+ All Categories
Home > Documents > Category O and quasi-hereditary algebrasmath.fau.edu/~dpucinskaite/talks/Hamburg_2011.pdf · 2017....

Category O and quasi-hereditary algebrasmath.fau.edu/~dpucinskaite/talks/Hamburg_2011.pdf · 2017....

Date post: 31-Jan-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
100
Category O and quasi-hereditary algebras Daiva Puˇ cinskait˙ e University of Kiel 07.07.2011 Seminar Bremen-Hamburg-Kiel
Transcript
  • Category O and quasi-hereditary algebras

    Daiva Pučinskaitė

    University of Kiel

    07.07.2011Seminar Bremen-Hamburg-Kiel

  • BGG category O(g),

  • BGG category O(g),

    Bound quiver algebra,

  • BGG category O(g),

    Bound quiver algebra,

    Quasi-hereditary algebra,

  • BGG category O(g),

    Bound quiver algebra,

    Quasi-hereditary algebra,

    1-quasi-hereditary algebra.

  • Highest weight modules in O(sl2(C))

  • Highest weight modules in O(sl2(C))

    g = sl2(C)= C

    (0 10 0

    )⊕ C

    (1 00 −1

    )⊕ C

    (0 01 0

    ) [h, e] = 2x ,[h, y ] = −2[h, h] = 0,

  • Highest weight modules in O(sl2(C))

    g = sl2(C) = C

    (0 10 0

    )⊕ C

    (1 00 −1

    )⊕ C

    (0 01 0

    ) [h, e] = 2e[h, y ] = −2[h, h] = 0,

  • Highest weight modules in O(sl2(C))

    g = sl2(C) = C

    (0 10 0

    )⊕ C

    (1 00 −1

    )⊕ C

    (0 01 0

    ) [h, e] = 2e[h, y ] = −2[h, h] = 0,. .︸ ︷︷ ︸

    e

    . .︸ ︷︷ ︸h

    . .︸ ︷︷ ︸f

  • Highest weight modules in O(sl2(C))

    g = sl2(C) = C

    (0 10 0

    )⊕ C

    (1 00 −1

    )⊕ C

    (0 01 0

    ) [h, e] = 2e[h, y ] = −2[h, h] = 0,. .︸ ︷︷ ︸

    e

    . .︸ ︷︷ ︸h

    . .︸ ︷︷ ︸f

    h = Ch is a Cartan-subalgebra, h∗ = {λ : h → C | λ is linear} ∼= C

  • Highest weight modules in O(sl2(C))

    g = sl2(C) = C

    (0 10 0

    )⊕ C

    (1 00 −1

    )⊕ C

    (0 01 0

    ) [h, e] = 2e[h, y ] = −2[h, h] = 0,. .︸ ︷︷ ︸

    e

    . .︸ ︷︷ ︸h

    . .︸ ︷︷ ︸f

    h = Ch is a Cartan-subalgebra, h∗ = {λ : h → C | λ is linear} ∼= C

  • Highest weight modules in O(sl2(C))

    g = sl2(C) = C

    (0 10 0

    )⊕ C

    (1 00 −1

    )⊕ C

    (0 01 0

    )

    . .︸ ︷︷ ︸e

    . .︸ ︷︷ ︸h

    . .︸ ︷︷ ︸f

    h = Ch is a Cartan-subalgebra, h∗ = {λ : h → C | λ is linear} ∼= C

    [h, e] = 2e,

    [h, f ] = −2f ,

    [h, h] = 0,

  • Highest weight modules in O(sl2(C))

    g = sl2(C) = C

    (0 10 0

    )⊕ C

    (1 00 −1

    )⊕ C

    (0 01 0

    )

    Φ = Φ+︸︷︷︸||

    {2}

    ∪ Φ−︸︷︷︸||

    {−2}

    . .︸ ︷︷ ︸e

    . .︸ ︷︷ ︸h

    . .︸ ︷︷ ︸f

    h = Ch is a Cartan-subalgebra, h∗ = {λ : h → C | λ is linear} ∼= C

    [h, e] = 2e,

    [h, f ] = −2f ,

    [h, h] = 0,

  • Highest weight modules in O(sl2(C))

    g = sl2(C) = C

    (0 10 0

    )⊕ C

    (1 00 −1

    )⊕ C

    (0 01 0

    )

