intern. Conf. Creep and Fracture of EngineeringMaterials and Structures, Swansea, The Institute ofMetals,  1987, 563-576.

[40] Hollstein, T. and Kienzier, R., "Numerical Simulation ofCreep Crack Growth Experiments", IWM Report Z13/87,Freiburg, December 1987.

[41] Koterazawa, R. and Mori, T., Applicability of FractureMechanics Parameters to Crack Propagation under Creep

Conditions", Trans. ASME, J. Eng. Mat. Tech. 99, 1977,298-305.

[42] Kumar, V., German, M.D . and Shih, C F . , An EngineeringApproach for Elastic-Plastic Fracture MechanicsAnalysis, Topical Report No. EPRI NP-1931, ResearchP roject 1237-1, General Electric Co., Schenectady, July1981.

[43] Landes, J.D., Begley, J.A., A Fracture MechanicsApproach to Creep Crack Growth, ASTM STP 590, AmericanSociety of Testing and Materials (1976) 128-148.

[44] Bathe,  K,.-J.,  ADINA, A Finite-Element Program forAutomatic Dynamic Incremental Nonlinear Analysis. ReportAE 84-1, Massachusetts Institute of Technolgy, Cambridge,Mass., USA   (1984).

[45] P arks, D.M., The Virtual Crack Extension Method forNonlinear Material Behavior. Comp. Methods Appi. Mech.Eng. 12 (1977) 353-364.

94

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 107/200

[46] Shih, C F . , DeLorenzi, H.G., Andrews, W.R., ElasticCompliance and Stress Intensity Factors for Side-GroovedCompact Specimens. Int. Journ. of Fracture 13 (1977)544-548.

[47] Siegele D., Ockewi tz, A., Hollstein T., Berechnung des

ij-Faktors für eine 3-Punkt-Biegeprobe, IWM-BerichtV 25/87, Freiburg, July 1987.

[48] Nikbin, K.M., Smith, D.J. and Webster, G.A., AnEngineering Approach to the Prediction of Creep CrackGrowth, J. Eng. Mat. and Tech., ASME, 108, 1986,186-161.

[49] Tscheuschner, R., Ma ile, K., Stichprobenartige Untersuchung des Kriechrißverhaltens von Proben mit angeschwungener und von Proben mit erodierter Rißstartfront,26. Oktober 1989

[50] S. Kubo, K.  Ohji,  and K. Ogura, An Analysis of CreepCrack Propagation on the Basis of the Plastic SingularStress Field, Engineering Fracture Mechanics 11, (1979)315-329.

[51] H. R ied el, The Extension of a Macroscopic Crack atElevated Temperature by the Growth and Coalescence ofMicrovoids, in Creep in Structures,  (A.R.S.  Ponter andD.R. Hayhurst, eds.) Springer-Verlag, Berlin Heidelberg(1981) 504-519.

[52] J.L. Bassani, Creep Crack Extension by Grain BoundaryCavitation, in Creep and Fracture of EngineeringMaterials and Structures (B. Wilshire and  D.R.J.  Owen,eds.),  Pineridge Press, Swansea (1981) 329-344.

[53] Saxen a, A., Creep Crack Growth under Non-Steady-StateConditions, Fracture Mechanics, Vol. 1 7, ASTM STP 905 ,1986, 185-20 1.

[54] Rödi g, M., Kienzier, R., Nickel, H., Schubert, F.,Ermüdungs- und Kriechrißwachstum in Rohren einesRöhrenspaltofens bei Temperaturen oberhalb 700"C,13. MPA-Seminar, 8 .-9.10.1987.

95

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 108/200

General

Material supplied to program by:

Steelmaker :

Component :

Nominal composition/specification :

Composition, 7.

Fraunhofer Institut, Freiburg

Buderus Edelstahlwerke/Wetzlar

Bar, 386 mm dia

21CrMoNiV57

C

0 . 2 2

S i

0 . 2 4

Mn

0 . 6 4

P

0.009

S

0.003

Cr

1 . 2 9

Mo

0 . 6 6

Ni

0 . 6 6

V

0 . 2 8

Al

0 . 0 1 4

Cu

0 . 1 2

Sn

0.009

Heat Treatment : 6 h 930 C, oil

10 h 690°C, air

Room temperature mechanical properties:

Lo ng i tud . , removal p o s i t io n: near sur face

R p o z  , MPa

613

Rm, MPa

727

A,  7.

1 9 . 8

Z , l

72

Av,J

1 3 9 ,  158, 163

R p 0 . 2 ,  MPa

623

Rm, MPa

744

A,  7.

19

Z.7.

6 9

A v , J

9 2 ,  84, 85

near KA1,

left side

see f i g . 1)

near DX,right side

(see fig. 1)

Table 1: D etails of the 1% CrMoV test materia l give n by the

steelmaker

96 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 109/200

Spec imen P o s i t io n R „ R Z Ac  A, , n

po .2 m 5 L=60[MP a] [MP a] [%] [%] [%]

1-

< U

a.El1—EO

oOí

0oLT)L D

II

1—

AB 7

AA8A

AA63

AA65

CG61

CG63

CG65

AB8

AA8B

AA62

AA64

CG60

CG62CG64

center

0.23 R

R/2

surface

center

R/2

surface

center

0.23 R

R/2

surface

center

R/2surface

483

536

594

608

561

600

615

316

355

372

388

380

375397

635

676

705

712

683

714

721

345

389

400

410

398

400416

70

72

68

71

72

72

86

89

89

88

8989

21.0

22.0

20.5

/21.5

/

27.5

24.5

23.5

/

25.522.0

19.0

19.0

18.0

19.0

19.0

16.5

22.5

17.0

16.5

20.5

20.520.5

Table 2 : Re su l t s o f th e te n s i l e t e s t s on 1% CrMoV s t e e l (Rra d i us o f b ar ) , from [3 ]

- 97

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 110/200

Bezeichnung 

der Probe 

Kohlen toll  *;.  

Silizium  ' I . 

Mangan  *' . 

Phosphat  * •  

Schwein  •/.  

Stichïlolt  'f . 

Aluminium  ' losl Aluminium 

Chrom  '' . 

Molybdän  *'•  

Vanadium  'f.  

Nichel  *'•  

Kobalt  V.  

Wollram  *'•  

Tilan  *'•  

Niob  *' . 

Eisen  ■'• 

Kupier  '• 

Zink  V.  

Zinn  *' . 

Blei  •'•  

Antimon  '■ 

Arsen  */ . 

/. 

X /K  = 0 . 1 

. 2 1 

. 2 5 

. 6 1 

. 0 1 1 

. 0 0 2 

. 0 0 9 

1 . 2 9 

. 6 H 

. 2 6 

.61» 

. 1 1 

. 0 0 8 

. 0 0 ? 

. 0 0 6 

X /H   -  0 . 2 5 

. 2 0 

. 2 5 

. 6 2 

. 0 1 1 

. 0 0 2 

. 0 0 9 

1 . 2 9 

.6 5 

. 2 7 

. 6 s 

. 1 1 

. 0 0 ? 

. 0 0 2 

. 0 0 6 

X /R   .  0 . 5 

. 2 2 

. 2 5 

. 6 M 

. 0 1 2 

. 0 0 3 

. 0 0 8 

1 . 3 2 

. 6 7 

. 2 7 

. 6 6 

. 1 1 

. 0 0 8 

. 0 0 2 

. 0 0 5 

X /R   . 0 . 9 

. 2 2 

. 2 5 

. 6 3 

. 0 1 2 

. 0 0 3 

. 0 0 8 

1 . 3 1 

.65 

. 2 7 

.66 

. 1 1 

. 0 0 9 

. 0 0 2 

. 0 0 7 

Round  Robin  Mate r i a l 

X / R - D i s t a n c e  from  cen te r 

21C rMoN iV57 

Po s i t i o n  ;  A A  

Table  3 : Chemical composition over cross  s e c t i o n ,  from  [ 2 ] 

-  98 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 111/200

(OCO

AxialPosition

BA

DA

AA

Stress(MPa)

263247

216

185

154

139

216

216

0.1

22

7

17

42105

5

4

0.2

89

29

75

290565

24

17

Time to X Strair

0.5

3436

142

428

1,600

3,089

117

100

1.0

6992

3661,102

4,170

7,700

320

302

(h)

2.0

118

185

770

2,250

7,900

690

635

5.0

184

333

1,383

4,000

1,275

1,150

Rupture

time(h)

224

429

1,595

4,49512,486

17,908

1,577

1,362

EL(X)

22.3

18.7

9.06.85.7

3.9

14.3

13.2

RA(X)

78.4

75.8

39.9

12.95.0

5.7

43.9

40.8

Table 4: Creep rupture test results for 1% CrMoV steel at

550"C, from [ 6] ; see Fig. 1 for key to axial pos ition

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 112/200

Spec.-No.

AK 6

AK 7

AK 4

AK 5

AK 2

AK 3

AK 8AK 1

Stress[MPa]

285

260

235

190

155

135

10580

Time

0.2

3.5

4

8

100

530

1425

300012000

to  % strå[h]

0.5

22

22

80

460

2000

3900

13500

in

1.0

36

65

200

1010

4400

9500

Rupture

time[h] El[%]

88 22.5

237 25.7

900 19.3

4193 10.8

10661 5.9

RA[%]

81

77

59

18

10

Table 5: Creep rupture test results on 1% CrMoV steel [26],

axial position AK, see Fig. 1.

100

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 113/200

Production Procedure:

Melting in an electric arc furnace andVOD Process +)

Hot forming to ø 250 mm

Hot forming toa 90 mm

Rolling to a 19,5 mm

Solution annealing1125 - 1130* 30'/Water quenching

Hot forming to P roduction of seamless28 x 103 mm tubes by extruding

Solution annealing Cold tube rolling1130* 30'/

Water quenching

Solution annealing1130" 30'/Water quenching

.+) VOD ... vacuum oxygen decaburisation

Chemical composition of the Incoloy 800 H investigated:

Si Mn Cr Ni Al Ti Fe

Weight 0.07 0.46 0.68  0.020 0.004  20.26 31.11 0.34 0.31 bal

(%)

Plate dimensions :  28 x 103 mm

Heat treatment: 1130' + 30'/Water

Mechanical data:

Testing conditions: Round bar, d = 8.0 mm, L = 40 mm

Temperature

[•C]

25

800

or  =

%

573577

282270

5 MPa/s

[N/mm2

RP 1

289293

190192

RP0.2

250254

155161

[i

A

4646

5252

Z

7474

7474

Charpy energy (ISO-V-specimen,  25"C):   297 J

Table 6: Production procedure, chemical composition and some

mechanical data of the Alloy 800 H

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 114/200

No.

1

2

3

4

S

6

7

S

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Specimenno.

AF 2

BW 1

BW 2

BW 3

AH 3

AH 4

AM 1

AH 2

AO 3

AO 5

AQ 5

BC 1

BC 2

BB 1

AB 2A

AB 2B

AN 6

AE 1

AE 2

AP 2

AP 3

AQ 1

AQ 2

RR 5

RR 7

Specimentype

CT 25/50

CT 20/50

CT 20/50

CT 20/50

CT 25/50

CT 25/50

SENT12/20SENT12/20

CT 20/40

CT 25/50

CT 25/50

CT 25/50

CT 25/50

CT63.5/127CT12.5/40CT12.5/40

CT 25/50

CT 25/50

CT 25/50

CT50/100CT50/100CN12.5/50CN12.5/50SENB9.5/19

CT 13/26

S i d e -groove[*]

20

20

20

20

20

20

0

0

20

20

20

20

20

20

20

20

20

20

20

20

20

0

0

20

20

F[kNJ

16.5

10.2

13.5

17.0

11.1

19.1

30.5

40.0

15.1

16.2

24.1

16.5

12.1

70.0

7.6

5.1

8.5

17.8

20.0

32.1

32.0

50.0

60.7

6.0

5.6

a/W

0.498

0.547

0.569

0.548

0.539

0.540

0.214

0.188

0.450

0.505

0.516

0.532

0.535

0.535

0.513

0.513

0.538

0.536

0.538

0.539

0.540

0.426

0.547

0.449

0.556

NO.

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Specimenno.

BF1/CC P 5

B F 2/CC P 6

AN 1

AN 3

AN 4

AA 69

AB 3

AB 4

AP 1

AH 1

AH 2

AG 1

AG 2

AG 3

AI 1

AI 2

AB 5

AB 6

AI 6

AI 7

AE 5

AC 1-6/AD 1-6

BD 3

BD 5

AK 4

Specimentype

CN 26/51

CN 26/51

CT 20/40

CT 20/40

CT 20/40

SENB 6/6

CT 2 5/50

CT 25/50

CT50/100

CT 25/50

CT 25/50

CT 25/50

CT 25/50

CT 25/50

CT 25/50

CT 25/50

CT 25/50

CT 25/50

CT 15/30

CT 15/30

CT 25/50

CT 25/50

CT 25/50

CT 25/50

CT12.5/40

S i d e -groove[*]

20

20

20

20

20

0

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

FfkN]

84.7

107.6

12.5

12.5

10.0

0.88

11.5

18.5

26.7

11.1

19.1

10.5

17.9

16.1

16.0

10.8

10.8

26.7

10.9

14.1

20.0

20.0

a/W

0.509

0.504

0.548

0.563

0.550

0.528

0.566

0.555

0.535

0.628

0.545

0.557

0.561

0.536

0.536

0.515

0.506

0.491

0.550

0.564

0.470

0.375

Table 7: Data of fracture mechanics specimens; 21 CrMoNiV 5 7

T = 550 °C; constant force

- 102

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 115/200

LaborayIMPIMP

RWTUV

RWT UV

1  ATOM1  ATOM

KFA

KFAUNIREC

UNIRECUNIREC

F HIWMF HIWM

ENELENEL

P e l t e n

Petten

No1

234

56

78g

1011

1213141516

17

Spec imen NeA76

A77A89

A90

A69A70A64

A66

A93A94A95

A13A 6 0 4A91

A92A72

A73

S p e c im e n t y p eCT 25/50CT 25/50CT 20/40CT 25/50

CT 12.5 /25CT 12.5/25

CT 25/50CT 25/50

CT 20/40CT 20/40CT 20/40

CT 25/80CT 25/50CT 25/50CT 25/50

CN  4.8/12

CN  4.8/12

Side qroove %

202 02 02 0

2 02 020

2020

2 02 0

2 0

2 02 02 0

F rkNl11.56.364.3

7

1.71.6

65.5

9

45.214 .38

a /W0.60.60.6

0.60.60.5

0.5

Ki [MPaVml11.5

1515 .62 0 . 2

10 .89.7

12 .3210 .88

1114

8

14.49.9

11 .169 .35

a i imm/hr l3.89E-07

6.67E-06

3.46E-05

7.61 E-05

2.05E-065.28E-07

3.58E-06

8.83E-06

5.83E-06

2.78E-05

8.33E-07

7.5E-06

4.86E-07

2.2E-06

4.05E-07

Table 8: Data of fracture mechanics specimens; Alloy 800 H;

