+ All Categories
Home > Documents > Catalytic Membrane Reactors involving Inorganic Membranes ...

Catalytic Membrane Reactors involving Inorganic Membranes ...

Date post: 28-Jan-2022
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
41
Catalytic Membrane Reactors Catalytic Membrane Reactors involving involving Inorganic Inorganic Membranes Membranes - - A short A short overview overview - - Anne JULBE Anne JULBE CNRS Senior Research Scientist CNRS Senior Research Scientist Institut Européen des Membranes (UMR CNRS 5635)- UM 2– CC047 Place Eugène Bataillon – 34095 Montpellier cedex 5 – FRANCE Vrnjačka Banja- Serbia- October 7-12, 2007
Transcript

Catalytic Membrane ReactorsCatalytic Membrane Reactorsinvolvinginvolving

InorganicInorganic MembranesMembranes--A short A short overviewoverview--

Anne JULBEAnne JULBECNRS Senior Research ScientistCNRS Senior Research Scientist

Institut Européen des Membranes (UMR CNRS 5635)- UM 2– CC047Place Eugène Bataillon – 34095 Montpellier cedex 5 – FRANCE

Vrnjačka Banja- Serbia- October 7-12, 2007

OUTLINEOUTLINE

Definition of inorganic CMRs

The possible membrane functions in CMRs* Extractor … examples* Distributor … examples* Contactor … examples

Other types of membrane reactors* Catalytic particle traps* Photocatalytic membrane reactors* Trifunctional membrane reactor* Zeolite encapsulated catalyst* SOFCs* SOECs

Barrier effectControlled transport

MEMBRANE

CATALYST

Chemicalreaction

A (+ B) C (+D)

The catalytic membrane reactor conceptImprovement of conversion and/or selectivity of several catalytic reactions

TheThe catalyticcatalytic membrane membrane reactorreactor conceptconceptImprovementImprovement ofof conversion conversion andand/or /or selectivityselectivity ofof severalseveral catalyticcatalytic reactionsreactions

TubularTubularmembranemembrane

Membrane Membrane ScienceScience CatalysisCatalysis

InnerInner catalystcatalyst

RM

Outlet

Outlet

Inlet

InletOperating Operating conditionsconditions

ChemicalChemical engineeringengineering

Introduction

Various types of membrane/catalystarrangements in membrane reactorsVariousVarious types of membrane/types of membrane/catalystcatalystarrangements in membrane arrangements in membrane reactorsreactors

CatalystCatalyst disperseddispersedin an in an inertinert membrane membrane

IntrinsicallyIntrinsicallyCatalyticCatalytic membranemembrane

CatalystCatalyst bedbedon on inertinert membranemembrane

IMRIMR CMRCMR

Introduction

Dense ionconducting

(O2-, H+)

Molecular sieve membranes

Types of inorganic membranesB

ackg

roun

d

Ionic (ZrO2, CeO2, Bi2O3…)Mixed ionic / ẽ (Perovskites,..)

Pd, Pd alloys (H2) +…Ag (O2)

Hydroxides

Stainless steel,Ti, Ni, Ag, Pd….

Al2O3, SiO2, glassZrO2, TiO2,….+ composites CerMet

ZeolitesCarbon

Introduction

Flat dense Flat dense or porous supportsor porous supports

HoneycombsHoneycombsTubular supportsTubular supportsPowdersPowders

Sintering

Shaping or casting of ceramic membranes Introduction

Thick top-layer(Loaded sols) Thin top-layer

Infiltratedcomposite layer

Thick top-layer(Loaded sols) Thin top-layer

Infiltratedcomposite layer

MEMBRANE MATERIALS for reactors

OrganicOrganic membranesmembranes (dense or (dense or porousporous)) : for low T° applications

Dense membranesPermeation by adsorption/ dissolution/ diffusion/ desorption

Porous membranesPermeation by convection, diffusion(s)

Selectivity Permeability

☺☺

☺☺

InorganicInorganic membranesmembranes : for applications at high T° and/or pressure

v

Viscous flow

Gas translation

Dec

reas

ing

pore

size

s

Knudsen diffusion

Bulk diffusion

Surface diffusion

Capillary condensation

POROUS MembranesPOROUS Membranes-- Transport Transport mechanismsmechanismsWhichWhich pore size for pore size for whichwhich functionfunction ??