    Φ = Φ+︸︷︷︸||

    {2}

    ∪ Φ−︸︷︷︸||

    {−2}

    . .︸ ︷︷ ︸e

    . .︸ ︷︷ ︸h

    . .︸ ︷︷ ︸f. .︸ ︷︷ ︸

    g2=n+

    . .︸ ︷︷ ︸g0

    . .︸ ︷︷ ︸g−2=n−

    h = Ch is a Cartan-subalgebra, h∗ = {λ : h → C | λ is linear} ∼= C

    [h, e] = 2e,

    [h, f ] = −2f ,

    [h, h] = 0,

  • Highest weight modules in O(sl2(C))

    g = sl2(C) = C

    (0 10 0

    )⊕ C

    (1 00 −1

    )⊕ C

    (0 01 0

    )

    Φ = Φ+︸︷︷︸||

    {2}

    ∪ Φ−︸︷︷︸||

    {−2}

    . .︸ ︷︷ ︸e

    . .︸ ︷︷ ︸h

    . .︸ ︷︷ ︸f. .︸ ︷︷ ︸

    g2=n+

    . .︸ ︷︷ ︸g0

    . .︸ ︷︷ ︸g−2=n−. .︸ ︷︷ ︸

    b=Borel subalgebra

    h = Ch is a Cartan-subalgebra, h∗ = {λ : h → C | λ is linear} ∼= C

    [h, e] = 2e,

    [h, f ] = −2f ,

    [h, h] = 0,

  • Highest weight modules in O(sl2(C))

    g = sl2(C) = C

    (0 10 0

    )⊕ C

    (1 00 −1

    )⊕ C

    (0 01 0

    )

    Φ = Φ+︸︷︷︸||

    {2}

    ∪ Φ−︸︷︷︸||

    {−2}

    . .︸ ︷︷ ︸e

    . .︸ ︷︷ ︸h

    . .︸ ︷︷ ︸f. .︸ ︷︷ ︸

    g2=n+

    . .︸ ︷︷ ︸g0

    . .︸ ︷︷ ︸g−2=n−. .︸ ︷︷ ︸

    b=Borel subalgebra

    h = Ch is a Cartan-subalgebra, h∗ = {λ : h → C | λ is linear} ∼= C

    [h, e] = 2e,

    [h, f ] = −2f ,

    [h, h] = 0,

    U(n−) = spanC{1, f , f 2, f 3, . . . , f n, . . .

    }

  • Highest weight modules in O(sl2(C))

    Verma module V (3)= U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    v•3

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    vf .v••31

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    3

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    34

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    −21 −12 −5 3 4 3

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    −21 −12 −5 3 4 3

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    −21 −12 −5 3 4 3

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    −21 −12 −5 3 4 3

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

    −21 −12 −5

    f 4.vf 5.vf 6.vf 7.vV (−5)••••

    -5-7-9-11. . .

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    −21 −12 −5 3 4 3

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

    −21 −12 −5

    f 4.vf 5.vf 6.vf 7.vV (−5) = L(−5)••••

    -5-7-9-11. . .

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    −21 −12 −5 3 4 3

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

    −21 −12 −5

    f 4.vf 5.vf 6.vf 7.vV (−5) = L(−5)••••

    -5-7-9-11. . .

    3 4 3

    vf .vf 2.vf 3.vV (3)/V (−5)••••

    31-1-3

  • Highest weight modules in O(sl2(C))

    Verma module V (3) = U(g).v = spanC{ v , f .v , f2.v , . . . , f n.v , . . .}︸︷︷︸

    3︸︷︷︸

    1︸︷︷︸−1

    ︸︷︷︸3−2n

    −21 −12 −5 3 4 3

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.vV (3)••••••••

    31-1-3-5-7-9-11. . .

    f .f n.v = f n+1.v , h.f n.v = (3 − 2n)f n.v , e.f n.v = n(4 − n)f n−1.v

    −21 −12 −5

    f 4.vf 5.vf 6.vf 7.vV (−5) = L(−5)••••

    -5-7-9-11. . .

