+ All Categories
Home > Documents > CBC Databook 1

CBC Databook 1

Date post: 28-Oct-2014
Category:
Upload: anees19oct
View: 881 times
Download: 2 times
Share this document with a friend
Popular Tags:
36
Nanyang Technological University School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry CBC DATABOOK (Do not remove from the examination hall.) (Do not write on this databook)
Transcript
Page 1: CBC Databook 1

Nanyang Technological University School of Physical and Mathematical Sciences,

Division of Chemistry and Biological Chemistry

CBC DATABOOK

(Do not remove from the examination hall.) (Do not write on this databook)

Page 2: CBC Databook 1

(Blank Page)

Page 3: CBC Databook 1

1

CONTENTS Relative Atomic Masses of the Elements 2

Units, Symbols and Constants The International System of Units (SI) 4 Recommended Values of Physical Constants 7

Selected Spectroscopic Data

Infrared Characteristic Wavenumbers of Absorptions of Organic Functional Groups 8 Anions and Cations 11 Coordination Compounds 11

Nuclear Magnetic Resonance Properties of Selected NMR-Active Nuclides 12 Chemical Shifts of Common Functional Groups 13C nuclei 13 1H nuclei attached to saturated linkages 14 1H nuclei attached to unsaturated linkages 15 1H nuclei attached to heteroatoms 15 Additivity Table for 1H Chemical Shifts of Methylene Groups 15 Spin–Spin Coupling Constants: 1 1H– H 16

Ultraviolet and Visible Absorption Maxima of Substituted Benzene Rings 17 Woodward–Fieser Rules for the Prediction of λmax Values 18 Electronic Absorption Characteristics of Transition Metal Complexes 19 Spectrochemical and Trans-Effect Series 19

Mass Spectrometry Common Fragmentations and Fragment Ions 20

Symbols and Abbreviations Commonly Encountered in Organic Chemistry 21

The Proteinogenic Amino Acids 22

Group Theory Symmetry Point Group Flow Diagram 23 Character Tables 24

Physical Definitions and Formulae 27

Mathematical Definitions and Formulae 28 The Greek Alphabet 31

The Periodic Table 32

Page 4: CBC Databook 1

2

RELATIVE ATOMIC MASSES Ar(E) ('ATOMIC WEIGHTS')

OF THE ELEMENTS (Scaled to Ar(12C) = 12)‡

The atomic weights of many elements are not invariant but depend on the origin and treatment of the material. The footnote to this Table elaborates the types of variation to be expected for individual elements. The values of Ar(E) given here apply to elements as they exist naturally on Earth.

1 Hydrogen H 1.00794 a,b,c 21 Scandium Sc 44.955910

2 Helium He 4.002602 a,c 22 Titanium Yi 47.88

3 Lithium Li 6.941 a,b,c 23 Vanadium V 50.9415

4 Beryllium Be 9.01218 24 Chromium Cr 51.9961

5 Boron B 10.811 a,b,c 25 Manganese Mn 54.93805

6 Carbon C 12.011 c 26 Iron Fe 55.847

7 Nitrogen N 14.00674 a,c 27 Cobalt Co 58.93320

8 Oxygen O 15.9994 a,c 28 Nickel Ni 58.69

9 Fluorine F 18.9984032 29 Copper Cu 63.546 c

10 Neon Ne 20.1797 a,b 30 Zinc Zn 65.39

11 Sodium Na 22.989768 31 Gallium Ga 69.723

12 Magnesium 24.3050 32 Germanium Ge 72.61

13 Aluminium Al 26.98154 33 Arsenic As 74.9216

14 Silicon Si 29.0855 c 34 Selenium Se 78.96

15 Phosphorus P 30.973762 35 Bromine Br 79.904

16 Sulfur S 32.066 c 36 Krypton Kr 83.80 a,b

17 Chlorine Cl 35.4527 37 Rubidium Rb 85.4678 a

18 Argon Ar 39.948 a,c 38 Strontium Sr 87.62 a,c

19 Potassium K 39.0983 39 Yttrium Y 88.90585

20 Calcium Ca 40.078 a 40 Zirconium Zr 91.224 a

‡ J. Emsley. The Elements, 3rd Edition, OUP, 1998.

a Geologically exceptional specimens are known in which the element has an isotopic composition outside the limits for normal material. The difference between the atomic weight of the element in such specimens and that given in the Table may exceed considerably the implied uncertainty.

b Modified isotopic compositions may be found in commercially available material because it has been subjected to an undisclosed or inadvertent isotopic separation. Substantial deviations in atomic weight of the element from that given in the Table can occur.

c Range in isotopic composition of normal terrestrial material prevents a more precise Ar(E) being given; tabulated Ar(E) value should be applicable to any normal material.