T = 800°C; constant force

103

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 116/200

EE

toA

. J _A A

- 2 * J -S A

1000

^ c h a r p y s p e c i m e n s

L A

2000

D"X

I3000 mm

^ c h a r p y s p e c i m e n s

Fig. 1: Specinen layout for the tension tests

Rptt2

IM P Q]

700-

6 0 0 -

500

400-

300

2 1 C r M o N i V 5 7

25 °C

25°C

550°C

550°C

~i 1 1 r0

I I I I I  ~0.5 1

d i s t a n c e f ro m c e n t r e x /R

Fig. 2: 0.2% proof stress RPo.2 and ultimate tensilestrength Rn for different radial and axial positions(see Fig. 1, from [3])

104

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 117/200

« 150

D

- 3

T=20"C

2 U r M o N i V 5 7

O   O

D  AA. tang / rad

O  DA, t an g /rad

' 0,9 0,8 0,7 0,6 0,5 0,4 0.3 0,2 0,1

Distance fram cen ter x/R

Fig. 3: Charpy energy variation with radius , from [2]

» I S O

50

O OD

  aa  a

a_ o

ego

CDtb

8o

. 4G

- 1 6 0   -120 -8 0 -tO

21CrMoNiV57

D AA, x/R= 0 55, ta n g/ra d, FATT=2S°C

O DA. x/R= 0.55. ton g/rad, FATT=25°C

*0 60 120 160 Temp era ti«¡n »C

Fig. 4: Charpy energy versus temperature, R/2 - position,from [2]

105 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 118/200

•E  150  -

100  - '

50 -•

OO o

D ü

ooDB

O DD

-160 -120 -80 -40 to 80

21CrMoN¡V57

D AA,x/R=0.rang/rod,FATT= 55 "C

O DA.x/R=0, tang / rad, FATT= 35 'C

120 160 Temperature  ¡n  C

Fig. 5.:Charpy energy versus temperature, centre position,from [2]

21CrMoNiV57

Av  in J

20°C 80°CAA, ra n / ro dDA. " "

Fig. 6: Impact energy over cross section [2]

- 106 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 119/200

: -. fjft.̂ tv,jv..:.- _\ i  9 8 2 3 

CJS^-TTT^ i f p i - / - w p i  » nn**i  *  -«(»>  ^  «• »**»■ 

■^ ̂ ^¿¿¿^afc^'i, ̂ ^  '::A  »J?*  9827 

y OP*-« *v. 

0.1 mm 

k«..« 9831 

Fig.  7: Microstructure  of  1%  CrMoV  steel,  longitudinal sections 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 120/200

Creep stra in %7

6

5

U

3

2

1

0

216MPaf-550°C AA/ /

/ -0A,-

-

.4?^

/ // '  /' ' /

•' '' // ' ' /

''''/

.si''Cs^   9 *?°  ,3P°^¿¿¿^

,

AA BA

RA

2600 mm

DA

T   I IAK

•I  BCG

500 1000 1500Time - hours

Fig. 8: The effect of axial position on the creep propertiesof 1% CrMoV at 550"C, from [6]

e [%]

100O 2000 3000 4000 50Ò0t [h]

Fig. 9: Creep properties at 550'C, ( : Region BA [6], :Region AK [26]; for axial position see Fig. 1)

108

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 121/200

500

200

100

20

A sec t i on A A 1

• s e c t i o n B A   >  H o l dsw of t h ( 1 9 8 6 ) [ G ]f  s e c t i on O A J

O sec t i on A K . G r a n a ch e r . Tsch e usch n e r 1 13 88 } 1 2 6 1

10

o  -& I

_   W

« 20

010 102  W3  10' Ws

Time to Rupture [h )

Fig.  10: The creep rupture properties of 1% CrMoV steel at550'C

21 CrMoNiVS7, 550°C

100  200

a  [ M P Q ]

F i g . 1 1 : T he e f f e c t o f s t r e s s o n m inim um c r e e p r a t e a t550*C

- 109

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 122/200

Erran [ h"1

10

10 5

10

10"

-6 _

21CrMoN¡57. 550°C

è m n =7,06-10- 9e W 3 6 9 d

_L j L100 150 200 250 tf[M Pa]

F i g . 1 2 : S t r e s s d e p e n d e n c e on t h e m inim um c r e e p r a t e

' 0 100 200 300  dWPa]

F i g . 1 3 : D e t e r m i n a t i o n o f t h e p a r a m e t e r c o, c r e e p la w ( 3 )

110

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 123/200

log R

-1,5

- 2

21 CrMoNiV57, 550 °C

R=0,00308-cr0-5183

80  100 150 200 250 300  d [MPa]

2,1T

1,9 2,1 2,3 2,5  log  d

Fig. 14: Determination of the parameter  R creep law (3)

YfXVW/  <J

Fig. 15: Microstructure of Alloy 800 H

- 111

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 124/200

l ø - 3 

10

10

10 -

10 

10 

• 

i a^d^ 

s ^Q 

L^ 

V ***

  £» in   _ 

xx S

-  1 5 . 2 4  +  6 ,4  Log v  [h ~  ,  i 

10  □ [ M p a ] 

Fig. 16a: Ţhe stress dependence of êmin (full symbols) and of e at 1% plastic strain  (open symbols); round bar results (19.5 mm   ø ) , see Table 6, from [31] 

[ M p a ] 

Fig.  16b:  Relationship  between  the  life  time  tt  and  the applied stress o- from [31] 

112 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 125/200

55 

1 4 -

27 

14 

.27 

.27 ■  , 

27. 

2i  

G  

.27. 

2 7i 

2: 

,27  

L  

,27 

27, 

27  

-

.5 3 

,  53  22  5 5 

A  t 

\  A  

?   S 

■800  

m m

Schn i t t  A-A  

io  i 

mm m m

27  A   I  B   27  A T E  

Fig. 17: Typical layout for 1% CrMoV specimens; CT 25/50 specimens, ABl, AB3 - AB6 and CT 12.4/40 specimens AB2A and AB2B and CT 25/50 specimens AE1 - AE6. 

113 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 126/200

108 

500  

471  ţ  1 

A  61 

o |o 

A6 2 

o|o 

475  [  1  T   1 

A6 3 

o |o 

A64 

o |o 

« • [ — 1 — 1 

AGS  A66 

o |o  o |o 

A67 

o |o 

A70 

o|o A69 

o|o AGS o | o 

O'  o o jo  o jo  o  o 

O O  

o |o  o |o   o j o 

o jo  

o jo 

o jo 

o|o 

AB7  

o|o  A8G  

o lo 

A89  

o|o ABS 

o|o  

A  90  

o|o A91  

o|o A92  

o|o A93 

o|o  A9 Í 

o |o A95  

o |o 

F i g .  1 8 :  A l l o y  800  H  c u t - u p   p l a n 

2.0 

15 

1.0  -

0.5 

-ffrlV-f).  Ref.  (35) 

^ ( 2 + 0 . 5 2 b / W ) ,   Ref.(3M  

FE-Results:  

Reference 

plane stress 

plane  strain Specimen 

(Í2) 

CN 

A  

CT 

(38-41) O  

CN  

□  +  CT 

2n -1  

Fig. 19: Values of uc, a comparison  of different approaches; CT: a/W »  0.54, CN: a/W »  0.43, 7  and ß are functions of a/W,  from  [37] 

- 114 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 127/200

^ J

21CrMoNiV57,  550 °C

CN  12.5/50, AQ1

-Rt

E c r=e 0 {1 -e -R ,

}  +

 emin-t,  Eq.(3)é m i n  = 1 . 3 -10 " 2 O a 6 5 [h - , ] l  d i n MPa

plane stress

-i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r

0 .00 1 .00 2 .00 3 .00 4 .00 5 .00 6 .00 7 . 00 8 .0 0 9 .00 10 .00 11 .00

i .  sec CE+06)Fig. 20: Experimental and numerical values of C* for CN

12.5/50 specimen AQ1, from [3]

Fig. 21: Experimental and numerical evaluation of C* for CT12.5/40 specimen AB2B, with and without crackgrowth, creep law (1), from [3]

115

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 128/200

Fig. 22: Experimental  and numerical values of crack growth, crack  growth  law:  â  =  7.41  • IO-3  • C* °'72  (a  in mm/s,  C* in N/(urn-s)), from  [3] 

• . in   -

T « S 

s  -  : E 

m  ■G) 

m  ■  

10  KS 

in   -

: D 0 

D  

D  

U  D  D  

DO  

l/ir 

D o # 

-  i? i  \ 1  : 

V  

X * 

ín RB  

«  å 

Wf i f l 

ko* J  . . 1  + 

I  4 

* •u e dk * 

»fei ¡s fB  

£  4 

B  

B V  B  

'B 

T u  k„  H 

' ♦ 

M  

5  G  

5  0 Z  

»  B 

H  1 

' l 1 

O  1 

I K 

[ K  

1  1 9 

K IMPaÆ] 

Fig. 23:  Crack growth rate å in 1% CrMoV steel at 550*C as a function of stress intensity  factor K -participants'  evaluation 

116 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 129/200

C IkJ/fmelili 

5  -A   ¡ J 0 

C   [ N / i n m / scc l  

Fig. 24  Crack growth rate å in 1% CrMoV steel at 550'C as a function of C* integral - participants' evaluation 

D  UÜ3.B[HBD3.,BWI.BW2IBW3.AII3.AH4.A03.AB5.AB6.BCI,BC2.AN6.AEI.AE2 

a  AN41AF2,AB3.AB4.AHl.AH2.AGI.AG2,AG3,All,Al2.AE5.ACI-6   (CT  25/50) 

■  ANI,AN3.AN4,AO3(CT20/40)  

*  AB2A.AB2B.AK4 (CT  I2JM0) 

■  APl.AP2j\PJ(CTSttlOO)  

X  BE3I.BE32(CTIO20) 

.  BBI1CT63J/I37) 

A  A16, AP (CT 13/30) 

■  RR7 (CT  1 3/2È) 

a  CCP3.CCPÍICN257S» 

g   R U (SENB  I2J/50) 

K  IMPaVm) 

Fig. 25: Crack growth rate à in 1% CrMoV steel at 550'C as a function of K, unified  evaluations 

117 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 130/200

Q   *qoMH  COILHDI  *  ■■tlCTOi'1»)  

+  A * J A » U | C T IU - ^ 

C*   (J/m 2hr ) 

Fig. 26: Crack growth rate â in 1 CrMoV at 550'C as a function of C*,  unified  evaluations 

1  10  1000 

RI  to y  6BBH  ,  T-B00*C 

a Ml ■ Ul O 

A   M 9,  »  M . □  U4 , 0  U ) , 

,  U l ; CT  H /W  ; CT  M/40 

, ui-,  cr  H/sa , Ul ; CD  4 . 8 ƒ I I; CT  » / S Ol; CT IS/SO,  «0 ;  CT II. S/ISAI.  U/ l . U/2; VM/*, M S , M t ;  CT  H/SO, A M . U S ;  CT  n / 4 0

°  M

.fo a

»•«H '

î r ^^ «

Fig. 27: Crack growth rate å in Alloy  800 H at  800*C  as afunction of C* integral - participants' evaluation

118

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 131/200

10 ' 

IO ' 

I O 4 ' 

■   A T M 7 7 . A » 0 J W I . A W > 6 4 , A 6 6 . A « M Í C T Í Í ' » ) 

♦  A».A»3.AW.A«(CT2(Wtl) 

M   AW.A70 (CT  UJ /2 5 ) 

M   A IUCTH /W ) 

10°  101  

K  ( M P A VW ) 

1 0 * 

Fig. 28: Crack growth rate à in Alloy  800  H  at  800 C  as  a function of stress  intensity  factor K,  participants' analysis. 

Æ  

È  E 

iu   ■ 

I O '  : 

i o 0 -

l o -

i o : -

l O ' -

i o J -

♦ 

A76.  A77,A64.A66.A90.A<)1,A9 

Afc9.A93.A94.A95 (C T 20/40) 

Af.<>.A70(CT   12.5/25) 

A 7 2 .A 7 3 (C I * H I / | 2 ) 

A13(CT2S/>0) 

'A? 