    3 4 3

    vf .vf 2.vf 3.vL(3)dimCL(3) = 4 ••••

    31-1-3

  • The block O3(sl2(C))

  • The block O3(sl2(C))

    The Weyl group of sl2(C) is W = {id, σ} with σ(λ) = −λ for all λ ∈ h∗ ∼= C

    Φ+ = {2} ⇒ δ = 2 12 = 1 ⇒ W · 3 = {id · 3, σ · 3} = {3,−5}

    f 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

  • The block O3(sl2(C))

    The Weyl group of sl2(C) is W = {id, σ} with σ(λ) = −λ for all λ ∈ h∗ ∼= C

    Φ+ = {2} ⇒ ρ = 2 12 = 1 ⇒ W · 3 = {id · 3, σ · 3} = {3,−5}

    f 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

  • The block O3(sl2(C))

    The Weyl group of sl2(C) is W = {id, σ} with σ(λ) = −λ for all λ ∈ h∗ ∼= C

    Φ+ = {2} ⇒ ρ = 2 12 = 1 ⇒ W · 3 = {id · 3, σ · 3} = {3,−5}

    f 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

  • The block O3(sl2(C))

    The Weyl group of sl2(C) is W = {id, σ} with σ(λ) = −λ for all λ ∈ h∗ ∼= C

    Φ+ = {2} ⇒ ρ = 2 12 = 1 ⇒ W · 3 = {id · 3, σ · 3}= {3,−5}

    f 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

  • The block O3(sl2(C))

    The Weyl group of sl2(C) is W = {id, σ} with σ(λ) = −λ for all λ ∈ h∗ ∼= C

    Φ+ = {2} ⇒ ρ = 2 12 = 1 ⇒ W · 3 = {id · 3, σ · 3} = {3,−5}

    f 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

  • The block O3(sl2(C))

    The Weyl group of sl2(C) is W = {id, σ} with σ(λ) = −λ for all λ ∈ h∗ ∼= C

    Φ+ = {2} ⇒ ρ = 2 12 = 1 ⇒ W · 3 = {id · 3, σ · 3} = {3,−5}

    −21 −12 −5 3 4 3

    V (3)vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

  • The block O3(sl2(C))

    The Weyl group of sl2(C) is W = {id, σ} with σ(λ) = −λ for all λ ∈ h∗ ∼= C

    Φ+ = {2} ⇒ ρ = 2 12 = 1 ⇒ W · 3 = {id · 3, σ · 3} = {3,−5}

    −21 −12 −5 3 4 3

    V (3)vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

    −21 −12 −5

    V (−5) = L(−5)f 4.vf 5.vf 6.vf 7.v

    ••••••••-5-7-9-11

    . . .

  • The block O3(sl2(C))

    The Weyl group of sl2(C) is W = {id, σ} with σ(λ) = −λ for all λ ∈ h∗ ∼= C

    Φ+ = {2} ⇒ ρ = 2 12 = 1 ⇒ W · 3 = {id · 3, σ · 3} = {3,−5}

    −21 −12 −5 3 4 3

    V (3)vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

    −21 −12 −5

    V (−5) = L(−5)

    L(3)vf .vf 2.vf 3.v

    3 4 3

    ••••31-1-3

    f 4.vf 5.vf 6.vf 7.v••••-5-7-9-11

    . . .

  • The block O3(sl2(C))

    The Weyl group of sl2(C) is W = {id, σ} with σ(λ) = −λ for all λ ∈ h∗ ∼= C

    Φ+ = {2} ⇒ ρ = 2 12 = 1 ⇒ W · 3 = {id · 3, σ · 3} = {3,−5}

    −21 −12 −5 3 4 3

    V (3) = P(3)vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

    −21 −12 −5

    V (−5) = L(−5)

    L(3)vf .vf 2.vf 3.v

    3 4 3

    ••••31-1-3

    f 4.vf 5.vf 6.vf 7.v••••-5-7-9-11

    . . .