Page 5: CBC Databook 1

3

41 Niobium Nb 92.90638 73 Tantalum Ta 180.9479

42 Molybdenum Mo 95.94 74 Tungsten W 183.85

43 Technetium* Tc 98.9062 e 75 Rhenium Re 186.207

44 Ruthenium Ru 101.07 a 76 Osmium Os 190.2 a

45 Rhodium Rh 102.90550 77 Iridium Ir 192.22

46 Palladium Pd 106.42 a 78 Platinum Pt 195.08

47 Silver Ag 107.8682 a 79 Gold Au 196.96654

48 Cadmium Cd 112.411 a 80 Mercury Hg 200.59

49 Indium In 114.82 81 Thallium Tl 204.3833

50 Tin Sn 118.710 82 Lead Pb 207.2 a,c

51 Antimony Sb 121.75 83 Bismuth Bi 208.9804

52 Tellurium Te 127.60 84 Polonium* Po 209 d

53 Iodine I 126.90447 a 85 Astatine* At 210 d

54 Xenon Xe 131.29 a,b 86 Radon* Rn 222 d

55 Caesium Cs 132.9054 87 Francium* Fr 223 d

56 Barium Ba 137.327 88 Radium Ra 226.0254 d

57 Lanthanum La 138.9055 a 89 Actinium* Ax 227 d

58 Cerium Ce 140.115 a 90 Thorium* Th 232.0381 a,c,e

59 Praseodymium Pr 140.90765 91 Protactinium* Pa 231.03588 e

60 Neodymium Nd 144.24 a 92 Uranium* U 238.0289 a,b,e

61 Promethium* Pm 145 d 93 Neptinium* Np 237.0482

62 Samarium Sm 150.36 a 94 Plutonium* Pu 244 d

63 Europium Eu 151.965 a 95 Americium* Am 243 d

64 Gadolinium Gd 157.25 a 96 Curium* Cm 247 d

65 Terbium Tb 158.92534 97 Berkelium* Bk 247 d

66 Dysprosium Dy 162.50 a 98 Californium* Cf 251 d

67 Holmium Ho 164.93032 99 Eisteinium* Es 254 d

68 Erbium Er 167.26 a 100 Fermium* Fm 257 d

69 Thulium Tm 168.93421 101 Mendelevium* Md 258 d

70 Ytterbium Yb 173.04 a 102 Nobelium* No 259 d

71 Lutetium Lu 174.967 a 103 Lawrencium* Lr 260 d

72 Hafnium Hf 178.49

d Radioactive element that lacks a characteristic terrestrial isotopic composition.

e An element, without stable nuclide(s), exhibiting a range of characteristic terrestrial compositions of long-lived radio-nuclide(s) such that a meaningful atomic weight can be given.

* Element has no stable nuclides.

Page 6: CBC Databook 1

4

UNITS and CONSTANTS The International System of Units (SI)

Physical Quantity Name of Unit Symbol Expression in terms of SI base units

SI base units

length metre m

mass kilogram kg

time second s

electric current ampere A

thermodynamic temperature kelvin K

amount of substance mole mol

SI derived units

energy, work, heat joule J m2 kg s–2

force newton N m kg s–2 = J m–1

pressure, stress pascal Pa m–1 kg s–2 = N m–2 = J m–3

power watt W m2 kg s–3 = J s–1

electric charge coulomb C s A

electric potential volt V m2 kg s–3 A–1 = J A–1 s–1

electric resistance ohm Ω m2 kg s–3 A–2 = V A–1

electric conductance siemens S m–2 kg–1 s3 A2 = Ω–1

electric capacitance farad F m–2 kg–1 s4 A2 = A s V–1

magnetic flux weber Wb m2 kg s–2 A–1 = V s

inductance henry H m2 kg s–2 A–2 = V s A–1

magnetic flux density tesla T kg s–2 A–1 = V s m–2

frequency hertz Hz s–1

Celsius temperature (θ) degree Celsius °C θ / (T/K – 273.15)