A' /i 

DO   t 

, A 6 W | C T : 5 - S 0 )  

tp u 

D  

♦  -  / 

oo -o   o  o  / ♦ 

få /9 

i ¥/t 

á = 0003¿ - C * 0 - 7 3 3 

.  r mu l i a  [ — J 

c* M M  L  ImmsJ 

■i  t—   i IO 2  IO 3  IO4 

C*   (J/m7hr) 

Fig. 29: Dependence of creep crack  growth  rate  on  experimental C* for Alloy  800 H at 800'C  (unified evaluation) 

- 119 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 132/200

SL 

å = 0.0034 C 

0.733 

Incoloy  800H , T «  800 t ; 

Specimen  (LT) 

PTC 

• 

125/50 

CN  

12.5 /50 

CT 

2 5 / 5 0 

CT 

• ■ 

25/BO 

CT 

D  

12  5 « 0 

Looding 

F   =  const V  =  const ï  =  cons t 

B /W  

207*  side grooves 

2  3  4  3 

C*  ,  N/mm / s e c 

Fig.  30: Creep crack growth rate å as  a  function  of  C*  for Incoloy  800  H  (Z=  constant  rate  of  cross  head displacement). From [38]. 

o  CT63J/I37 

a  CT5CH00  

+  CT25I50 

a  CT2IV40 

■  cr   IISMO 

m  CT 13/36 

4  CT 13/30 

D  (Titrai 

v. /y 

'S êi: 

>mP 

*? — E q ( 1 1 ) 

C«  ( J /m ' h r ) 

Fig.  31: Effect of specimen size on crack growth  rate  in 1% CrMoV steel at 550 C for compact tension (CT) specimens 

120 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 133/200

v Imml 

0.6  -

ûa 

[mm] 

0.4 

0 2 

21CrMoNiV57,  T = 55 0  C  CT 50/100,  20V. SG  F = 32.1 k N ,  ao /W = 054 

-  2 

Fig. 32: Crack opening displacement at the load line and final values of creep crack growth as a function  of  time; CT 50/100 specimens 

PROBE RP3 

. 262 

. 2 G  

. 2 5 8 

. 2 5 G  

J  254 

«  . 2 5 2 

0

\  25 u E  . 2 4 8 

a. 2 4 4  -

. 2 4 2 

. 2 4 

CT50/100-AP3.  20V. SG 

- j  1  1  1  1  1  1  1  1  1  1  1  i  i  i  i  ■  »  ■  ■ 

2 0 0  400  G  0 0  B 0 0  1000 

time [h] 

Fig. 33:  Normalized  potential difference as a function of time; specimen AP3, see Fig. 32 

121 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 134/200

Fig. 34: Microstructure in the crack tip area of CT 50/100specimen AP2

i — i — i — i — i — i — i — i — i — i   i '   r

Fig. 35: Crack opening displacement at the load line and final

creep crack growth values as a function of time; CT25/50 specimens

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 135/200

*V- r- X 

.■Í »   T 

Spark  eroded  crack l i  

,A 

T ^ ^ W ^ 

l

^ « reep crack H  *ţ-f  > ;£,/,  ^ ^ V : ? & 3 eroded  cracks ,-*  ̂ _.\  \  V  -w^^kjtr*'~  3 0 5 * « ^ ,  X 

Fig.  36: Creep crack  initiation  in the middle  of the  crack front,  524 h after  loading,  from  [49] 

^¡fesífí Fa t i g u e  c r a ck   Creep  c r a ck  T 2 - ^ í ^ V ^ U l l r l i . wr-- - ^ T aw ' S uK r t ß SB  v ■?>■ < V  ^ 

Fig.  37: Creep crack  initiation  in the middle  of the  crack front, 209 h after  loading,  from  [49] 

123 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 136/200

Fig. 38: Development of damage in creep process zone atcrack tip

t'  (J/m'hr)

Fig. 39: P rediction of transient crack growth at 550'C in1% CrMoV steel for some compact tension specimens

124

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 137/200

o  CT6Î-VH7 

(  CT   » 1 0 0 

♦  CTJS50  / 

a  CT  20140  , . » *  

B  CT 12 J/40 

■  CT1VI6 

aï: / ? 

¿¿F-A  CT  15/30 

a  CTiaao  

♦ v *   : * * * //;:vy 

Eq.111) 

C*   ( J / m *h r l 

Fig. 40: Effect  of specimen size on creep crack growth rate in CT specimens with  'tails'  omitted 

E  I O 2 

CT 

CN 

S E N T 

S END  

A *  ♦  • 

* # * 

?r.y 

C»  M/m>hr ) 

Fig. 41: Effect of specinen geometry on creep crack growth rate in 1% CrMoV  steel at 550'C with  'tails' omitted 

125 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 138/200

EGF 550°C

EGF550*C

JSPS S38°C

— — JSPS S38-C

ASTM538°C

—  —  ASTMS38«C

C» (J /m 2 h r )

~  I""1-

 

•S  10"21

EGF 550*0

EGFS50"C

JSPS 594-C

JSPS 594»C

ASTM594°C

ASTM 5940C

10'  10° 10

C* (J/m2hr)

Fig. 42: Comparison between EGF data at 550*C with ASTM [27]

and JSPS [28] results at

a) 538'C and b) 594*C

126

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 139/200

1.0E-

1 .0E-

06-

07-

08-

21 Cr Mo Ni V 57

T = 550 °C

x  Ä

X

X

XX  .

o s*°

X  jS  Q

jf  X

x  X  x / \

;  jy^ a  N à i =  6t4-10"13-K*'

*X  *  Ref 1 3]

x  /  x/ *x/ ° X/  D

XX

X

X

• CN 26/51

x CT 25/50 ; CT 20/50 ; CT 20/40

• CN 12.5/50

n CT 12.5/40 : CT 13/26 ; CT 15/30» SENB 6/6 ; SENB 9.5/19

a CT 50/100  : CT 63.S/127

o SENT 12/20

30

K¡  [MPa*fm  ]

40 60 70 80

Fig. 43: Initial crack growth rate vs. initial stressintensity factor

127 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 140/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 141/200

HIGH TEMPERATURE CRACK GROWTHIN STEAM TURBINE MATERIALS

Part III

High Temperature Fatigue Crack Growth

S.R. Holdsworth

GEC - Alsthom Turbine Generators Ltd, Rugby, UK

129 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 142/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 143/200

INTRODUCTION

High temperature fatigue crack growth (HTFCG) data may be used in the power plantindustry to assist in the specification of acceptable defect sizes, in remaininglife assessment and in failure diagnosis. It is also used as an aid to materialselection. Fracture mechanics parameters have been used to model crack

propagation at elevated temperatures for over 20 years. However, for much of thisperiod, a major difficulty has been the inherent size and geometry dependence ofthe available crack growth correlating parameters when creep processes havedominated the fracture process. In practical terms, this has meant that it hasnot always been possible to accurately assess defect tolerance in large powerplant components on the basis of results from relatively small laboratorytestpieces. The main aim of the COST 505 High Temperature Crack Growth WorkingGroup (Table 1) was therefore to pool the resources of a number of Europeanindustrial organisations and academic institutions in a joint consideration of theproblem. The following Review examines the results of the Group investigationsrelating to High Temperature Fatigue Crack Growth in Steam Turbine Materials[ 1 - 7 ] ,  with reference to other published findings.

The term high temperature fatigue crack growth covers a range of crackingmechanisms resulting from a wide spectrum of loading cycle types. Stress-straincycles may be linear elastic or elastic-plastic and have been applied in load orstrain control. HTFCG may be due to one or a combination of pure cyclic, primarystress creep or secondary stress creep loading, and is dependent on such factorsas material properties, temperature, strain rate, cycle type and hold time. Theservice cycles experienced by high temperature steam turbine components such asrotors, valve chests and inner casings are complex and comprise a variety ofloading transients conceivably spanning the entire range of behaviour.

In laboratory tests mounted to generate HTFCG data for the above components, it isoften convenient to adopt an idealised isothermal cycle which closely models themost damaging service loading transient at the specific location being assessed.

For example, the operational cycle experienced by a rotor is composed of acombination of rotational and thermal transients  ( F i g . l ) .   The particularcombination varies with position in the rotor, and may be dominated by either theprimary stress or secondary stress cycle. Hence load control cycle tests may beadopted to model the rotational stress cycle at the rotor bore, whereas straincontrol cycle tests may be selected to model the thermal stress transient at a rimposition. A similar situation exists for valve chests, inner casings and mainsteam pipework, which experience operational cycles comprising superimposedpressure and thermal transients. Thermal stress variations tend to provide themost likely driving force for cracking at critical locations in valve chests andcasings whereas pressure stress cycles are likely to be more influential in thecase of pipework. The load and strain control cycles selected by the COST 505HTFCG investigators are typical of idealised isothermal cycles adopted to model

service loading transients in such components  ( F i g . 2 ) .

FATIGUE CRACK GROWTH REGIMES

Fatigue crack growth behaviour is conveniently considered in terms of threeregimes (Fig.3) [8]. These are a lowAK regime close to the fatigue crackthreshold,  A , K ° .  a mid AK regime in which propagation rates are modelled by a powerlaw [9]  ( E q n . l ) ,   and a high AK regime in which K M » approaches K c

At low AK levels close to A K ° ,  the magnitude of da/dN is very sensitive to smallincreases in AK and dependent on the same factors which influence ̂ Ko. These are

- 131 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 144/200

material microstructure and yield strength, temperature, environment and R ratio(ie. mean stress).  Various expressions have been devised to model \Ko[eg. 10,11], although none are specific to low alloy creep resistant steels atelevated temperatures.

In the mid AK regime, crack growth rates are effectively modelled by an expressionof the form:

da/dN = C (AK)m  (1)

where C and m are constants dependent on material, temperature and environment,and m is typically in the range 2 to 4. Propagation rates in this regime are lesssensitive to microstructure and mean stress effects. There have been a number ofmodifications to the Paris Law which, for example, minimise its dependency onmaterial properties and temperature [10] or extend its range of applicability intothe low and high AK regimes  [12,13].

In the highAK regime, da/dN becomes increasingly sensitive to the level of AK,

and particularly to  K M J U C

 as critical Kc or plastic collapse is approached.Depending on the deformation and fracture characteristics of the material, crackgrowth rates can be strongly influenced by size and geometry. In thesecircumstances, AK is not the most effective correlating parameter, and alternativecyclic load functions have to be employed to minimise any dependence on size andgeometry (see below).  In addition to the factors already listed, da/dN in thisregime is strongly dependent on microstructure, temperature, environment andfrequency (ie. strain rate).  Tearing fatigue [14] does not fall within the scopeof this Review.

In the following text, the term low strain fatigue (LSF) is used to refer to theload/strain transients resulting in linear elastic loading cycles and crack growthin the low and mid AK regimes  (Fig.3).  Load/strain transients responsible forcyclic plastic loading involving some degree of general yield in tension and/orcompression are referred to as high strain fatigue (HSF) cycles.

HSF crack growth rates are due to higher AKs and may be influenced by theload/displacement control mode, particularly when there is superimposed creeploading. Since HSF cycles can involve yield in compression but not tension, thereare circumstances when the effective AK responsible for crack opening may belinear elastic. Consequently, it is not possible to rigidly fix the lower boundof the HSF crack growth rate regime in Fig.3, and caution with the terminologyused in this area is necessary.

HTFCG CORRELATION PARAMETERS

Low strain fatigue crack growth rates expressed as a function of AK areindependent of size and geometry for a wide spectrum of engineering materials attemperatures below the creep range. This means that crack growth rates determinedusing laboratory specimens may be reliably applied to large components. AK isalso an effective correlating parameter in the LSF regime at elevated temperatureswhen frequencies are relatively high (ie. f>lHz).  Cyclic stress intensity factoris a function of cyclic stress, A0\ and crack size, 'a' (Eqn.2), and K solutionsare now available for a wide range of laboratory testpiece and componentgeometries [15].

AK = Y A < ra°- s  (2)

132

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 145/200

where Y is a  compliance/geometry function.

It is  sometimes convenient to  consider the  mechanics of  fatigue crack growth interms of  cyclic CTOD   [ 1 6 , 1 7 ] .   For  example, da/dN =  ¿CTOD/2 is  regarded as auseful upper bound fatigue crack growth law for  non-work hardening materials  [17].

The crack tip  opening displacement is  generally taken to be [ 18]:CTOD = 0.44 K 2  (3a)

E OV

Assuming that local crack tip  flow stresses are  increased by  hardening to 2ÖV, anestimate of  maximum cyclic CTOD is  given by:

¿CTOD = 0.22   ( A K T Q T ) 3  (3b)(1 - R) E CÑ-

where R =  K M I N / K M A X .

In practice, fatigue crack growth is the  result of  cyclic crack tip  opening anddoes not  occur when the  crack is  closed [19]. Eqn.3b is a reasonableapproximation of the  situation when the R  ratio is  positive (ie.  when   K M I N andK M A X  are  both due to  tensile loading) and  when there is no  premature crackclosure, for  example due to  crack face oxidation. However, this is notnecessarily the  case when the  crack tip is  loaded in  compression for  part of thecycle (ie.  when R is  negative).  It is  then more appropriate to  think in  terms ofcrack propagation being due to the effective A K  responsible for  crack opening, ie.

ACTOD = 0.22   Í A K g . ^ ) *   (3c)

E ÖV

To derive A K E F F  it is  necessary to  know the  crack opening load ratio, ie.

qo =  (PMAJC  -   P O )/( P M A X   -   P M I N)  (4a)

where P o is the crack opening load determined experimentally from P-Vc  hysteresisloops (Fig.4)  [ 4 , 2 0 ] .   This approach is not a  simple matter in  practicalsituations, but  there are now a number of  empirical formulations to  estimate qo[ 2 1 , 2 2 ] ,  eg.

qo = (1 - R/2)/(l - R) (4b)

AKeff is  then simply defined by  Eqn.5, and the  well documented K  solutions for awide range of  laboratory testpiece and  component geometries are  still applicable[ e g . 1 5 ] .

AKarr = qo AKTOT   (  5 )

As the  magnitude of A K  increases, the  crack tip  plastic zone increases to a sizewhich is no  longer small relative to  other significant dimensions. Fatigue crackgrowth rates expressed in  terms of  A K= r r  a r e  no  longer size and  geometryindependent when general yield occurs in  tension, and  alternative parameters arerequired to  describe HSF  crack growth rates.

Cyclic J  integral has  been shown to be  independent of  size and  geometry in  bothlow and  high strain fatigue regimes [23], and  there are now  3 solutions availablefor a  large number of  standard geometries   [ 2 3 , 2 4 ] .   For  example, for a  simple

133

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 146/200

power law hardening m ater ial ( i e . Afe = H (¿O)*1):

kJ   = H gi( a/W ,p ) (AOS**-)'*1*1» a (6)

where gi(a/w,/0  is a  function representing the  crack tip  path independent lineintegral

 for the geometry

 of interest.

  The physical basis

 for using& 3

 tocorrelate fatigue crack growth rates is  considered in  some detail elsewhere [17],

It is  more usual to  correlate HSF  crack growth rates in  terms of AK=o since itthen becomes possible to  adopt a  single parameter throughout the  whole range of AK( F i g . 3 ) .   Equivalent AK is simply AK=pr corrected for  plasticity, and thecorrection may be  applied either via a ¿J or an  equivalent energy calculation[ 2 0 , 2 5 ] .

AK*o = A K ^ r  Tl  « AfeP E   1   (7)l   «•   A f e p  E   1

where Afep is  cyclic plastic strain.  HSF  crack growth rates expressed in  terms ofA K E O

  are  independent of  size and  geometry [26],At low  load/strain cycling rates and/or with  the  introduction of  hold times, creepprocesses can  influence the  rate of  crack propagation at  high temperatures. Crackextension due to  creep is not  effectively correlated in  terms of \K (or  \K=o)because of  crack tip  stress relaxation effects.  In  these circumstances, creepcrack growth rates are  described using the C*  energy rate line integral which  hasbeen shown to  characterise stress and  strain rates in the  vicinity of a  crack tipsubject to  steady state creep conditions [27],  The  practical application of  thisparameter is  still relatively limited. Nevertheless,  C*  solutions are  becomingavailable for an  increasing number of  specimen and  component geometries   [ 2 7 - 2 9 ] .For example, for a  material obeying the  secondary creep rate law  de/dt =  C'o"":

C* =C'gi(a/W,n) (5»«x'"*

l

>  a (8)where gi(a/W,n) is a  function representing the  crack tip  line integral for thegeometry of  interest [24] , Creep crack growth rates for the  COST 505  lCrMoV rotortype steel are  independent of  specimen thickness and  geometry when expressed interms of C*  [29].