  • The block O3(sl2(C))

    The Weyl group of sl2(C) is W = {id, σ} with σ(λ) = −λ for all λ ∈ h∗ ∼= C

    Φ+ = {2} ⇒ ρ = 2 12 = 1 ⇒ W · 3 = {id · 3, σ · 3} = {3,−5}

    −21 −12 −5 3 4 3

    V (3) = P(3)vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

    −21 −12 −5

    V (−5) = L(−5)

    L(3)vf .vf 2.vf 3.v

    3 4 3

    ••••31-1-3

    f 4.vf 5.vf 6.vf 7.v••••-5-7-9-11

    . . .

    −21 −12 −5

    wf .wf 2.wf 3.w••••-5-7-9-11

    . . .

    −21 −12 −5 3 4 3

    P(−5)vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

  • The block O3(sl2(C))

    The Weyl group of sl2(C) is W = {id, σ} with σ(λ) = −λ for all λ ∈ h∗ ∼= C

    Φ+ = {2} ⇒ ρ = 2 12 = 1 ⇒ W · 3 = {id · 3, σ · 3} = {3,−5}

    −21 −12 −5 3 4 3

    V (3) = P(3)vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

    −21 −12 −5

    V (−5) = L(−5)

    L(3)vf .vf 2.vf 3.v

    3 4 3

    ••••31-1-3

    f 4.vf 5.vf 6.vf 7.v••••-5-7-9-11

    . . .

    −21 −12 −5

    wf .wf 2.wf 3.w••••-5-7-9-11

    . . .

    −21 −12 −5 3 4 3

    P(−5)vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . .

    −21 −12 −5 3 4 3

    P(−5)/V (−5)vf .vf 2.vf 3.vwf .wf 2.wf 3.w••••••••31-1-3-5-7-9-11

    . . .

  • O3(sl2(C)) ∼ mod-A3

  • O3(sl2(C)) ∼ mod-A3

    A3 ∼= EndO (P(3) ⊕ P(−5))∼=

    a c d

    b e

    a

    | a, b, c , d , e ∈ C

  • O3(sl2(C)) ∼ mod-A3

    A3 ∼= EndO (P(3) ⊕ P(−5))∼=

    a c d

    b e

    a

    | a, b, c , d , e ∈ C

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . . P(3)

    wf .wf 2.wf 3.w••••-5-7-9-11

    . . .

    P(−5)ṽf .ṽf 2.ṽf 3.ṽf 4.ṽf 5.ṽf 6.ṽf 7.ṽ••••••••31-1-3-5-7-9-11

    . . .

    1

    1

    v 7→ 0w 7→ w

  • O3(sl2(C)) ∼ mod-A3

    A3 ∼= EndO (P(3) ⊕ P(−5)) ∼=

    a c d

    b e

    a

    | a, b, c , d , e ∈ C

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . . P(3)

    wf .wf 2.wf 3.w••••-5-7-9-11

    . . .

    P(−5)ṽf .ṽf 2.ṽf 3.ṽf 4.ṽf 5.ṽf 6.ṽf 7.ṽ••••••••31-1-3-5-7-9-11

    . . .

  • O3(sl2(C)) ∼ mod-A3

    A3 ∼= EndO (P(3) ⊕ P(−5)) ∼=

    a c d

    b e

    a

    | a, b, c , d , e ∈ C

    vf .vf 2.vf 3.vf 4.vf 5.vf 6.vf 7.v••••••••31-1-3-5-7-9-11

    . . . P(3)

    wf .wf 2.wf 3.w••••-5-7-9-11

    . . .

    P(−5)ṽf .ṽf 2.ṽf 3.ṽf 4.ṽf 5.ṽf 6.ṽf 7.ṽ••••••••31-1-3-5-7-9-11

    . . .

    v 7→ ṽw 7→ 0

    !