plane angle radian rad

solid angle steradian sr

Page 7: CBC Databook 1

5

SI Prefixes

Fraction Prefix Symbol Multiple Prefix Symbol

10–1 deci d 10 deca da

10–2 102 centi c hecto h

10–3 103 milli m kilo k

10–6 106 micro mega M μ

10–9 109 nano n giga G

10–12 1012 pico p tera T

10–15 1015 femto f peta P

10–18 1018 atto exa E Α

Decimal Fractions and Multiples of SI Units Having Special Names

Physical Quantity Name of Unit Symbol Definition

length ångström Å 10–10 m = 10–1 nm = 100 pm

area barn b 10–28 m2

volume litre l 120–3 m3 = 1 dm3 = 1000 cm3

force dyne dyn 10–5 N

pressure bar bar 105 Pa

energy erg erg 10–7 J

10–4 m2 s–1 kinematic viscosity stokes St

10–1 N s m–2 (dynamic) viscosity poise P

10–8 Wb magnetic flux maxwell Mx

10–4 T magnetic flux density gauss G

concentration — M 103 mol m–3 = mol dm–3

Page 8: CBC Databook 1

6

Units Defined Exactly in Terms of the SI Units

Physical Quantity Name of Unit Symbol Definitiona

length inch in 0.0254 m

mass pound lb 0.453 592 37 kg

time minute min 60 s

time hour h 3600 s

plane angle degree ° (π/180) rad

force kilogram-force kgf 9.806 65 N

pressure standard atmosphere atm 101 325 Pa

pressure conventional millimetre of mercuryb

mmHg 13.5951 × 9.806 65 Pa = 133.322 Pa

pressure torr Torr (101 523/760) Pa = 133.322 Pa

pressure bar bar 105 Pa

pressure pounds per square inch psi 6894.757 Pa

energy kilowatt hour kW h 3.6 × 106 J

energy thermochemical calorie calth 4.184 J

electric dipole moment debye D 3.335 64 × 10–30 C m

aThese definitions are exact. bThe difference between 1 mmHg and 1 Torr is less than 2 × 10–7 Torr.

Page 9: CBC Databook 1

7

Recommended Values of Fundamental Constants

Fundamental Constant Symbol Value

6.022 1367 × 1023 mol–1 L, NA Avogadro constant

8.314 510 J K–1 mol–1 R gas constant

1.380 658 × 10–23 J K–1 k, kB Boltzmann constant

9.648 5309 × 104 C mol–1 0.025 693 V

F ( RT/F )

Faraday constant at T = 298.15 K

1.602 177 33 × 10–19 C e elementary charge

1.602 18 × 10–19 J 9.648 547 × 104 J mol–1

eV LeV = FV

electron volt

6.626 0755 × 10–34 J s 1.054 5726 × 10–34 J s

h Planck constant h− = h/2π

speed of light in vacuuma 2.997 924 58 × 108 m s–1 c

permeability of a vacuuma 4π × 10–7 A–2 μo

permittivity of a vacuuma 8.854 187 816 × 10–12 F m–1 εo

9.109 3897 × 10–31 kg me rest mass of electron

1.672 6231 × 10–27 kg mp rest mass of proton

4.359 7482 × 10–18 J Eh Hartree energy

5.291 772 49 × 10–11 m a0 Bohr radius

9.274 0154 × 10–24 J T–1 Bohr magneton μB = eh/4 πme

5.050 7866 × 10–27 J T–1 nuclear magneton μΝ = eh/4 πmp

109 737.315 34 cm–1 Rydberg constant R∞

1.660 54 × 10–27 kg u unified atom mass unit

6.67259 × 10–11 m3 kg–1 G gravitational constant

standard acceleration due to gravitya 9.806 55 m s–2 g

aThese values are exact.