LOW STRAIN FATIGUE

LSF without Creep

The term low  strain fatigue was  introduced above to  refer to the  load/straintransients resulting in  linear elastic AK*rr  and  crack growth in the low to  mid A Kregimes  ( F i g . 3 ) .   LSF  crack growth rates due to  cyclic stresses applied in  eitherload or  strain control are  usually consistent in the  absence of  creep.

Threshold A K o levels increase with increasing temperature (particularly at low  R),and the  trend is  illustrated for  lCrMoV rotor steels in  Fig.5   [ 1 , 1 6 ] .   Since at550°C the  higher frequency 10Hz/air AKo values are  similar to  those determined  ata much lower frequency in  vacuum, the  increase in  threshold is at  least partly dueto the  reductions in  elastic modulus  and  yield strength incurred at the  highertemperature. This trend is  anticipated by  reference to  Eqn.3c (ie. ACTODo  isinversely proportional to E and  Ö V ) .   In  air, AKo  increases further withdecreasing frequency as a  direct consequence of  premature crack closure due tocrack face oxidation [16] .

- 134

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 147/200

LSF crack growth rates increase with increasing temperature. In vacuum, crackpropagation rates are inversely proportional to elastic modulus and yield strength( i e .  da/dN o«. ACTOD  I * ( A K ) 2 / E O Y )  both E and OV decreasing with increasingtemperature. Modulus normalised crack propagation laws have been proposed toaccount for the effect of temperature [10], but their application should really belimited to the consideration of internal defects or to materials which do not

oxidise in the environment of interest.

With increasing temperature and decreasing frequency in air, oxidation becomesincreasingly influential in controlling fatigue crack growth rates  [16,30,31].Even at relatively high frequencies, LSF crack propagation rates are generally notaccurately predicted on the basis of room temperature behaviour and a modulusnormalised growth law. Crack propagation rates are notably accelerated by oxideassisted growth at low AK levels in excess of AKo, and the effect is enhanced withdecreasing frequency  ( F i g . 6 ) .

High frequency LSF crack growth rates for lCrMoV rotor steel at 530/550°C (f>lHz)are shown in Fig.7  [ 1 , 3 , 5 ] .   This data was collected as part of the COST 505 HTFCGprogramme, and the chemical compositions and mechanical properties of all the

steels forming part of this collaborative activity are summarised in Table 2.

The use of high frequency high temperature LSF crack growth data for steam turbineapplications is limited since defects are generally not tolerated in componentssubject to this type of loading, eg. blading. Those parts in which certaindefects may be acceptable tend to operate at cyclic frequencies much lower than1Hz and in these circumstances, oxidation and creep become increasingly importantconsiderations. The bores of rotors and main steam pipe welaments are examples ofhigh temperature component locations for which low frequency LSF crack growth datadetermined in load control may be applicable   ( F i g . l ) .

LSF-Creep

As frequencies are reduced by either lowering the cyclic load/strain rate and/orby extending hold time durations, crack face oxidation and creep strainaccumulation at the crack tip increasingly influence LSF crack propagation rates.In addition, as time dependent processes become more influential, the cyclecontrol mode also becomes important. For example, the load is sustained duringthe hold time in a load controlled cycle whereas it relaxes when the cycle iscontrolled within strain limits  ( F i g . 2 ) .   Consequently, lower frequency LSF crackgrowth rates are usually faster when the cycle is applied in load control. Theeffect is not great at low AK but becomes pronounced in the HSF regime (seeF i g . 2 1 ) .

Providing that the magnitude of the peak tensile stress is sufficiently low toavoid general yield in tension or creep deformation, high temperature fatigue

crack growth rates may still be described in terms of  A K = » - F ,  using a power law ofthe type given by Eqn.l, but with C being very dependent on frequency. It is alsonoticeable that the m exponent tends towards 2 with increasing temperature. Thevalidity limit to using linear elastic fracture mechanics is provided by acritical &CTOD, above which creep deformation causes cracking [30].

At very low AK, crack face oxidation is primarily responsible for retardingfatigue crack growth rates due to crack closure, as seen by the effect on AKo inFigs.5 and 6 [16]. There is a marked beneficial effect of reducing frequency onthe apparent AKo for lCrMoV rotor steel at 550°C in air.

135

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 148/200

At somewhat higher &K, the  combined effects of  enhanced oxide growth and  creep oncrack extension more than outweigh the  influence of  crack closure   ( F i g . 6 ) .Initially, strain assisted oxidation is the  primary driving force for the  observedincreases in  crack growth rate but  with increasing & K  (ie. &K>20MPa/l for  lCrMoVat  5 5 0 ° C ) ,  the  relative effect of  environment diminishes and  creep increasinglybecomes the  controlling factor  [ 7 , 3 1 ] .

Hence for ûK> & Ko, the  main influence of  reducing frequency at  elevatedtemperatures is to  increase LSF  crack growth rates.   The  effect is  shown forlCrMoV rotor steel (Fig.Ba) [5], 2.25CrMo pipe steel (Fig.8b) [6], 2.25CrMoweldment microstructures (Fig.8c) [7] and two turbine casting steels, ie.  lCrMoV(GS-17CrMoV 5 11)  (Fig.8d) [2] and 12CrMoV (G-X22CrMoV  12 1)  (Fig.8e) [2] . Thedata in  Fig.8a also indicate the  tendency for Kc to  reduce with decreasingfrequency.

The effect of  frequency on LSF  crack growth rates for the  COST 505  lCrMoV rotorsteel cycled in  load control  at  530/550°C is  conveniently summarised for&K=35MPa/JT in  Fig.9.  For  f>lHz, da/dNxoxxi. is  fatigue dominated and  frequencyindependent (ie. da/dNror* . =  da/dNcvcuc).  Static load creep crack growth ratesare also plotted in  Fig.9 and it is  clear that da/dN is  creep dominated forf<10_ 3Hz (ie. da/dNroTAi. =  da/DNcRKp).

The point is  also demonstrated in  Fig.10 [5] , in  which low  frequency LSF  crackgrowth rates per  unit time (ie. da/dt =  da/dN x  dN/dt) are  consistent with staticload creep crack growth rates for  CT10/20 and  CTas/so specimens. Crack growthrates are  plotted here in  terms of C*  determined by  substituting   P M A X   into   O N * T  inEqn.8, in  addition to  using the  appropriate value for  gi(a/w,n) [24].   A  similarconclusion has  been drawn with load control test data for a  O.SCrMoV pipe steel[ 3 2 ] .

At intermediate frequencies (ie. 10*3<f<lHz,  F i g . 9 ) ,  fatigue crack growth ratescomprise cyclic and  creep components, ie.

da/dN-roTAi, = da/dNc-rct-ic + d a / d N c n u * (9)

In these circumstances, cyclic crack growth rates are  influenced by  oxidation andcrack tip  creep processes.  For  example, da/dNcvctic may be  accelerated by thepresence of  creep damage established at the  crack tip  during prior dwell periods(Fig.11), and the C and m  terms in  Eqn.l become functions of  frequency, hold timeand creep ductility, ie.

da/dNcvcL.ic = C(f,th,6 .) (AK«j)-"- ,: h-*' ,> (10)

where en is  uniaxial creep rupture ductility.

For a  given AKio, da/dNcv«.ic typically increases to a  plateau level withincreasing hold time (Fig.12) [33,34,35].  The  behaviour is  associated with  anincrease in the  magnitude of  C(f,t»,&it) and  some reduction in  m(f,tt»,ei») due tothe development of a  creep damage zone at the  crack tip  during the  hold time(Fig.13).  For  hold times out to to  (ie. the  time at  which crack tip  creep damageis first  formed), any  changes to the  values of  C(f,th,6i») and  m(f,tn,fen) aremainly due to  oxidation.  The  damage intensity and  zone size increase withincreasing hold time to ti (ie. the  time at  which crack tip  creep damage achievesa critical condition resulting in the  onset of  creep crack growth due to  localductility exhaustion).  As a  generality, da/dNcvcnc is not  accelerated by  further

136

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 149/200

increases in hold time (ie. for tn>ti),  except perhaps in extremely creep brittlesteels [ 36]. Both the extent to which da/dNc-rcnc is accelerated and the holdtime dependence of C(f,t>»,eR) & m(f,tt»,en) are determined by  6R,  since creepductility influences ta, ti and the intensity and size of the damage zone. Forexample, ta, ti and the critical crack tip damage density for creep crackinitiation increase with increasing creep ductility.

Creep crack growth rates are conveniently expressed in the form of Eqn.lla [37],ie.

da/dtcREEP = b_ (C *) " (11a)6 R

and alternatively as

th

da/dNcREEP = f b(th,6R)  (C*)- dt (lib)b(th,6R) (C*)

where b and q are constants dependent on material and temperature, which may beinfluenced by prior cyclic damage. The exponent q is typically in the range 0.8to 1. The term b(t»,eR) is a function of tn and 6R, since creep crack growth doesnot occur until t> ti.

In the intermediate frequency regime of Fig.9, creep-fatigue crack growth ratesare the summation of Eqn.10 and Eqn.llb (ie. as given by Eqn.9).   The magnitudesof both crack growth rate components decrease with increasing  6R, and henceturbine steels with high creep ductilities are more resistant to high temperaturefatigue crack growth than those with low ductilities.

LSF with Prior Thermal Exposure

It has been shown above that creep crack growth may dominate the HTFCG processwhen cyclic primary loads are linear elastic, when loading rates are slow and/orwhen hold times (steady running periods) are long. One COST 505 projectinvestigated the situation for a lCrMoV (28CrMoNiV 4 9) rotor steel when periodsof creep crack growth (ie. 1,000 to 4,000h @ 530°C/Kx-30MPa/m) are followed by aperiod of low AK cyclic loading at 530°C [1] . In these circumstances, cycliccrack growth rates are initially retarded until the crack has extended beyond theinfluence of the prior creep damage  (Fig.14).

The crack tip damage in the creep pre-cracked CTis/so specimens was typicallydiscontinuous grain boundary microcracking (Fig.15) [1] . The condition is notdissimilar to that observed ahead of creep-fatigue cracks in lCrMoV [35] and other

turbine and power plant steels [20,33,34,36] (cf. Fig.11),  although in the latterexamples the damage is associated with an acceleration in cyclic cracking rate(ie. da/dNcvcLic).  It has already been noted that, with decreasing frequency,high temperature ÀKo levels increase due to oxide blocking and crack closure whileda/dNxoTAi. increases for somewhat higher & Ks when oxide assisted crack growthbecomes more influential [16,31]  (Fig.6).   The behaviour displayed in Fig.14 isconsistent with cyclic crack growth rates being retarded by crack closure atrelatively low initial levels of AK.

Prior ageing for up to 5,000 hours at 530°C (with no applied load) has noinfluence on high temperature LSF crack growth rates for lCrMoV type steels [1,2]

137

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 150/200

(Fig.L4).  Similarly, LSF crack growth rates for a 2.25CrMo pipe steel areapparently unaffected by 120,000 hours service at 565°C (Fig.16) [6] . It is notedthat reductions in creep ductility were not reported for either the lCrMoV rotorsteel after 5,000 hours at 530°C or the 2.25CrMo pipe steel after 120,000 hours at565°C. The possibility of a reduction in HTFCG resistance should not bediscounted in steels which suffer a deterioration in creep ductility due to

isothermal/service exposure.

HIGH STRAIN FATIGUE

In high temperature turbine components, HSF crack growth may occur due to cyclicprimary stress loading in regions of stress concentration, but is more likely tobe due to thermal loading. The thermal transients experienced at, for example,steam inlet locations in valve chests and inner casings include on-load periods atrelatively constant temperature when creep deformation is most likely to be due tosecondary stresses  ( F i g . l ) .   Consequently, with reference to steam turbineapplications, most effort has been directed to the measurement of HSF crack growthrates resulting from strain controlled cycles with hold times [4,20,22,26,33-36].

HSF-Creeo

It has already been noted that the thermal strain cycles experienced by realcomponents are invariably complex, and that engineering assessments usually assumeidealised cycle types. For example, at turbine start-up, through section thermalgradients can be responsible for the generation of large compressive strains inexcess of the cyclic yield strain (OA, Fig. 17). During steady running,temperature gradients are low and thermally induced strain levels are effectivelyzero. Nevertheless residual tensile stresses can be initially high due toreversed plasticity following compressive yield during start-up (B,  F i g . 1 7 ) .Creep strain accumulation occurs as these stresses relax while the turbine is onload (BC,  F i g . 1 7 ) .   On shut-down, components may cool down slowly or rapidlydepending on their location in the unit. Thermally induced strain transients are

minor on slow cooling (CO, Fig.17a), whereas more rapid cooling is responsible fora tensile peak strain (CDO, Fig.17b).  These two service cycle types are referredto as Type I and Type II respectively, and form the basis of the UKCEGB/Turbinemakers' HSF endurance database [38] .

HSF crack growth rates have been measured for a 2.25CrMo turbine casting steel at540°C using the two cycle types described above [ 4] . The approach adopted in thisCOST 505 study was novel in that large SENB-rs/ioo specimens with short pre-crackswere used to model the constraint existing in the wall section of a turbinecasting. Typical test records are shown in Fig.18, and these show how peak andeffective load ranges and the loads at the start and end of the dwell periodreduce with cycle number in this type of test. The result is that crack growthrates are initially relatively constant and then reduce to zero as the crack

length approaches -75mm (Fig.19) (ie. a/W-0.75).  The behaviour is qualitativelysimilar to that displayed by thermal fatigue cracks in service. This contrastswith crack growth rate records determined from fatigue tests conducted in loadcontrol which continuously increase with increasing crack length.