⎟⎠⎞

⎜⎝⎛−=Π

RTEg.exp

MRT8.

kLg

πχ

Pm.RTL

r8

2

v ητε

RMT8

L3r2

kK πτθ

ε=Π

* Molecular sieving

H2 / SFSF66 or N2 / SFSF66 in MFIin MFIn-hexane / 2,2 2,2 dimethylbutanedimethylbutane orp-xylene / oo--mm--xylenexylene in MFIin MFI

* Difference in diffusivity

CO2 / CHCH44 in CHA and DDRin CHA and DDR

* Competitive adsorptionnn--CC44HH10 10 / HH22 in MFIin MFICOCO22 / CHCH44 in FAUin FAUCOCO22 / CHCH44 in CHA and DDRin CHA and DDR

MICROPOROUS MEMBRANESMICROPOROUS MEMBRANES--Separation mechanismsSeparation mechanisms

* Molecular sieving

* Difference in diffusivity

* Competitive adsorption

MFIMFI

DIFFUSION DIFFUSION •• materialmaterial intrinsicintrinsic propertyproperty, , •• micromicro--structurestructure•• drivingdriving force (force (ΔΔpp or or ΔΔE)E)

DENSE MEMBRANES- Transport mechanismsDENSE DENSE MEMBRANESMEMBRANES-- Transport Transport mechanismsmechanisms

ADSORPTION ADSORPTION Surface exchange

(+dissociation, charge transfer, surface diffusion, incorporation)

DESORPTIONDESORPTIONREACTION REACTION ……andand/or RECOMBINATION/or RECOMBINATION

MolecularMolecular OO2 2 or Hor H22/H/H22OO

Dense Dense CeramicCeramic(e.g. (e.g. oxygenoxygen deficientdeficient

fluorites, fluorites, perovskitesperovskites relatedrelatedstructures)structures)

P1

P2Active Active andand selectiveselective

subsurfacesubsurface speciesspecies O* or H* O* or H*

CATALYTIC REACTORS

MAIN MEMBRANE FUNCTIONS

Main membrane functions in reactorsMain membrane Main membrane functionsfunctions in in reactorsreactors

2-DISTRIBUTOR

BB BBA CC ( D )

A

BB BB

CC

BB

CCA A Controlled addition of a reactant. Limitation of side reactions

Increased selectivity

Dense or Dense or porousporousmembranesmembranes

3-ACTIVE CONTACTOR

A + B CCCatCat.

B

CC

A A + B

CC

or

Controlled diffusion of reactantsto the catalyst

Increased conversion (& selectivity)

CatalyticallyCatalyticallyactive membranesactive membranes

1-EXTRACTOR

Dense or ultraDense or ultra--microporousmicroporous membranesmembranes

A + B C C + DD

A, B

DD

CC

sweep

DDIncreased conversion

Equilibrium shift

Membrane Functions

1- MEMBRANE EXTRACTOR11-- MEMBRANE EXTRACTORMEMBRANE EXTRACTORMembrane Functions

Extractors

Important membrane characteristics : * permeability* selectivity* stability

Ex: Dehydrogenation reactions, Steam reforming of CH4, Water Gas Shift

Ex: Isomerization of xyleneD

X X

S S

New Energy and Industrial TechnologyDevelopment Organization (NEDO)& Japan Gas association

Membrane FunctionsExtractors1- MEMBRANE EXTRACTOR

Equilibrium displacement-MSR11-- MEMBRANE EXTRACTORMEMBRANE EXTRACTOREquilibriumEquilibrium displacementdisplacement--MSRMSR

Residual CO separatedfrom H2 is burnedand the generated heatis utilized for reformingreaction

CH4 + H2O CO + 3 H3 H22

Methane steam reforming (550°C; 0.1MPa)

The world's first compact and economical on-site H2 production unit based on membrane technology.