Page 10: CBC Databook 1

SPECTROSCOPIC DATA INFRARED

Characteristic Wavenumbers, ~ν , of Fundamental Absorptions of Organic Functional Groups

~ν /cm–1

1. OH stretching

free sharp 3650–3590

intramolecular hydrogen-bonded single bridges (excluding chelates)

sharp 3600–3450

intermolecular hydrogen bonded polymeric associations broad 3400–3200

intermolecular chelates and carboxylic acids broad 3200–2500

2. NH stretching (hydrogen bonding lowers as in OH stretching)

primary amides two bands ~3500 and 3400

primary amines two bands 3500–3300

secondary amides 3460–3400

secondary amines 3450–3300

3. CH stretching

alkynes 3300

alkenes and aryls 3040–3010

methyls and methylenes two or three bands 2960–2850

aldehydes 2900–2700

4. C≡X stretching

nitriles 2260–2220

alkynes 2260–2100

5. X=Y=Z stretching

allenes C=C=C ~1950

azides R–N=N+=N– 2160–2120

carbon dioxide O=C=O antisymmetric 2349

6. C=O stretching

Aldehydes (a)

saturated 1740–1720

aryl 1700–1650

1705–1680 α,β-unsaturated

table continued on next page

Page 11: CBC Databook 1

9

Characteristic wavenumbers, ~ν , of fundamental absorptions of organic functional groups (continued)

~νC=O stretching continued /cm–1

(b) Ketones

four ring ~1780

five ring 1750–1740

1725–1705 saturated acyclic, alicyclic six-ring and larger, and α,β-unsaturated five ring

aryl 1700–1680

1685–1660 α,β-unsaturated

(c) Carboxylic acids

saturated 1725–1700

1715–1690 α,β-unsaturated

aryl 1700–1680

most carboxylate anions 1610–1550

(d) Esters and lactones

esters of phenols or enols 1800–1750

five-ring lactones 1780–1760

1770–1740 α,β-unsaturated five-ring lactones

saturated esters and six-ring and larger lactones 1750–1735

1730–1715 esters of aromatic or α,β-unsaturated acids

(e) Amides and lactams

primary amides two bands ~1690 and 1600

primary amides (solid phase) two bands 1650 and 1640

secondary amides two bands 1700–1670 and 1550–1510

secondary amides (solid phase) two bands 1680–1630 and 1570–1515

tertiary amides 1670–1630

four-ring lactams ~1745

five-ring lactams ~1700

six ring and large lactams ~1670

(f) Anhydrides

saturated two bands 1850–1800 and 1790–1740

two bands 1830–1780 and 1770–1710aryl and α,β-unsaturated

(g) Acid chlorides

saturated 1815–1790

1790–1750 aryl and α,β-unsaturated

7. C=N stretching

imines and oximes variable and of little diagnostic value ~1690–1640

table continued on next page

Page 12: CBC Databook 1

10

Characteristic wavenumbers, ~ν , of fundamental absorptions of organic functional groups (continued)