    0 1 00 0 00 0 0

  • Quiver algebra (example)

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    A = k(

    1•

    α−→

    2•

    β−→

    3•)

    is isomorphic to

    k

    k k

    k k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα}

    A = k(

    1•

    α−→

    2•

    β−→

    3•)

    is isomorphic to

    k

    k k

    k k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα}

    A = k(

    1•

    α−→

    2•

    β−→

    3•)

    is isomorphic to

    k

    k k

    k k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    A = k(

    1•

    α−→

    2•

    β−→

    3•)

    is isomorphic to

    k

    k k

    k k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β}

    A = k(

    1•

    α−→

    2•

    β−→

    3•)

    is isomorphic to

    k

    k k

    k k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    A = k(

    1•

    α−→

    2•

    β−→

    3•)

    is isomorphic to

    k

    k k

    k k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    A = k(

    1•

    α−→

    2•

    β−→

    3•)

    is isomorphic to

    k

    k k

    k k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    dimkA = dimkk(

    1•

    α−→

    2•

    β−→

    3•)

    = 6 is isomorphic to

    k

    k k

    k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    · e1 e2 e3 α β βα

    e1

    e2

    e3 βα

    α

    β βα

    βα 0 0 βα 0 0 0

    dimkA = dimkk(

    1•

    α−→

    2•

    β−→

    3•)

    = 6 is isomorphic to

    k

    k k

    k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    · e1 e2 e3 α β βα

    e1 e1 0 0 0 0 0

    e2

    e3 βα

    α

    β βα

    βα 0 0 βα 0 0 0

    dimkA = dimkk(

    1•

    α−→

    2•

    β−→

    3•)

    = 6 is isomorphic to

    k

    k k

    k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    · e1 e2 e3 α β βα

    e1 e1 0 0 0 0 0

    e2 0 e2 0 α 0 0

    e3 βα

    α

    β βα

    βα 0 0 βα 0 0 0

    dimkA = dimkk(

    1•

    α−→

    2•

    β−→

    3•)

    = 6 is isomorphic to

    k

    k k

    k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    · e1 e2 e3 α β βα

    e1 e1 0 0 0 0 0

    e2 0 e2 0 α 0 0

    e3 0 0 e3 0 β βα

    α

    β βα

    βα 0 0 βα 0 0 0

    dimkA = dimkk(

    1•

    α−→

    2•

    β−→

    3•)

    = 6 is isomorphic to

    k

    k k

    k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    · e1 e2 e3 α β βα

    e1 e1 0 0 0 0 0

    e2 0 e2 0 α 0 0

    e3 0 0 e3 0 β βα

    α α 0 0 0 0 0

    β 0 β 0 βα 0 0

    βα 0 0 βα 0 0 0

    dimkA = dimkk(

    1•

    α−→

    2•

    β−→

    3•)

    = 6 is isomorphic to

    k

    k k

    k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    · e1 e2 e3 α β βα

    e1 e1 0 0 0 0 0

    e2 0 e2 0 α 0 0

    e3 0 0 e3 0 β βα

    α α 0 0 0 0 0

    β 0 β 0 βα 0 0

    βα 0 0 βα 0 0 0

    A = k(

    1•

    α−→

    2•

    β−→

    3•)

    is isomorphic to

    k 0 0

    k k 0

    k k k

  • Quiver algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    · e1 e2 e3 α β βα

    e1 e1 0 0 0 0 0

    e2 0 e2 0 α 0 0

    e3 0 0 e3 0 β βα

    α α 0 0 0 0 0

    β 0 β 0 βα 0 0

    βα 0 0 βα 0 0 0

    A = k(

    1•

    α−→

    2•

    β−→

    3•)

    is isomorphic to

    k 0 0

    k k 0

    k k k

    e1 7→

    1 0 00 0 00 0 0

    , e2 7→

    0 0 00 1 00 0 0

    , e3 7→

    0 0 00 0 00 0 1

    α 7→

    0 0 01 0 00 0 0

    , β 7→

    0 0 00 0 00 1 0

    , βα 7→

    0 0 00 0 01 0 0

  • Quiver algebra (example)

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)

    / 〈βα〉] = 5α

    β

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)

    / 〈βα〉] = 5α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)

    / 〈βα〉] = 5α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)

    / 〈βα〉] = 5α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)

    / 〈βα〉] = 5α

    β

    1 {e1, α, βα, αβα, . . .}= {e1, α}

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)