The effect of dwell period on HSF crack growth rates is shown in Fig.20. For aType I cycle, da/dNTorju. increases significantly with increasing hold time. Crackgrowth rates resulting from a cycle with t»=4h are 4 to 5 times faster than thosefor tn=0. In contrast, there is a relatively small influence of increasing holdtime for a Type II cycle (Fig.20).  The higher residual stress level at the startof the hold time of the Type I cycle is responsible for a greater degree of creep

- 138 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 151/200

strain accumulation at the crack tip. This can lead to creep crack growth duringthe dwell period for tn>t<=, although the evidence indicates that crack extensionby this mechanism was limited in the highly ductile cast 2.25CrMo steel, even fora Type I cycle with a 4 hour hold time. The observed differences in growth ratedue to cycle type and hold time were mainly related to the extent of the crack tipcreep damage zone and its effect on da/dNcvci.ic. In less creep ductile steels,

the da/dNcREEP component is more significant after 4 hour hold time durations[ 3 4 , 3 6 ] .   Furthermore, the effect on da/dNcycLic and the contribution ofda/dNcREEp becomes increasingly more notable in turbine steels at longer holdtimes (ie. 16<t»<200h)  [ 3 3 - 3 6 ] .

There is a marked effect of load/strain control mode on HSF crack growth rates in2.25CrMo at 540/550°C, particularly at low frequency  (Fig.21).  With decreasingfrequency, propagation rates due to a Type I cycle shape applied in strain controlare increasingly lower than the da/dNTOTAL. values resulting from the same cycleshape and KE O applied in load control. This is because the magnitude ofda/dNcREEP reduces during the hold time of a strain control cycle due to stressrelaxation and a reducing C*. In contrast, da/dNcREEP increases during the holdtime of a load control cycle.

HIGH TEMPERATURE FATIGUE CRACK GROWTH IN WELDMENT MICROSTRUCTURES

The HTFCG properties of a number of parent steels have been reviewed. However inpractice, parts such as steam pipework, valve chests and turbine casings arejoined by welded connections and it is therefore important to know the propertiesof weldment microstructures. The incidence of defects in weld metal and heataffected zone regions is not uncommon either during manufacture or in service, andit may be necessary to assess their acceptability using fracture mechanicsmethodology. In many cases, the properties of the weld metal and the HAZ can beinferior to those of the parent steel and therefore need to be taken into accountin design assessments. HTFCG properties have been determined for both simulated[32,39] and real [2] weldment microstructures.

The metallurgical structure of multi-pass weldments in turbine components iscomplex [40] . For example, each weld bead may comprise a region of as-weldedcolumnar grains adjacent to a region of fully transformed fine equiaxed grains,the latter being the result of re-austenisation during a subsequent weld pass.The HAZ may similarly consist of pockets of coarse grain HAZ contained by thefusion boundary on one side and regions of fine grain HAZ elsewhere. Modernwelding procedures aim to limit the extent of coarse grain HAZ regions such thatthey are not continuous and can, in the limit and with extreme care, be whollyrefined by re-austenisation during a subsequent weld pass. Typically, steam pipeweld heat affected zones extend no more than 2 to 3 mms from the fusion line andthis band contains not only the fully transformed HAZ microstuctures referred toabove, but also a transition region comprising a similarly complex mixture of

partially transformed intercritical tempered ICHAZ and untransformed subcriticaitempered SCHAZ microstructures.

There are two schools of thought as to how the properties of weldmentmicrostructures should be established. The first is to identify the metallurgicalregion responsible for minimum properties and then to simulate the appropriatemicrostructure as a homogeneous matrix in a block of material of sufficient sizeto yield the requisite number of laboratory specimens. This approach is adoptedto minimise data scatter and to ensure that the properties determined have notbeen influenced by surrounding microstructures. The alternative opinionacknowledges that it is very difficult to precisely simulate individual HAZ

139

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 152/200

microstructures and that in practice the performance of these regions is almostcertainly influenced by the properties of the surrounding matrix. Theprotagonists of this view support the use of specimens machined from real welds,even with the associated difficulties in producing a weldment which is trulyrepresentative of the actual welded joint to be assessed, and experimentally in

conducting the laboratory test.High temperature fatigue crack growth rates have been determined for realweldments based on cast lCrMoV (GS-17CrMoV 5 11) and 12CrMoV (G-X22CrMoV 12 1)parent steels [2] . HSF crack growth rates have been measured using both CTao/«oand CÎ29/SO specimens cycled in load control. The two testpiece types weremanufactured with pre-cracks running adjacent and parallel to weldment fusionboundaries  (Fig.22).  During testing, propagating cracks followed the HAZmicrostructure offering minimum resistance to cracking.

The fatigue crack growth rates determined for the HAZ structures of twoGS-17CrMoV 5 11 steels are 2 to 3 times faster than the rates measured for theparent materials at cyclic frequencies of 0.5 and 0.05Hz  (Fig.23).  With the

introduction of a 20 minute hold time at peak load, there is a more notable effecton da/dN-TOTAL. relative to that for the parent steels. The fracture paths followedin the continuous cycle tests were just contained within the 'visible' HAZ, in therelatively soft ICHAZ  (Fig.24).  In contrast, the fracture paths observed in holdtime tests tended to follow the coarse grain HAZ immediately adjacent to thefusion boundary. This is consistent with the observation that the creep crackgrowth resistance of CrMoV HAZ microstructures (and particularly the coarse grainHAZ) is notably less than that of the parent steel [41] . The creep ductility ofcoarse grain CrMoV weld heat affected zones is notoriously low, and the higherHSF-creep crack growth rates are therefore probably due to the effect of low creepductility being responsible for increases in both da/dN<=vct.ic and da/dNet»*?(Eqns.9-11).

At cyclic frequencies of 0.5 and 0.05Hz, fatigue crack growth rates in both theG-X22CrMoV 12 1 parent and HAZ structures are similar  (Fig.25).  However, incontrast to the low alloy creep resistant steel, there is no reduction inHSF-creep crack growth rates measured in the HAZ of the cast 12CrMoV steel, evenwith the introduction of a 20 minute hold time at peak load in the cycle. Thefracture path adopted in the 12CrMoV specimens is outside the 'visible' HAZ andfollows the soft SCHAZ, irrespective of hold time  (Fig.26).

GENERAL OBSERVATIONS

The main collaborative effort of the COST 505 High Temperature Crack. GrowthWorking Group was based around a Creep Crack Growth Round Robin [29] . In additionto this activity, six members of the Group (Table 1) were also concerned with the

investigation of certain HTFCG properties for a number of high temperature turbinesteels. The high temperature fatigue crack growth studies covered a variety ofaspects which were generally unrelated, and the present Review has had to draw onfindings from outside COST 505 in order to complete the story. Nevertheless, theCOST 505 HTFCG results have added to the turbine materials database and to thegeneral understanding of the subject. They have also highlighted those areaswhere our knowledge is incomplete. These include:

(a) a quantitative understanding of the effect of long hold timesrepresentative of service applications on da/dNcvcuc and da/dNcM » forrelatively small cracks in critical turbine materials,

(b) an understanding of the effect of combined primary and secondary stress

140

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 153/200

creep loading transients on  high temperature fatigue crack growth rates,(c) economic methods of  accurately calculating  A K E O ,   & J and C* for  relatively

small defects in  large complex turbine components.

Overall, the  COST 505  High Temperature Crack Growth activity was  extremelyproductive and a  useful vehicle for  exchanging ideas, and  establishing workingcontacts throughout Europe.

CONCLUSIONS

The high temperature fatigue crack growth properties of a number of  steam turbinematerials have been reviewed. Many of the  results referred to in the  text weregathered by  members of the  COST 505  High Temperature Crack Growth Working Groupwho were active during the  period  1985 to  1988, but  additional information hasalso been collated from the  published literature.  The  following conclusionssummarise  the  current understanding of  high temperature fatigue crack growth insteam turbine materials.

1. It is convenient  to  consider both low and  high strain high temperature fatigue

crack growth rates in  terms of two  components, one due to  cyclic loading andthe second due to creep, ie.

da/dNTOTAt, = da/dNcYci.ic + da/dNcREsp

The da/dNcYct.ic term  i9 a power law  function of  ¿K=o and may be  influenced bycrack tip  damage due to oxidation and  prior creep loading. da/dNcniEp isexpressed  in  terms of the C*  parameter.

2 .  At  530/550°C and for a  range of  steam turbine forging, casting and  pipesteels, there is no  apparent effect of  creep on LSF  crack growth rates forf>lHz (ie. the  magnitude of  da/dNciusEP  is  negligible).

3. HTFCG threshold AKo levels increase with decreasing frequency due to  oxideblocking and  crack closure whereas at  somewhat higherAKs,  LSF  crack growthrates increase with decreasing frequency due to  enhanced oxide growth.

4. For  frequencies less than 1Hz, da/dNTOT»L   is  still mainly influenced by  oxideassisted growth effects on  da/dNcvcL.xc at  relatively low AKs. With increasingA,K, the  role of  oxidation diminishes and  creep becomes more important throughits effect on  da/dNcvcuc  and its contribution  in  terms of  da/dNcnKEP.

5. In a simple engineering model da/dNcvcuc,  for a  given AK» o, increases to amaximum as the  crack tip  damage zone develops to the  critical conditionnecessary for the  onset of  creep crack growth.  The  prior hold time necessaryto achieve this peak acceleration increases with increasing creep ductility.

6. At  frequencies less than 10~ 3Hz when the  cycle is in  load control, fatiguecrack growth rates are  determined by the  rate of  creep crack growth (ie. themagnitude of  da/dNcrci.xc is  small relative to  that of  da/dNcMutp).  This isnot always the  case when HTFCG is due to a  strain controlled cycle.  In  thesecircumstances, stress relaxation occurs and  da/dNcnEEP   is not the  dominantcrack growth component until lower frequencies.

7. The  resistance of a material to  creep-fatigue crack growth is  stronglyinfluenced by  creep ductility.  The  magnitudes of  both cyclic and  creep crackgrowth rate components are  lower for  steels with high creep ductility.

- 141

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 154/200

8. Prior long term thermal exposure (without load) has no influence on hightemperature fatigue crack growth rates, at least while the ageing treatment isnot responsible for a significant reduction in creep ductility.

9. In load controlled tests, high temperature fatigue crack growth rates throughthe weld heat affected zone of a cast lCrHoV steel are faster than thosethrough the parent material at frequencies of around 0.1Hz. The difference incracking rates increases dramatically with the introduction of a hold time atpeak load, coinciding with a change in fracture path from the partiallytransformed ICHAZ to the fully transformed coarse grain HAZ immediatelyadjacent to the fusion boundary.

1 0 .  High temperature fatigue crack growth rates through the weld HAZ and parentstructures of a cast 12CrMoV steel are similar in both low frequencycontinuous cycle and peak load hold time tests. For the test conditionsadopted, all fracture paths in weldment tests are contained within the softSCHAZ.

ACKNOWLEDGEMENTS

The study has been conducted with the financial assistance of the Commission ofthe European Communities, under Contract no. COST 0015 UK (CH).

The author wishes to acknowledge the many constructive discussions withMr D.V. Thornton (GEC Alsthom) and members of the COST 505 High TemperatureWorking Group, particularly Dr J. Ewald (Siemens KWU), Dr T. Hollstein  (FhG-IWM),Dr H. Kanbach  ( A E G ) ,  and Dr. G.A. Webster (Imperial  College).

142

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 155/200

REFERENCES

1. J. Ewald, C. Berger & H. Brachvogel; "Investigation on crack initiation andpropagation under static, cyclic and combined loading conditions of lCrMoNiVsteels at 530°C\ COST 505 D20/D21 Final Report, Siemens Report No. TW1187/89,1 9 8 9 ,   June.

2 .  H. Kanbach; "Crack growth in welded turbine materials at elevatedtemperatures", COST 505 D35 Final Report, AEG, 1989, April.3. I. Ragazzoni; COST 505 13 Final Report, ENEL, to be issued.4. S.R. Holdsworth; "High temperature crack growth in turbine steels", COST 505

UK5 Final Report, GEC Alsthom Report No. RM872/89, 1989, November.5. G.A. Webster & F. Djavanroodi; "Elevated temperature crack growth in steam

turbine materials", COST 505 UK1S Final Report, Imperial College(Mech.Eng.Dept.),  1989, January.

6. G.A. Webster & F. Djavanroodi; "Determination of the crack growth behaviourand failure mode of pre-exposed material", COST 505 UK26 Final Report,Imperial College (Mech. Eng.  D e p t . ) ,   1989, January.

7 .   J.F. Knott; "High temperature crack growth in steam turbine materials",COST 505 UK25 1st Interim Report, Cambridge university (Met. & Mat. Sci.

D e p t . ) ,   1986, June.8. T.C. Lindley, C E . Richards & R.O. Ritchie; "The mechanics and mechanisms offatigue crack growth in metals", Conf.Proc. The Mechanics and Physics ofFracture, Churchill College, Cambridge, 1975, January.

9. P.C. Paris & F. Erdogan; "A critical examination of crack propagation laws",J.Basic Eng., 1963, 85, 528.

1 0 .  M.O. Speidel; "Fatigue crack growth at high temperatures", Proc. Symp. HighTemperature Materials in Gas Turbines, Brown Boveri, Baden, 1973, March.

1 1 .   S.J. Garwood; "Fatigue crack growth threshold determination", Welding Inst.R e s .  Bull., 1979, 20, 262.

1 2 .   R.T. Davenport & R. Brook; "The threshold stress intensity in fatigue", Fat.Eng. Mat. Struc, 1979, 1, 151.

1 3 .  G.K. Haritos, T. Nicholas & G.O. Painter; "Evaluation of crack growth models

for elevated temperature fatigue", ASTM STP 945, 1988, 206.1 4 .  K.J. Nix, N. Knee, T.C. Lindley & G.G. Cheli; "An investigation of fatiguecrack growth in ductile materials at high growth rates", CEGB (CERL) ReportN o .   TPRD/L/3168/R87, 1987, October.

1 5 .  Stress Intensity Factors Handbook, Ed. Y. Murakami et al, 1987, Pergamon.1 6 .   R.P. Skelton b J.R. Haigh; "Fatigue crack growth rates and thresholds in

steels under oxidising conditions", Mat. Sei. Eng., 1978, 36, 17.1 7 .   G.J. Lloyd; "High temperature fatigue and creep-fatigue crack propagation:

Mechanics, mechanisms and observed behaviour in structural materials", Fatigueat High Temperatures, Ed. R.P. Skelton, App. Sci. Pubi., 1983, 187.