∆H = 49 Kcal/mol

NEDO & Japan Gas association

Membrane FunctionsExtractor1- MEMBRANE EXTRACTOR

MSR

(Polymer Electrolyte Fuel Cell)

PSA

11-- MEMBRANE EXTRACTOR MEMBRANE EXTRACTOR MSRMSR

NEDO PROJECT-

Ru-Al2O3

NEDO NEDO projectproject((FY2002 - FY2006)LeadedLeaded by Prof. by Prof. NakaoNakao

MSR (500°C)MSR (500°C)

ALMOST DENSE ALMOST DENSE SILICA MEMBRANESILICA MEMBRANE

Goal : CHGoal : CH44/H/H22 conversion conversion efficiencyefficiency >> 80%80%

Japan Fine CeramicCenter

1a1a-- MEMBRANE EXTRACTORMEMBRANE EXTRACTOREquilibriumEquilibrium displacementdisplacement

Need for a High-Efficiency, High-T°HH22 extraction membraneextraction membrane

Ni-doped silica

SolSol--gel gel –– P.PexP.Pex, 2005, 2005 CVDCVD-- D. Lee, 2004D. Lee, 2004

CVI, CVI, PhDPhD D. Lee, D. Lee, 20032003

ALMOST DENSE SILICA ALMOST DENSE SILICA ––Typical examplesTypical examples

FusedFused silicasilica

Pfaender

Na silicate glassNa silicate glass

(2.89Å)

(3.3Å)

(2.75Å)

MFI MFI zeolitezeolite membrane (5.5membrane (5.5ÅÅ ))

Ortho : 6.8 ÅÅ

Meta : 6.8 ÅÅPara : 5.8 ÅÅ

Catalyst(Isoxyl*)

MFI MFI zeolitezeolite membrane (5.5membrane (5.5ÅÅ ))

Ortho : 6.8 ÅÅ

Meta : 6.8 ÅÅPara : 5.8 ÅÅ

Catalyst(Isoxyl*)

Process and MFI membrane under development by NGK

Xylene isomerization reactorXylene isomerization reactor

Terephtalic acid

Membrane FunctionsExtractors1b- MEMBRANE EXTRACTOR

Selectivity improvement1b1b-- MEMBRANE EXTRACTORMEMBRANE EXTRACTOR

SelectivitySelectivity improvementimprovement

Y CMR > Y conventional reactor

* Isoxyl(Süd-Chemie)

ParaxyleneParaxylene Polyéthylène téréphtalate

L. van Dyk, L. Lorenzen, S. Miachon, and J.-A. Dalmon, Catal. Today, 104 (2005) 274.

MFIMFI

A B

C D

Membrane FunctionsExtractorsMFI zeolite membranes for

the separation of Xylene isomersMFI zeolite membranes forMFI zeolite membranes for

thethe separationseparation ofof XyleneXylene isomersisomersZ. Lai, G. Bonilla, I. Diaz, J.G. Nery, K. Sujaiti, M.A. Amat, E. Kokkoli, O. Terasaki, R.W. Thompson, M. Tsapatsis, D.G. Vlachos, Science, 300 (2003) 456-460.