    / 〈βα〉] = 5α

    β

    1 {e1, α, βα, αβα, . . .}= {e1, α}

    2 {e2, β, αβ, βαβ, . . .}= {e2, β, αβ}

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)/ 〈βα〉 ] = 5

    α

    β

    1 {e1, α, βα, αβα, . . .}= {e1, α}

    2 {e2, β, αβ, βαβ, . . .}= {e2, β, αβ}

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)/ 〈βα〉 ] = 5

    α

    β

    1 {e1, α, βα, αβα, . . .}= {e1, α}︸︷︷︸=0

    ︸︷︷︸=0

    2 {e2, β, αβ, βαβ, . . .}= {e2, β, αβ}

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)/ 〈βα〉 ] = 5

    α

    β

    1 {e1, α, βα, αβα, . . .}= {e1, α}︸︷︷︸=0

    ︸︷︷︸=0

    2 {e2, β, αβ, βαβ, . . .}= {e2, β, αβ}︸︷︷︸=0

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)/ 〈βα〉 ] = 5

    α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}︸︷︷︸=0

    ︸︷︷︸=0

    2 {e2, β, αβ, βαβ, . . .}= {e2, β, αβ}︸︷︷︸=0

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)/ 〈βα〉 ] = 5

    α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}︸︷︷︸=0

    ︸︷︷︸=0

    2 {e2, β, αβ, βαβ, . . .} = {e2, β, αβ}︸︷︷︸=0

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)

    / 〈βα〉] = 5α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}︸︷︷︸=0

    ︸︷︷︸=0

    2 {e2, β, αβ, βαβ, . . .} = {e2, β, αβ}︸︷︷︸=0

    A −→

    a c e

    b d

    a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)

    / 〈βα〉] = 5α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}︸︷︷︸=0

    ︸︷︷︸=0

    2 {e2, β, αβ, βαβ, . . .} = {e2, β, αβ}︸︷︷︸=0

    A∼

    −→

    a c e

    0 b d0 0 a

    | a, b, c , d , e ∈ k

  • Quiver algebra (example)

    The k-algebra dimk [A = k(

    1•

    2•)

    / 〈βα〉] = 5α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}︸︷︷︸=0

    ︸︷︷︸=0

    2 {e2, β, αβ, βαβ, . . .} = {e2, β, αβ}︸︷︷︸=0

    A∼

    −→

    a c e

    0 b d0 0 a

    | a, b, c , d , e ∈ k

    e1 7→

    0 0 00 1 00 0 0

    , e2 7→

    1 0 00 0 00 0 1

    α 7→

    0 1 00 0 00 0 0

    , β 7→

    0 0 00 0 10 0 0

    , αβ 7→

    0 0 10 0 00 0 0

    .

  • Quasi-hereditary algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    · e1 e2 e3 α β βα

    e1 e1 0 0 0 0 0

    e2 0 e2 0 α 0 0

    e3 0 0 e3 0 β βα

    α α 0 0 0 0 0

    β 0 β 0 βα 0 0

    βα 0 0 βα 0 0 0

    A = k(

    1•

    α−→

    2•

    β−→

    3•)

    is isomorphic to

    k 0 0

    k k 0

    k k k

    e1 7→

    1 0 00 0 00 0 0

    , e2 7→

    0 0 00 1 00 0 0

    , e3 7→

    0 0 00 0 00 0 1

    α 7→

    0 0 01 0 00 0 0

    , β 7→

    0 0 00 0 00 1 0

    , βα 7→

    0 0 00 0 01 0 0

  • Quasi-hereditary algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    2 < 1 < 3

    A = k(

    1•

    α−→

    2•

    β−→

    3•)

    is isomorphic to

    k 0 0

    k k 0

    k k k

    e1 7→

    1 0 00 0 00 0 0

    , e2 7→

    0 0 00 1 00 0 0

    , e3 7→

    0 0 00 0 00 0 1

    α 7→

    0 0 01 0 00 0 0

    , β 7→

    0 0 00 0 00 1 0

    , βα 7→

    0 0 00 0 01 0 0

  • Quasi-hereditary algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    2 < 1 < 3

    〈e1)

    〈α)

    〈βα)

    0

    P(1)

    ∆(1) =

  • Quasi-hereditary algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    2 < 1 < 3

    〈e1)

    〈α)

    〈βα)

    0

    P(1)

    ∆(1) =

    〈e2)

    〈β)

    0

    P(2)

  • Quasi-hereditary algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    2 < 1 < 3