1 8 .   J.R. Rice; "Crack tip placticity and fracture initiation criteria", Proc. 3rdInt. Conf. Fracture, Munich, Part 2, 1-441.

1 9 .  W. Elber; "The significance of crack closure", ASTM STP 486, 1971, 230.

2 0 .   S.R. Holdsworth; "Remaining life assessment of high temperature turbinecastings", Inst. Metals Conf. Proc. Metals Development in Turbo-MachineryDesign, Churchill College, Cambridge, 1988, September, 136.

2 1 .  J. Schivje; "Some formulae for the crack opening stress level", Eng. Frac.Mech., 1981, 14, 461.

2 2 .   R.P. Skelton; "Cyclic crack growth and closure effects in low alloy ferriticsteels during creep-fatigue at 550°C", High Temp. Tech., 1989, 7, 3, 115.

2 3 .  N.E. Dowling; "Crack growth during low cycle fatigue", ASTM STP 637, 1977, 97.2 4 .  V. Kumar, M.D. German & C F . Shih; "An engineering approach for

elastic-plastic fracture analysis", EPRI Report No. NP-1931, 1981, July.

- 143

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 156/200

25. R.P. Skelton; "Review - The application of small specimen crack growth data toengineering components at high temperature", ASTM Conf. Proc. Low CycleFatigue - Directions for the Future, Lake George, 1985, September.

26. R.P. Skelton, S.M. Beech, S.R. Holdsworth, G.J. Neate, D.A. Miller & R.H.Priest; "Results of a Round Robin test on creep-fatigue crack growth in aferritic steel at 550°C", NPTEC Report to be issued.

2 7 .  H. Riedel; Fracture at High Temperatures, MRE, Springer-Verlag, 1987.2 8 .   R.A. Ainsworth, G.G. Cheli, M.C. Coleman, I.W. Goodall, D.J. Gooch, J.R.

Haigh, S.T. Kimmins & G.J. Neate; "Assessment procedures for defects in plantoperating in the creep range", Fatigue Fract. Engng Mater. Struct., 1986, 10,115.

29.  T. Hollstein, F. Djavanroodi, G.A. Webster & S.R. Holdsworth; "Hightemperature crack growth in Alloy 800 and a lCrMoV steel. The results of anEGF Round Robin", Conf. Proc. ECF7, Failure Analysis - Theory and Practice,Budapest, 1988.

3 0 .  J.R. Haigh; "The growth of fatigue cracks in turbine casing steels at hightemperatures under predominantly elastic loading", CEGB (CERL) Report No.RD/L/N9/74, 1974, January.

3 1 .   J.R. Haigh, R.P. Skelton & C E . Richards; "Oxidation-assisted crack growthduring high cycle fatigue of a lCrMoV steel at 550°C", Mat. Sei. Eng., 1976,26, 167.

3 2 .   G.J. Neate; "Crack growth in bainitic 0.5CrMoV steel at elevated temperatureunder cyclic loading conditions", ASME Conf. Proc. Advances in Life PredictionMethods, 1983.

33. D.N. Gladwin, D.A. Miller, G.J. Neate & R.H. Priest; "Creep fatigue andcreep-fatigue crack growth rates in parent and simulated HAZ type 321stainless steel". Fat. Fract. Engng Mater. Struct., 1988, 11, 5, 355.

3 4 .  G.J. Neate: "Creep fatigue crack growth in 0.5CrMoV steel", Mat. Sci. & Tech.,1988, 4, June, 524.

35. R.H. Priest, D.A. Miller, D.N. Gladwin & J. Maguire; "The creep fatigue crackgrowth behaviour of a lCrMoV rotor steel". Proc. ASM Intern. Conf. FossilPower Plant Rehabilitation, Cincinnati, 1989, March.

36. D.N. Gladwin, D.A. Miller & R.H. Priest; "Examination of fatigue andcreep-fatigue crack growth behaviour of aged type 347 stainless steel weldmetal at 650°C", Mat. Sci. E> Tech., 1989, 5, 40.

3 7 .  K.M. Nikbin, D.J. Smith St G.A. Webster; "An engineering approach to theprediction of creep crack growth", J. Eng. Mat. Tech., Trans ASME, 1986, 108,186.

3 8 .  G. Thomas  & R.A.T. Dawson; "The effect of dwell period and cycle type on thehigh strain fatigue properties of a lCrMoV rotor forging steel at 500-550°C",1980, Inst. Mech. Engrs. Conf. Proc. Engineering Aspects of Creep, Sheffield,Paper C335/80.

39. D. Armstrong Si G.J. Neate; "Creack growth in bainitic 0.5CrMoV steel undercreep-fatigue conditions", Mat. Sci. & Tech., 1985, 1, January, 19.

4 0 .  P.J. Alberry S¡  W.K.C. Jones; "Structure and hardness of 0.5CrMoV and 2.25CrMosimulated heat affected zones", Metals Technology, 1977, December, 557.

4 1 .  S.R. Holdsworth Si D.V. Thornton; "The effect of stress relief heat treatmenton the resistance to creep crack growth of the weld and heat affected zones ofCrMoV type joints", WI Conf. Proc. Residual Stresses In Welded Constructionand their Effects, 1977, November, 133.

- 144

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 157/200

Table 1 COST 505 High Temperature Crack Growth Working Group

Notes:

Organisation

Siemens-KWU (Mulheim-Ruhr)FhG-IWM (Frieberg)AEG (Frankfurt)ENEL (Milano)VTT (Espoo)GEC-Alsthora (Rugby)Imperial College (London)Cambridge University

Project

D20/D211

D22D351

I31

SF2UK51

UK18/UK261

UK251-2

project directly involved with high temperature fatigue crack growth testingonly active for one year

145

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 158/200

Table 2  Chemical Compositions and Mechanical Properties of Steels in COST 505 Programme

C

Si

Mn

P

S

Cr

Mo

Ni

V

Al

Cu

As

Sn

Sb

Ti

Zr

20C

RpO.2 MPaRm  MPa

Elong  %

RofA  %

Cv  J

530/550CRp0.2 MPaRm  MPa

Elong  %

RofA  %

Project

lCrMoV

0.26

0.17

0.45

0.016

0.010

1.10

0.90

0.58

0.27

0.005

0.090

0.031

0.026

0.003

621

748

18

70

22/56

419

481

17

81

D20/D21

rotor steels

*

0.22

0.24

0.64

0.009

0.003

1.29

0.66

0.66

0.28

0.014

0.120

0.005

0.009

0.002

594

705

22

72

84/95

372

400

24

89

UK18

0.33

0.22

0.009

0.006

1.25

1.18

0.06

0.27

0.050

0.010

0.005

644

792

15

43

20/30

484

440

24

73

13

Turbine casting steels

lCrMoV

0.19

0.47

0.80

0.014

0.009

1.32

1.03

0.13

0.21

0.040

0.140

500

640

25

64

52/75

363

429

23

62

UK5

0.15

0.38

0.67

0.016

1.330

0.94

0.07

0.31

0.05

0.130

554

675

20

59

30/36

428

479

18

71

D35

2.25CrMo

0.12

0.34

0.59

0.015

0.005

2.40

1.00

0.19

0.020

0.070

0.010

0.034

0.011

310

521

26

72

50/53

208309

29

80

D35

12CrMoV

0.24

0.37

0.69

0.014

0.009

11.300.84

1.07

0.20

599

763

20

39

41/44

D35

2.25CrMo pipe

new

0.14

0.25

0.56

0.010

0.012

2.25

1.00

0.10

0.05

243

555

28

61

219469

26

68

UK26

se**

0.13

0.23

0.31

0.010

0.020

2.30

1.14

0.14

179

469

32

70

156249

40

68

UK26

*  - CCG Round Robin steel** - service exposed

costrev2.wkl/srh

146 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 159/200

EXAMPLES OF PRIMARY AND SECONDARY STRESS CYCLES IN

TURBINE COMPONENTS

ROTORSteg. bore)

c rrotationalstress

\thermalstress

CASINGS

ROTORS  (eg. rim)

*— '  ^ i

rotationalK  stress

-v- Y-.' v i thermal

stress

PIPEWORK

0"

N  thermal

' ^ „ stress

\ ' pressure\ i stress\ ,

pressure

stress" - - 1

v

\ ¡Jt iermalN g stress

^ .

Examples of primary and secondary stress cycles in steamturbine components

Fili Rff: Org. No. Fig. Sht. No . 1

147 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 160/200

LABORATORY CYCLE TYPES

( a )   ÇT E

Siemens

ENELA " " Ä ~ Ä " ~ "A A A /

t

(b) CT

Imp. Col.»h

t

A A AA A A /E

/ V ^ t

(c) (T E

AEG

1

V " " T T

/ V \/ r\ r\\J  vt

(d) O" E

GEC A ^ ^ -

vAA V V V(e) CT E

GEC ^ A ^ AV \ / ^

'^ A V A T

I d e a l i s e d c y c l e t y p e s u s e d I n COST 505 HTFCG a c t i v i t y( a ) - ( c ) :  l oa d c o n t ro l c y c l e s , ( d ) - ( e ) : s t r a i n c o n t ro l c y c l e s

Da u Fil i Rtf: Org. No. Flg. SM. No. 2

148

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 161/200

1.0E-01da/dN - mm/cycle

1 . 0 E - 0 2 b

1 . 0 E - 0 3 k

1.0E-04

1 . 0 E - 0 5 b

1.0E-06

LOW &K REGIME MID &K REGIME HIGH AK REGIME

Kc

HSFREGIME

1 . 0 E - 0 7 1 ÛKo

da /dN • C (ÙK) '

Log AK

LSFREGIME

Fat igua crack growth reg imes due to cycl ic loading

Filt Raf: Drg. No. Fig.  Sht . No.3

149

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 162/200

Pmax

Po

Pmin

APeff=q0AP

Determination of crack opening load and effective load range

Fila  R * f : D r g .  N o . Fig,   S h i  N o ,   I*

- 150

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 163/200

 Ko - MPa/m 

0.1  0.2  0.3  0.4  0.S  0.8  0.7  O.S  0.9 

R ■ Kmln/Kmax 

Effect  of  mean  stress temperature  and  frequency  on  K o  for lCrMoV  rotor  steel  [1 16] 

i l t   R i f Drg. No.  Fig.  SM. No. 5 

151 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 164/200

da/dN  mm/cycle

1.0E-02 e

1.0E-03

1.0E-04

1.0E-05

1.0E-07

d e c r e a s i n g f r e q u e n c y ( 5 5 0 C )

¿Ko

a l l f r eq u en c i e s ( 26C )

d e c r e a a i n g f r e q u e n c y ( 6 6 0 C )

Log&K

Schematic representation of effect of frequency on LSF crack

growth rates [16

Oats File Rrf: Org. No . Fig. Sit. No. 6

152

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 165/200

Di t t 

da/dN  -  mm/cycle 

10° 

- 1 

10

1Õ2 

«ä  

IO

155 

1Õ̂  

1  1  1  1  1  1  1  1 KrMoV  l28CrMoNiV<.9)   •   Siemens   [D20/21I Load  control  ■   Imp  Col  IUK18I 

R=0-1  

530/550°C  

~  Frequencies>1Hz   ~~  

da  = 7x  1 8  Û K2  5 n,m;CyCle 

dN  \  s

J^ Ï • 0 •  —  • 

• 1 

• 1  1  1 

IO   20  30  M)  SO   60  70  BO   90  100 AK  -  MPa/m  

LSF   crack  growth   r a t e s  i n  lCrMoV  r o t o r  s t e e l  a t  530/550°C [ 1 . 5 ] 

F1l«(taf:  Drg.No.  Fig.  SM . No.7 

153 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 166/200

Dits 

10°  

1 0 - 1 -

'm  

I ,  io -2-u  

■s.  E  £ 

•o O  

I O , 

IO «  T 

I O 5 -

ï rMoV  rotor  steel  ƒ   I m p c r i a l C o U l g e

R=»1  j  IUK18I

/ Veld* Hz

/

ff  l x«3

 Hz  j S x I p H z

• r xf  *

'* -<dr ^ ¿* ***í 2 | t e

i? f£*^£/^*<3f j jo 0"0"

^^r"^^

/ffr u Hz

10 100

ÍK ( Mp g V m )

T h e e f f e c t o f f r e q u e n c y on f a t i g u e c r a c k g r o w t h r a t e s f o rl C rM o V r o t o r s t e e l a t 5 5 0 ° C [ 5 ]

FlliRtf:  Drg. No. Flg. Sht. No.ßa

154

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 167/200

10 °  T 

K T 1  

10 2 - ¡ 

10-3-J 

l o - S 

« ■ S 

10_ 

As  received 2-25CrMo  pipe  steel 550°r R=0 

10 

1xlõ2 Hz 

Imperial  College IIIK26) 

AK   (MPiVm)  10 ' 

The effect of frequency on fatigue crack growth rates for 2.25CrMo pipe steel at 550°C [6] 

Fila  R i f :   D r g N o Fi g S h t N o 8 b  

155 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 168/200

 

T E S T E G   IN V I U » «   i . 1 0 » M r .   SO O  C .  

•  B.OI.MHi. 

•  R.M.IOHi. 

•  Oi I Hl. 

■ R-M.OlHz. 

2.2SCrMo (UK25) 

P A R E N T   P U T E .   C O A R S E   ¡ R A I N E D   M A R T E N S I T E I  

= 0 - 5 ,   M H z ,  p p .  

■   R . 0 5 . 1   H i .   V E I U - M E T A L  

A S - R E C E I V E O I  

10Hz,  pp.  