22-- MEMBRANE DISTRIBUTORMEMBRANE DISTRIBUTOR

Rea

ctio

nzo

ne

A

* Increased S by homogeneous distribution of the reactant A(e.g. limiting undesirable side reactions)

* Increased Y by increasing the possible concentration ratios of reactants(e.g. overpassing the flammability limit)

* Limited catalyst desactivation …

* Distribution of selective (O* or H*) specieson the membrane surface

* Direct use of air instead of pure O2 (€)* No formation of toxic NOx ( )

For dense membranes (O2 or H2 selective)

22-- MEMBRANE DISTRIBUTORMEMBRANE DISTRIBUTORe.g. Partial e.g. Partial oxidationoxidation of of alkanesalkanes

O2 OO22

* Reduced [O2] along the catalyst bed Increased B selectivity* Possibility to use « dangerous » [O2]/[A] overall ratios

Increased B yield

AA

OO22

Progressive Progressive consumption consumption of Aof A

Membrane Membrane distributordistributor

AA

OO22

Progressive Progressive consumption consumption of Aof A

Membrane Membrane distributordistributorMembrane Membrane distributordistributor

BBAA

OO22

Progressive Progressive consumption consumption of Aof A

Membrane Membrane distributordistributor

AA

OO22

Progressive Progressive consumption consumption of Aof A

Membrane Membrane distributordistributorMembrane Membrane distributordistributor

BB

A BB ( C)

MethaneMethane to to syngassyngas :: CHCH44 + 1/2 O+ 1/2 O22 →→ COCO + 2 H+ 2 H22

Ex : Ex : LiLaNiO/LiLaNiO/γγ--AlAl22OO33 catalyst with Bacatalyst with Ba0.50.5SrSr0.50.5CoCo0.80.8FeFe0.20.2OO3 3 --δδ tube (Wang 2003)tube (Wang 2003)Y =80%Y =80%--875875°°CC

22-- MEMBRANE DISTRIBUTORMEMBRANE DISTRIBUTORfor the Partial for the Partial OxidationOxidation of of MethaneMethane (POM)(POM)

∆H = -9 Kcal/mol

Synthesis of mixed conducting oxide membrane (Sr-Fe-Co-O perovskite)(U. Balachadran et al., Cat. Today 36 (1997) 265)

Sr(NO3)2+ Fe(NO3)3・9H2O + Co(NO3)2・6H2O in deionized water

Drying up while stirring

Calcination at 850℃ for 16 h

Grinding in an auto mortar for 2 h

Sr-Fe-Co-O powder

Pressing at 3.7×103 kgf/cm2 for 5 min

Calcination at 1150℃ for 10 h

Self-supported membrane

22-- MEMBRANE DISTRIBUTORMEMBRANE DISTRIBUTORDense ion Dense ion conductingconducting ceramicceramic membranemembrane

22-- MEMBRANE DISTRIBUTORMEMBRANE DISTRIBUTORDense ion Dense ion conductingconducting ceramicceramic membranemembrane

3- MEMBRANE CONTACTOR33-- MEMBRANE CONTACTORMEMBRANE CONTACTORMembrane Functions

Contactor

Rea

ctio

nzo

ne

A+B

Rea

ctio

nzo

ne

A B

Interfacial

Flow-through

Enhancedcatalyst/reactant contact

* improved access X X

* controlled contact timeS S

A + B

C

- Precise control of the contact time- Forced diffusion

- Better access of B to the catalyst (solubility )- no intraparticular diffusion

B

AA

A + B

Pd nanoparticles in the pores (∅ 0.25-0.75 μm)

of a cross-linked PAA membrane

Membrane with defined pore structureand

convective mass flow of the reaction mixture

3- MEMBRANE CONTACTOR33-- MEMBRANE CONTACTORMEMBRANE CONTACTOR

Flow-through catalytic contactorfor fine chemistry hydrogenation

Controlled contact timeS S

A. Schmidt, R. Haidar, R. Schomäcker, Catalysis Today 104 (2005) 305–312

Compared to experiments with supported catalysts (Pd/C and Pd/Al2O3) in a slurry and a fixed bed reactor the selectivity for the desired products could be increasedby 3% (1-octyne) up to 40% (geraniol).