    〈e1)

    〈α)

    〈βα)

    0

    P(1)

    ∆(1) =

    〈e2)

    〈β)

    0

    P(2)

    〈e3)

    0

    P(3)

  • Quasi-hereditary algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    2 < 1 < 3

    〈e1)

    〈α)

    〈βα)

    0

    P(1)

    ∆(1) =

    〈e2)

    〈β)

    0

    P(2)

    〈e3)

    0

    P(3)

  • Quasi-hereditary algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    2 < 1 < 3

    〈e1)

    〈α)

    〈βα)

    0

    P(1)

    ∆(1) =

    〈e2)

    〈β)

    0

    P(2)

    〈e3)

    0

    P(3)

  • Quasi-hereditary algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    2 < 1 < 3

    〈e1)

    〈α)

    〈βα)

    0

    P(1)

    ∆(1) =

    〈e2)

    〈β)

    0

    P(2)

    〈e3)

    0

    P(3)

  • Quasi-hereditary algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    2 < 1 < 3

    〈e1)

    〈α)

    〈βα)

    0

    P(1)

    ∆(1) =

    〈e2)

    〈β)

    0

    P(2)

    ∆(2) =

    {

    〈e3)

    0

    P(3)

  • Quasi-hereditary algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    2 < 1 < 3

    〈e1)

    〈α)

    〈βα)

    0

    P(1)

    ∆(1) =

    〈e2)

    〈β)

    0

    P(2)

    ∆(2) =

    {

    〈e3)

    0

    P(3)

    ∆(3) =

    {

  • Quasi-hereditary algebra (example)

    Let A be a k-algebra given by

    the quiver1•

    α−→

    2•

    β−→

    3•

    1 {e1, α, βα} ,

    2 {e2, β} ,

    3 {e3} ,

    2 < 1 < 3

    〈e1)

    〈α)

    〈βα)

    0

    P(1)

    ∆(1) =

    ∆(3) =

    {

    〈e2)

    〈β)

    0

    P(2)

    ∆(2) =

    {

    ∆(3) =

    { 〈e3)

    0

    P(3)

    ∆(3) =

    {

  • Quasi-hereditary algebra (example)

  • Quasi-hereditary algebra (example)

    The k-algebra A = k(

    1•

    2•)

    / 〈βα〉 2 < 1α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}︸︷︷︸=0

    ︸︷︷︸=0

    2 {e2, β, αβ, βαβ, . . .} = {e2, β, αβ}︸︷︷︸=0

    A∼

    −→

    a c e

    0 b d0 0 a

    | a, b, c , d , e ∈ k

    e1 7→

    0 0 00 1 00 0 0

    , e2 7→

    1 0 00 0 00 0 1

    α 7→

    0 1 00 0 00 0 0

    , β 7→

    0 0 00 0 10 0 0

    , αβ 7→

    0 0 10 0 00 0 0

    .

  • Quasi-hereditary algebra (example)

    The k-algebra A = k(

    1•

    2•)

    / 〈βα〉 2 < 1α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}︸︷︷︸=0

    ︸︷︷︸=0

    2 {e2, β, αβ, βαβ, . . .} = {e2, β, αβ}︸︷︷︸=0

  • Quasi-hereditary algebra (example)

    The k-algebra A = k(

    1•

    2•)

    / 〈βα〉 2 < 1α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}︸︷︷︸=0

    ︸︷︷︸=0

    2 {e2, β, αβ, βαβ, . . .} = {e2, β, αβ}︸︷︷︸=0

    〈e1)

    〈α)

    0

    ∆(1) =

  • Quasi-hereditary algebra (example)

    The k-algebra A = k(

    1•

    2•)

    / 〈βα〉 2 < 1α

    β

    1 {e1, α, βα, αβα, . . .} = {e1, α}︸︷︷︸=0

    ︸︷︷︸=0

    2 {e2, β, αβ, βαβ, . . .} = {e2, β, αβ}︸︷︷︸=0

    〈e1)

    〈α)

    0

    〈e2)

    〈β)

    〈αβ)

    0

    ∆(1) =

    ∆(2) ={

    ∆(1) =


Recommended