I  I ,  , , ,  I , ,  I -  ■■  - I 

2 0  3 «1  SO  6 7 1APPUEO  ALTERNATING  STRESS  INTENSITY.  AK.HPiÆ  

The effect of frequency on fatigua crack growth rates for 2 25CrMo weldment microstructure at 5 °C in vacuus [7] 

Dm  RI« Rtf:  O r g No.  Fig S h t N o 8 c  

156 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 169/200

da/dN- mm /cycle

10°

15'

IO*

« i

M *

« S

10°

1  1 1 1 1 1 1 1

GS-17CrMoV 5l1 AEG ID35)

Load control

R=0-1

S30-C

~  o  -

*  r » o  530-C

-  œ$m# l C r M o V ^ /  g

f o r g i n g /lines  /

(f»IHzl

D-0-5Hz,  o - 0 0 5 H z .

open points: parenl steel,

solid points: HAZ

I  1

0  20 30 M> 50 60 70 60  90  1

ÄK -  MPa/ø

)0

n

The e f f e c t of f requency on fa t i gu e crack growth ra te s fo r

lCrMoV tu rbi ne ca st in g st e el a t 530°C [2]

O n * Fita Raf: Drg. No.  Fig. S h t . N o . 8 d

157

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 170/200

da/dN - mm/cyc le

IO»,

Iff*

»*

IO?

rG-X22CrMoV121

Load control

R=0-1

530»C

i — i — i — i - rAEG 1035]

D - 0 5Hz; o - 0-OSHz,

open points: parent steel ,

solid points: HAZ

I I I I I I20 30 40 SO 60 70 00 90 HO

¿K • HPa/m

The effect of frequency on fatigue crack growth rates for12CrMoV turbine casting steel at 530°C [2]

Filt Ref: Drg. No. Fig.   S h t. N o .  8 e

158

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 171/200

tia/dN  -  mm/cycle 

MP  l i l i 

4 K r 3 5 M P a / m 

Loid  Control  IR=01 ] 

,  530 / 550 'C 

^¿^C   *x>> -^  v X ^ > * > ~ ~ 

i  i  i  i 

lCrMoV  forcings 

•  Siemens  (020/21) 

■  Imp. Col. lUKlBI 

i  ENEL  1131  

-

S  '  \  ' 

152 

» 3 -

10<-

«5   lõ >  103  152  1Í'   10'   10 '  102 

Frequency  -  d N / d t - H z 

Fatigue  crack  growth  rate versus  frequency  for  lCrMoV rotor steel  at  530/550°C  and ^K=35MPa/õT  [1,3,5] 

FII« Rtf:  Org. No .  Flg. Sht.No9 

159 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 172/200

Im 

•̂  E  E 

5 ^ e 

Comparison s t a t i c  load  550°C [5] 

10°  

I O ' -

i o 2 : 

i o - a -

' ' 

I O ' 4 -

St.fic  and cyclic  IUK,8

■a  B* A 

»  Ê « * Ä * 

/..: Fr 

i  ■  M  OD 

♦  B  « • ♦  M  X  _ 

i - . .  -■ M  g  B B 

« B » 

■fc  • 

■  BE M  S T A T I C  emisa 

m BDI  STATIC  CT2VU•  BDll STATIC  CTIMO 

a BDll STATIC  CTKRO 

•  BDÍ  STATIC  CT3S/J0 ABM  M M kiCTU/SOA.QI 

* BD4 uoooi  luCnVMR.OI 

•  BE4  r-0001  hi CTÎVJ0 K.O.t ♦ BE4  M 001   hi CTU/U JU0.1 

K BEÎIf-O.OOOI hiCTKWOIUO.i 

■ BE» r-aooi  hi CTicno R-O.I 

10°  101  10

2  10

3  IO

4  IO

C*   (J /m 2h r) 

□f  low  f requency  f a t i g u e  crack  growth   r a t e s  and creep  crack  growth  r a t e s  for lCrMoV  r o t o r  s t e e l at 

Oatf  Fila Rif:  Org. No.  Flg.  Sht. No. 10 

- 160 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 173/200

lOOjjm

Crack tip damage in lCrMoV specimen creep pre-cracked for2,000 hours at 530°C [1]

D r g .  N o . Fig.  Sht .  N o .  1 1

-  161

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 174/200

1.0E-01da / dNcyc l i c - mm/ cyc l e

1.0E-04

1.0E-OS

th(0)<th(1)<th(2)<th(3)<th(4)

¿K

Crack tip creep damage associated with a high strain fatiguecrack in a 0.5CrMoV turbine casting steel [20]

Dit« F il e R a f : D r g . N o . F ig . S h t . N o . 1 2

162

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 175/200

HOLDTIME

th(0)

th(1)

th (2)

th (3)

th (4)

p re crack  b d f

cy c l i c c r a c k g rowth —c r e e p c r a c k g ro wth - v ^

fâ©

ß \ ¡Ã   \  f

'a   Ve Ve

c r e e pd a m a g e

zone

I n f l u e n c e o f p r i o r h o l d t i m e o n c y c l i c c r a c k gr o w th r a t e

Date File Ref: Org.  No .  Fig. Sht.  No . 13

163 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 176/200

Dite 

1 0 - 2 - , 

d

m

m

 c

e

3

O

 

Ól

¿

¿

 

■ ■ ■ 

Symbol X  A 

D B D 

AS-RECEIVED  1000h/530*C   „ „ p  . „ „  soooh/S3o-c  P R E - A C E D 

1000h/530*C-da/dl 3000h/530*C-da/dt   fRE-CREEP 

4000h/530 ,C-da/dt  C R A C K E D  

SIEMENS ID20/211 

Q  ■  D  

%   B 

□  4 

i>* 

JET

x íf  < a  D 

JCX   ■ V *  X  D O  

x  #  i r fi  T = 5 3 0 ° c 

x  #  o  «  R =  0.1 

F  =  1 0 H z x  S  CT25S/CT25  

10 

The  i n f l u e n c e  o r a t e s  i n  lCrMoV  

Fila Ref: 

2 0  / IK  ( M P a v m ) 5 0  1 0 D  

C   p r i o r  c r e e p   damage  o n  c y c l i c  c r a c k  g r o w t h r o t o r  s t e e l  a t  530 °C   [ 1 ] 

Drg. No.  Fig. SM. No.  K 

164 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 177/200

s >Awls

100^jm

Crack tip creep damage associated with a high strain fatiguecrack in a 0.5CrMoV turbine casting steel [20]

D r g .  N o . Fig.  S h t.  N o . 15

- 165

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 178/200

da/dN-mm/cycle 

ir>0 

1Õ2 

1Õ3 

1Õ' 

AK=35MPa/m  

Load  Control  ( R= 0 I ) 

SSO C   \ s ~ 

VS  \ 

-

1  1  1 

\ %^ 

X \  ^ 

\  \ Q   v 

s ■ \ ^  \  a s  ^ - ^ \ 

1  1  1 

1  1 

2-25CrMo  pipe  s tee l 

■  new   material  

o  ex-service  material 

Imperial  College  (UK26) 

1  1 

-

ro3 m   »' 

Frequency-dN/dt -Hz  

The  influence  of  prior  exposure  on creep-fatigue  crack  growth rates  in 2.25CrMo  pipe  steel  (ie. after  120,000h  @ 565°C)  [6]  

File Ref:  Org. No.  F i g S h t N o 6  

166 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 179/200

(a)  Type  I  cyc le

A

(b) Type  n  cycle

t r

he-

 

Type I and Type II service cycles

Oat» Fila Raf: Drg. No. Fig. SM. No.  17

- 167 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 180/200

TYPE  1  CYCLE  TYPE  [I  CYCLE 

f  .10 c 

i0 

5  i i 

f  0 o 

t«* O  3-VO 

-  . 1 0 

—  *o-5 

VLmaxI  1  . 

1  1 5,000  10,000 

-05 

L̂min 

1—  -V0 

-  v Lmax 

1  1 i  l 

5.000  10.000 

^Lmin 

_» BOO 

WOO 

♦  XXI 

i  0 ■o m  o _ j 

-100 

-200 

-300 

—   -300 

\ .  .200 \ \ P m a x , Pds 

We 

1 n 1  ° 

5.000  n.ooo 

-  - W ) 

—  -200 

-  *  3̂00 

—  ^ * ^ P m a x 

_Pds  |  | 

P d T ^  =  1 5,000  n.ooo 

- ^—^°~ 

Pmin 

^ — P m i n 

s  M r  M  i— E 30 

J 20 

1 » o 

- X  » / / -  K 1  1  1  1 

0  5,000  10.000  0  5.000  » .000 Cycles  Cycles 

Typ i ca l  t e s t  records  fo r  l a rge  2.25CrMo  SENB  specimens  sub ject t o  Type  I  and  Type  I I  HSF   cyc les  at  540°C  [4 ] 

Da ta  F i l a  Re f :  D r g . N o .  F i g .  S h t . N o . 1 8 

168 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 181/200

d a / d N Cy C |¡ c   - m m /cyc l e

1 0 '

1Õ2

1 Õ 3   -

1 Õ < »

225C r Mo D i sp l a c em e n t co n t r o l5 W C SEN B 75 /100I cp mAVj_= 102 mm

25 50 75 100

C r ack l en g t h - m m

Variation of HSF crack growth rate with crack length indisplacement control bend test for 2.25CrMo at 540°C [4]

Data Fila Rff: Drg.  No. Fig.  Sht.  No .  19

- 169

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 182/200

da /dN | .0 f a | -mm/c y c l e 

101 

10 2 

10-3 

10* 

«S  

I  I  I  I  I  I  I  M  2-25CrMo  Cast  Steel 5 W C .  1cpm  

Typenţ  A   ue t ì o f ) 

V  b  0-56  J Type  l i  *  0-W   tf>  

-  rnrr  •   038  ^  J \j  V   r  0-33   >*■   f r  V  Ï  0-24  > •  y  / 

S   0-19  > /  ~ / j ó  

- p^  - 

/  dwell —  / 

(hours) 

/  open  points  0  /  part  solid  points  0-5 

/  solid points  t 

/100  Hz Data  Line  

1   1  1   1  1  1 1 1   1 0  20   30   In   50   60 70  80 90  BO  201 0 

A K g q - M f W m 

The  i n f l u ence  of  cyc l e  type  and  hold   t ime  on   HSF  crack  growth r a t e s  f o r  cast  2.5CrMo  a t  540°C   [ 4 ] 

D i u  File R«f :  Org. No .  Fig.  Sht. No.  2 0 

170 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 183/200

da / dN-mm/ cyc le 

id

1Õ2 

I03 

mi  

1  1 

¿K=3SMPa/m  

2 ZSCrKo  

55 0  C  \ \  ¿s 

K  

X VS X.  ^\  X. S 

_   Cast  2.2SCrMo  /  ¿ * ~ ^ - ^ ^ ^ 

Type I  s t r a i n  con t r o l  cycle  ^ — . ^ . 

CEC  (UKSI 

,  , 

1  1 

S.   v 

s  ■  ^ ^  \  ■ \  ^ - ^ x ^ 

_\^J^V  i  i 

i  i 

2.2SOMO pipe steel lud  control cycle  IR:0-11 

y  imperial College IUK26) 

1  i 

-

• 

IO1  IO2 

F requency -dN / d r -Hz  

The  influence of frequency and load/strain  control  mode on high  temperature  fatigue  crack  growth  rates for 2.25CrMo at 540/550°C  K̂=35MPa/K) [4,6] 

Data   F i l a  Ra f :   Drg.  N o .  Fig.  Sht.  No .  21  

171 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 184/200

CT 25/50  fes   p i e c e s

Specimen location in cast lCrMoV and 12CrMoV welaments [2]

Oat« FII« Rtf: Drg. No. Fig. S h t . N o . 2 2

- 172 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 185/200

da/dN-mm/cycle 

10° 

10

10-2  

M í 

io4 

10-5  

|Õ 6  

I  1  1   1  1   1  1   1 

GS-17CrMoV511  AE G   I D35 I 

Lead  c o n t r o l 

R=01  * J * 

530»C   é  i 

h ¡i  è& 

-  ^ßi1 0 M o V ¿ /  ¡ f forging  / lines  / ( M Hz ) 

□  - 05Hz .  o - 0 0 5 H z ,  

licked   symbols:   20min  hold, 

open  points:  parent steel, 

solid  points:  HAZ  

1  1  l i l i l í 

0  20  30  IO   50  60  70  SO   90  1 

ÛK   -  HPa/f 

)0 

H i g h  t e m p e r a t u r e  f a t i g u e  c r a c k  g r o w t h  r a t e s  i n  c a s t  l C r M o V  s t e e l  ( G S - 1 7 C r M o V 5 1 1 )   w e i d m a n t s  [ 2 ] 

Data  F i l «   R« f :  O r g . N o .  F i g .  S M . N o .  2 3 

173 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 186/200

base material  HAZ  f i l ler  metal T  ? 

2 5° -

> X  a 

Hardnes

CD 

1. Hardness   p ro f i l e ,  specimen  B1.3.2 

fractur* 

hit»  a i u r l l l  ^ 

3  e  \ ^ / \ 

» 1  ■  l  '  1  '  1  '  l 

- 2  - 1  D   1  2 

Dis t ance  in  mm. 

Fracture path in cast lCrMoV steel  (GS-17CrMoV511) weldraent HTFCG testpiece  (0.05<f<0.5Hz, t»=0) [2] 

Drg. No.  Fig.  S h t .  N o .  2U  

174 -

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 187/200

d a / dN - m m / c y c l e

10 °  i

1 5 2 -

1 0 - 3 -

G - X 2 2 C r M o V I 2 1

L o ad co n t ro l

B=0-1

530" C

" i—i—r~rAEG (035)

D - 0-5HZ; o - 00 5Hz ;  « -  CCG

o p e n p o i n t s : p a r e n t s t e e l ,

so l id po in ts: HAZ

t i cked s ymb o l s : 20mi n ho l d

I I I I I—L20 to 50 60 70 90 90 100

AK - M P a / m

High temperature fatigue crack growth rates in cast 12CrMoVsteel (G-X22CrMoV121) weldments [2]

File Rlf: Org. N o . Fig.   S M .  N o .  2 5

175

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 188/200

base   metal  HAZ  filler metal 

3 0 0 -

O  

>  X  

m  in   2 5 0 -

Hardn

2 0 0 -

2.  H a r d n e s s   p r o f i l e ,  s p e c i m e n   C   1.1 

• 

• — - e  e  ■  «< 

I  l - 3   - 2   - 1  

i  i 

1  y^   |  \ ^ 

1 f  1 

1  ■  rJ—-  r - ^  r -3   1 2  3 

D i s t a n c e  (mm) 

u,  

Fracture path in cast  12CrMoV steel  (G-X22CrMoV121) weldment HTFCG testpiece  (0.05<f<0.5Hz, t»»=0) [2] 

Drg. No.  Fig. S h t .  N o .  2 6 

176 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 189/200

The Communities res earch an d developme ntinformation se rvice

C O R D I S

A vital p art of your p rogramme 'sdissemination strategy

CORDIS is the information service set up under the VALUE programme to give quick and easy accessto information on Eunpean Community research programmes. It is available froo of-charge online viathe European Commission host organization (ECHO), and now also on a newly released CD-ROM.