Membrane FunctionsContactor

WATERCATOX process. EU 5th FP contract N° EVK1-CT-2000-00073, 2001-2004Int. Patent Publ. N° 1368278, Norvegian Patent N° 313994 (2003)

20-80°C

5-15 bar

Membrane FunctionsContactor

3- MEMBRANE CONTACTOR33-- MEMBRANE CONTACTORMEMBRANE CONTACTOR

OTHER TYPES

OF CATALYTIC MEMBRANE REACTORS

* Catalytic particle traps* Photocatalytic membrane reactors* Trifunctional membrane reactor

* Zeolite encapsulated catalyst* SOFCs* SOECs

OO22, N, N22, H, H22OOCOCOxx, , CCxxHHyySootSoot

11--The The catalyticcatalytic particleparticle traptrap

OO22, N, N22, H, H22OONONOxx, , COCOxx, , CCxxHHyy

OO22, N, N22, H, H22OONONOxx, , COCOxx, , CCxxHHyy

OO22, N, N22, ,

COCO22, H, H22OO

CatalyticLayer (oxidative)covering the grains of the ceramic wall

Each channel isclosedon one size

(+(+NONOxx))

A A catalyticcatalytic contactorcontactor for a for a continuouscontinuous sootsoot oxidationoxidation

4 nm4 nm

NanophaseNanophaseCeOCeO22

A. JULBE, V. ROUESSAC, J. DURAND; A. AYRAL, Journal of Membrane Science (2007) in press

2- Photocatalytic reactor –Coupling separation & photocatalysis

UVvisible

UV

CO2 + H2O

H2O

MacromoleculesColloids

Aqueous Effluent

Small organicmolecules

PhotoactivePhotoactivesupportsupport

Non-photoactive membrane

Photodegradation in permeate

2Nonphotoactive

support

1

PhotoactivePhotoactive MembraneMembrane

Photocatalytic reactor, antifouling

500 nm500 nm

Homogeneous defect-free TiO2membranes with controlled thickness

5 nm 5 nm porepore--sizedsizedγγ--AlAl22OO33

150 nm150 nm

Non-photoactive

support1

Photoactive membranes

F. Bosc, A. Ayral, C. Guizard, J. of Membrane Science 265, 13 (2005).

2- Photocatalytic reactor –Coupling separation & photocatalysis

F. Bosc, PhD Thesis2004

33--Trifunctional membrane Trifunctional membrane reactorreactorfor for waterwater treatmenttreatment

Vr = 2.0 cm3

a = 5.7 cm2 cm-3

Residence time = 1-6 min O3distributor

THEHONG KONGUNIVERSITY OFSCIENCE &TECHNOLOGY

Out : Nanophaseozonation catalyst

In : pervapo-ration zeolite membrane

S. HENG, PhD Thesis,2006

Ozonation catalyst

Pervaporation(zeolite membrane)

4- Zeolite Membrane Encapsulated Catalyst

ZeoliteZeolite MembraneMembrane

N. Nishiyama & al, Micro. Mesoporous Mater. 83 (2005)244

* No need to prepare large perfect membrane areas* Traffic control over reactants and products

Pt/Pt/TiOTiO22

StraightStraightolefinolefin

Straightparaffin

Branchedolefin

CatalystCatalyst bedbed

ZMZMECC

An original micro-designed CMR

H2 , CO or CH4

OO2 2 + 4e+ 4e-- 2 O2 O==

HH2 + O= → H2O + 2e-

COCO + O= → CO2 + 2e- CHCH44 + 4O= → 2H2O + CO2 + 8e-

5- Fuel Cells – SOFCs are also CMRs

6- Membrane applications in the production of H2

from H2O

Water or steam electrolysis

Efficiency : 25-30% (classical low T°)30-40% (high T°)