CORDIS offers the European R tD community:

— a comprehensive up-to-date view of EC R&TD activities, through a set of databases and relatedservices,

— quick and easy access to information on EC research programmes and results,— a continuously evolving C ommission service tailored to the needs of the research com munity and

industry,— full user support, including doc umentation, training and the CORDIS help desk.

Th e CORDIS Databasas are:

R&TD-programme s - R&TD-projects - R&TD-pa rtne rs - R&TD-resultsR&TD-publications - R&TD-comdocuments - R&TD-acrony ms - R&TD-news

Make sure your programme gains the maximum benefit from CORDIS

— Inform the CORDIS unit of your programme initiatives,— contribu te information regularly to CORDIS databases such as R&TD-news. R&TD-puohcations and

R&TD-programmes,— use CORDIS databases, such as R&TD-partners, in the implementation of your programme.— consult CORDIS for up-to-date information on other programmes relevant to your activities.

— inform your programme participants about CORDIS and the importance of their contnoution to theservice as well as the benefits w hich they will derive from it,

— contribute to the evolution of CORDIS by sending your comments on the service to ;ne CORDISUnit.

For more in formation about con tributing to CORDIS,con tact the DQ XIII CORDIS Unit

Brussels LuxembourgMs I. Vounakis M. B. Niessen

Tel.  +(32) 2 299 0464 Tel. +(352) 4301 33638Fax +(32) 2 299 0467 Fax +(352) 4301 34989

To register for online access to CORDIS, contact:

ECHO Customer ServiceBP 2373

L-1023 LuxembourgTel. +(352) 3498 1240Fax +(352) 3498 1248

If you are already an ECHO user, please mention your customer number.

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 190/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 191/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 192/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 193/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 194/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 195/200

European Commission

EUR 14678 — High-temperature crack growth in steam turbine materials

J. Ewald T. Hollstein, G.  A. Webster F. Djavanroodi S. R. Holdsworth

dited by J.  B. Marriott

Luxembourg: Office for Official Publications of the European Communities

1994 —  VIII, 176 pp. , num. tab., fig. — 16.2 x 22.9 cm

Physical sciences series

ISBN 92-826-7536-X

Price (excluding VAT) in Luxembourg: ECU 20

Modern steam turbines must retain a very high reliability throughout theirservice life of typically 2000 00 hours, wh ich in practice extends over more

than 25 years. One of the features that must be considered at the designand manufacturing stages and during the assessment of 'fitness' carriedout periodically during the service life is the growth of the manufacturing-type defects at temperatures up to about 550 °C.

Within the concerted action research programme COST 505 on materialsfor steam turbines, one coordination group studied this problem with aview to enabling a more accurate evaluation of defect acceptability on thebasis of data gathered using laboratory test-pieces. The work of the groupwas structured under three headings which form the three parts of thismonograph:

Part I: Creep crack initiation and growth in term s of KPart II: Creep crack growth in 1 %C rMoV steel and Alloy 800H — an evalu

ation of the results of the CO ST 505 and an EGF round robinPart III: High tem perature fatigue crack grow th in steam turbine materials

In each part, solutions are given according to the current state of the art.None can be regarded, however, as giving a well established methodology for practical application. Further data will have to be determinedtogether with results from complex, simulative 'benchmark' tests thatremain to be conducted, before there will be sufficient critical evidence

upon which to base general rules for practical applications.

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 196/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 197/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 198/200

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 199/200

Venta y suscripciones   •  Salg og  abonnement  •  Verkauf und Abonnement  •  nuAr¡oci<; Kai  ouvCpoucc, Sales and subscriptions  •  Vente et  abonnements   •  Vendita  e abbonamenti 

Verkoop en  abonnementen   •  Venda e assinaturas 

B E L G IQU E /B E L G IË  

Ru « d»  Louvam 42  /  L e u v a n u w M  4 2 

1000 Bruxelles

 / 1 0 0 0

 Brussel

 T «  {021  51 2  » 2 6 Fa «  ( 02 )511   01   8 4 

Avenue  du  R a  20 2 /  Koningslaen  2 02  1060 Bruxelles  / 1 0 6 0   Brussei Te l  (02) 53 8 51   69  Télex 63220 UNBOOK B Fa x (02) 53 8 OS 41  

Autres  rjrstributours/ Ovenge   verkooppunten:  

Ubcelr ie   eu ropéenne ) E u r o p e t e  boeknende l Ru e de  la  Loi  244/WetstreM  24 4 1040 Bruxe l les /1040  Brussel T «  (021231   04   35  Fa x  ( 0 2 , 7 3 5  08   6 0 

Documen t  delivery: 

Breite Straße  78 -60 Postfach  1 0 0 5 3 4  50445  Köln Tel.  (0 2 2 1 ) 2 0 20 -0 Telex ANZEIGER  BONN  6 6 Fa x 2 02  92  7 8 

GREECE /EAAAoA 

G .C . De f tha roudek ia   SA  

trsernevonal   Bookstore Nkrs  Strest 4 10563  Aliisns Te l  ( 0 1 ) 3 2 2  8 3 2 3 Telex   21B410ELEF  Fa x  3 2 3 9 6 2 1 

ESPAÑA  

Trafalgar.  27 -29 28071  Madrid  Tel.  ( » 1 ) 5 3 6  22  9 5 Fa x  (91) 53 6 23  4 9 

reuma -P rense  L lo ros , SA  

C e s i e » .  37  28001  Madrid  Te l  (91)431 33  99  (Ubros) 

43 1  32  2 2  (Susa ¿clones) 43 5  36   37 (a reccMin )  

Telex   4 9 3 7 0 M P U - E  Fex  (91) 575  39  96  Sucursal: 

Conssfo de  Ciento. 39 1 06009  Barcelona Te l  (93) 46 6 34  9 2 Fa x  ( 9 3 ) 4 6 7  76   5 9 

d a C e W u n y e 

Rambla dsfs  Eshjdrs, 11 8  (P i 08002  Barcelona Tel  (93)302  6635 Ta l  9 3 ) 3 0 2   64   6 2 Fa x (93) 3 02   12  9 9 

FRANCE  

Service  de s  pubNcattono 

26 . ru e  D e s t o 75727 Pans Cedex  ÍS  Tel.  ( 1 ) 4 0 56  77  01131  Fa x ( 1 ) 4 0 56  7 7 0 0 

IRELAND 

Go v e r n m e n l SuppSse  Agency 

4- 5  Harcourt Roed  Durjun2 

Ta l  ( 1 ) 6 6 1 3  11 1 Fa x ( 1 ) 4 7 60  64 5 

ITALIA  

Licosa   Sp A  

vi a  Duca rj   C a l e b ™  1/1  

50125  Firenze  Te l  ( 0 5 5 ) 6 4  5 4 1 5 Fa x 64   12  57  Telex 570466  L ICOSA  I 

GRAND -DUCHÉ   D E  L U X E M B OU R G 

5.   ru e Raiftetsen 2411  üjxernbourg  Te l  4 0  10  2 0 Fa x 4 9 06  6 1 

Ru e de   la  Montagna 3 4 /  rlergatraal  34  B t e 1 1 / B u s 1 1 1000 Bruxelles  / 1 0 0 0  Brussel 

Te l 

( 0 2 ) 5 1 1 6 9 41

 Fa x (02) 51 3 31   9 5 

DANMARK   ~ 

J.   H.  Schüret  IrytonTajIion  AVS  

Herstedvang   10-12 2620 Albertslund  TU 4363 23  00  Fa x  (Sales) 43  63   19  6 9 Fa x  (Managarnsnl) 4 3 S 3 1 9  4 9 

DEUTSCHLAND  

N E D E R L A N D 

S O U  C 

Externe  Fondsen Postbus  20014 25 (»EA 's -Grave r ihaga  Ta l .  (070) 3 7 69  88 0 Fa x  0 7 0  3 7 89  7 83  

P OR T U GA L 

k n p r a n u  Newton i i 

Casa da  Moeda .  E P Ru a D   Francisco Manual de  Malo. 5 1092 UsboB Codex Te l .  ( 0 1 ) 6 9  34   14  Fa x (Ol) 69  3 1  66  

D t s W b u k k x a  d e  U v r o e Be r t r a nd , L d . ' 

Gr u p o  rsertrend,  S A 

Ru a da s Terras do s Valea, 4- A  Apartado   37  2700 Amadora Codex Te l .  ( 0 1 ) 4 9  5 9  0 50  Telex  15798  BERD IS Fax 49  60  255  

UN ITED   K IN GD OM 

H U S O   B o o k e  (Agency  section)  

H M S O   Publications   Centre  51   rene   Elms  Lene London S W 8  5D R  Tel. 1071)873 9090 Fax 873 8463 Telex 2 9  71   13 8 

ÖS T E R R E IC H 

nz sche Verìoge-d  Urttvera ltå tabucftrrendhe 

Kohlmarld16  1014   Wien Te l .  ( 1 ) 5 3 1 6 1 0  T e l e x 1 1 2  50 0  B O X A  Fa x  (1 ) 53 1  61-161  

SUOMI /F INLAND  

eUuMsMftsiflsMI  Ke^oeKrMjppia 

K4*kuska tu1 

P O Box  21 8 00381  HaêsinM  T U .  (0 )  12 1  41  Fa x  ( 0 ) 1 2 1 44   4 1 

N O R G E  . 

NsHWsMn  In to  Csn l tc  Bertrand Narveaons  ve l  2 P O Box  6125  Enerstad  0602 Celo  6 Te l .  (22) 57  33   0 0 Telex 79666 N IC   N  Fa x (22) 68  19  01  

S V E R IGE 

B T J A B 

T raMMvgen  13  22100  Lund  Te l  (046)  18  M   0 0 F a s ( 0 4 6 ) 1 6 0 1 2 S 

3 0 7 9 4 7 

Skòlavordustlg.  2 

10 1  Reykiavik T e l . 1 1  56   50  

S C H W E IZ  / SU ISSE   /  SV IZZERA 

StamrjrenbectiatraBe  65  8035  Zurich Te l .  ( 0 1 ) 3 6 5  5 4  4 9 Fa x  ( 0 1 ) 3 6 5  5 4  11  

Europ rees  Kleeetce   BK  U d 

66 .  bdVitosha  1463  Sofia T e l / F a x  2 52  74   75  

CESKÁ   REPUBLIKA  

H a v e k o v a 2 2 13 0 00  Praha  3 Te l .  (2 ) 24  22  94  33  Fa x (2 ) 24  22   14  84  

M A GY A R OR S Z A G 

IS.  Krucza  38 /42 00 -512  Warszawa Te l .  (2 ) 62 1 99  93 ,  6 2 6 - 2 8 4 2 International  Fax&Phone (0-39) 12-00-77 

ROMAN IA  

65 . Strada Dionisio Lupu 70184  Bucuresti T e U F s x 0 1 2  9 6  4 6 

9.604etiya Oktyabrya  Avenue 117312MOSOOW Tel/Fax (095)  1355227 

SLOVAK IA 

S lovak  Techn ica l U b r a r y 

N m   slobody  19  61 2 23  Bratislava 1 Te l .  ( 7 ) 2 2 0 4 5 2 

Fa x :  (7 ) 29 5  78 5 

C Y P R U S 

Cyp ruaC  I ndue t ry 

Chamber  Buerjng  38   Gnvas Drageres  A  3  Deligkxgis  Street P O  Box   1455 

I. (2) 449500/462312 X (2) 456630  

LO A OS M e t a Te l . 6 6 44   88  Fa x 6 7 6 7 9 9 

TÜRKJYE 

Pree Gaze te  Krtep  Dergl Paze r ieme  DeøtOTi T ica re t  v e A Ş 

r fe iaoaehe Sokak N   15  btanbutCagaloglu  Tel.  (I)  52 0 92  96  - 52 8 55  66  Fa x 5 20  64  57  Telex 23622   DSVO-TR  

ISRAEL 

R O Y  hitorrratunal  

P O  Bo x  13056 41   Mishmar  Hayardan Street Te l Aviv 61130  Tel. 3 496106 F a x 3 6 4 8  6 0  3 9 

4 1 S h e r i l S l  Cairo Tel/Fax 39  39  73 2 

UN ITED   S T A T E S O F AMER ICA   / CANADA 

Lanham . M D   20706 -4391 Te l .  Toll Free  (800) 27 4  4688 Fa x  (301) 4 59   0056 

Subscript ions  only Un iquemen t  a tex inemen ts  

R e n o u l Pub l ish ing C o.   Lt d 

1294 Algoma  Road  Ottawa.  Ontario  K1 B  3 W 8 Te l .  (613) 74 1  4 3  33  Fa x  (613) 74 1  54   3 9 Telex  0534783 

AUSTRALIA  Hun te r  ftablteeoone  56 A  Glpps  Street CcVtingwocd 

Victorie 3066 Te l .  ( 3 ) 4 1 7 5 3 6 1 Fa x  ( 3 ) 4 1 9 7 1 5 4 

JAPAN  

IGnokiinrya  Company   Lt d 

17-7 S»n luku 3-Chome ShinfukLhku Tokyo  160-91 Te l .  (03)  34394 )121 

tJountM  DopArtUoSfit P O   Box  55   Ctirlose Tokyo  15 6 Te l .  (03)  3439 -0124 

S OU T H -E A S T  ASIA  

Lega l U b r e r y  Serv ices  Lt d 

Orchard P O  Bo x  0523 Singapore   9123  

Te l  7 3 0 4  24   1 F a i 24  3 2  4 7 9 

S OU T H  AFR ICA 

Serlo 5t h Floor. Expon  House O r  Maude 6  Wea l  Streets Sandten  2146 T e l . ( 0 1 1 ) 6 6 3 4 7 3 7 Fa x  ( 011 )863 -6569  

A U T R E S  PAYS OT H E R   C OU N T R IE S  A N D E R E  LANDER 

Of f ice d ee  p u M c a U o t r a  órnetenos 

2.   ru e  Merrier 2965  Luxembourg  T e l . 4 9 9 2 6 - 1 T e k s x P U B O F L U 1 3 2 4 b  F ax  4 6  85  73 /48 66   17  

I f f i U I W ^ ^ 

8/21/2019 Caso Rotura

http://slidepdf.com/reader/full/caso-rotura 200/200

NOTICE TO THE READER

All scientific and technical reports published by the EuropeanCommission are announced in the monthly periodical  'euroabstracts'.   For subscription (1 year: ECU 60) please write to theaddress below.

o9z>


Recommended