"Oui, mes amis, je crois que l'eau sera un jour employ"Oui, mes amis, je crois que l'eau sera un jour employéée comme combustible, que e comme combustible, que l'hydrogl'hydrogèène et l' oxygne et l' oxygèène, qui la constituent, utilisne, qui la constituent, utiliséés isols isoléément ou simultanment ou simultanéément, ment, fourniront une source de chaleur et de lumifourniront une source de chaleur et de lumièère inre inéépuisables et d' une intensitpuisables et d' une intensitéé que que la houille ne saurait avoir. la houille ne saurait avoir. …… Ainsi donc, rien Ainsi donc, rien àà craindre.craindre.…… L' eau est le charbon de L' eau est le charbon de l'avenirl'avenir". (Cyrus Smith)". (Cyrus Smith)

Jules VERNE (1828-1905). L'île mystérieuse (1873)

http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/electrol.html

H2O H2 + ½ O2H2O H2 + ½ O2

WATER or STEAM ELECTROLYSIS

ΔH = 285.83 kJ/mol Energy

H2 + ½ O2

Electrolysis :A chemical process in which bonded elements & compoundsare dissociated by the passage of an electric current.

Polymer Electrolyte Membrane (PEM) Electrolyzers:

1. Uses a solid plastic material as an electrolyte (3-30 mm; 100-200 €/m2)

2. Water reacts at the anode to form oxygen, electrons, and positively charged hydrogen ions (protons).

3. The electrons flow through an external circuit to the cathode.

4. The H+ ions move across the PEM to the cathode, where they combine with the electrons to form H2 gas

• Process which could increase conversion efficiency to the range of 45 to 50 %

• In France, both EDF and AREVA are currently examining the use of high T° electrolysis powered by nuclear technologies. The DOE is also active in this field

• High T° electrolysis utilizes a solid oxide electrolyte/electrodes

• The efficiency increase is achieved because highT° electrolysis utilizes a significant amount of heat, for example from a nuclear reactor.nuclear reactor.

• The added heat decreases the amount of electricity required to separate H2O into H2 and O2.

High Temperature Electrolysis

H2O H2

e-

e-

I

Circuit externe

O2

Anode 2O2- → O2+ 4 e-

Cathode 2H2O+ 4 e- → 2H2 +2O2-

e-

e- H2O

H2

I

O2

Circuit externe

Cathode 4 H++ 4 e- → 2H2

Anode 2H2

O→ O2+ 4 e- + 4H+

H2O H2

e-

e-

I

Circuit externe

O2

Anode 2O2- → O2+ 4 e-

Cathode 2H2O+ 4 e- → 2H2 +2O2-

e-

e- H2O

H2

I

O2

Circuit externe

Cathode 4 H++ 4 e- → 2H2

Anode 2H2

O→ O2+ 4 e- + 4H+

H2O H2

e-

e-

I

Circuit externe

O2

Anode 2O2- → O2+ 4 e-

Cathode 2H2O+ 4 e- → 2H2 +2O2-

e-

e- H2O

H2

I

O2

Circuit externe

Cathode 4 H++ 4 e- → 2H2

Anode 2H2

O→ O2+ 4 e- + 4H+

Solid oxide Solid oxide electrolyserselectrolysers : two strategies: two strategies

• Example of electrolyte : Y-ZrO2• Cathode : water combines with electrons

from the external circuit to produce H2gas and O=.

• The O= move through the membrane and release electrons to the external circuit.

• Functioning T° : 700– 1000°C

OO==

HH22OO

2O2O==

2O2O==AnodeAnode

CathodeCathodeHH++

HH22OO

AnodeAnode

CathodeCathode

4H4H++

4H4H++

• Example of electrolyte : Y-BaCeO3• Anode : water dissociates, releases

electrons and O2 gas and protons. • The H+ move through the membrane and

combines with electrons from the external circuit.

• Functioning T° : 450– 800°C

1 liter H2O 2kWh (theoretical)

1 liter H1 liter H22O O 2kWh (2kWh (theoreticaltheoretical))

CONCLUSION

H2H2

Imagine Imagine ……!!


Recommended