~ν /cm–1

8. C=C stretching

isolated variable 1680–1620

conjugated one or two bands 1650–1590

aromatic two bands ~1600 and 1500

aromatic weak or absent when ring is not further conjugated 1580

9. N=O stretching

Nitro compounds asymmetric 1555–1540

symmetric 1385–1350

10. Carbon–halogen stretching

C–F 1400–1000

C–Cl 800– 600

C–Br 600–500

C–I 500

11. C–H deformations

i-propyl 1385–1380 1370–1365

1175–1165 1170–1140

t-butyl 1395–1385 1365

1255–1245 1250–1200

RCH=CH2 995–985 915–905

RCH=CHR (trans) 970–960

R2C=CH 895–885

R2C=CHR 840–790

RCH=CHR (cis) ~690

~630 RC≡CH

12. N–H bend

primary amines and amides 1650–1560

13. P–X stretching

P–H 2440–2350

P–Ph ∼1440

P–OR 1240–1030

P=O 1300–1250

14. B–H stretching

terminal B–H 2650–2450

bridging B–H 2090–1600

Page 13: CBC Databook 1

11

~νCharacteristic Wavenumbers, , of Fundamental Absorptions of Anions and Cations

~ν /cm–1

[NH4] + ammonium 3300–3030 1430–1390

[CN] – cyanide 2200–2000

[SCN] – thiocyanate 2150–2050 C≡N stretch

[CH3CO2] – COO antisymmetric stretch 1580–1550 acetate

[CH3CO2] – acetate COO symmetric stretch 1430–1410

[CO3] 2– carbonate 1490–1410

[NO3] – nitrate 1380–1350

[ClO4] – perchlorate 1170–1050

[SO4] 2– sulfate 1130–1080

[PO4] 3– phosphate 1100–1000

[CrO4] 2– chromate 885

N-bonded thiocyanate C–S stretch 860–780

S-bonded thiocyanate C–S stretch 720–690

~νCharacteristic Wavenumbers, , of Fundamental Absorptions in Coordination Compounds

~ν /cm–1

Transition metal carbonyls: Wavenumber ranges of these CO stretching vibrations apply only to unsubstituted, neutral species. Actual values depend also on the compound and the nature of other ligands attached to the metal.

terminal CO 2150–1900

bridging CO 1900–1750

triply bridging or capping CO 1800–1600

Metal–X stretching modes

M–H 2250–1700

M=O 1050–950

M–F 750–500

M–Cl 400–200

M–Br 300–200

M–I 200–100

Page 14: CBC Databook 1

12

NUCLEAR MAGNETIC RESONANCE

Properties of Selected NMR-Active Nuclides

Nuclide Natural Abundance C

I γ / 107 rad T–1 s–1 Relative Receptivityvalues for I= ½ nuclei

are ∝⏐γ3C⏐

1H 99.985% 1/2 26.75 1.00 2H, D 0.015% 1 4.11 1.45 × 10–6

10B 19.58% 3 2.87 3.93 × 10–3 11B 80.42% 3/2 8.58 0.133 13C 1.108% 1 6.73 1.76 × 10–4 14N 99.63% 1 1.93 1.00 × 10–3 15N 0.37% 1/2 –2.71 3.85 × 10–6 17O 0.037% 5/2 –3.63 1.08 × 10–5 19F 100% 1/2 25.18 0.834

23Na 100% 3/2 7.08 9.27 × 10–2 27Al 100% 5/2 6.98 0.207 29Si 4.70% 1/2 –5.32 3.69 × 10–4 31P 100% 1/2 10.84 0.067

77Se 7.58% 1/2 5.12 5.30 × 10–4 103Rh 100% 1/2 –0.85 3.16 × 10–5 107Ag 51.82% 1/2 –1.09 3.48 × 10–5 109Ag 48.18% 1/2 –1.25 4.92 × 10–5 117Sn 7.61% 1/2 –9.58 3.49 × 10–3 119Sn 8.58% 1/2 –10.02 4.51 × 10–3 129Xe 26.44% 1/2 –7.44 5.69 × 10–3 183W 14.40% 1/2 1.12 1.06 × 10–5 195Pt 33.8% 1/2 5.77 3.39 × 10–3

199Hg 16.84% 1/2 4.82 9.82 × 10–4

Page 15: CBC Databook 1

13

Chemical Shifts of Common Functional Groups

Positions of 1H- and 13C-NMR signals in the following tables are given as chemical shifts, δ,

expressed as parts per million, ppm, relative to tetramethylsilane, TMS. Usual ranges of δ values

for 1H-NMR are 0–15, except that most M–H shifts are < 0. For 1H-NMR, δ values are usually

within ±0.2 of those quoted unless inductive, anisotropic or steric effects associated with functional

groups operate. Chemical shifts for 13C-NMR are usually 0–250.

Chemical Shifts of 13C Nuclei in Common Functional Groups

Alkanes Ethers δ δ

Cyclopropanes 0–8 CH3–O 45–60

Cycloalkanes 5–25 RCH2–O 42–70

R–CH3 5–25 R2–CH–O 65–77

R–CH2–R 22–45 R3–C–O 70–83

R2CH–R 30–58

Amines R3–C–R 28–50 δ

CH3–N 10–45

Carbonyls R–CH2–N 45–55 δ

R–CO–OR 160–177 R2–CH2–N 50–70

R–COOH 162–183 R3–C–N 60–75

RCHO 185–205

Other Heteroatoms R–CO–R 190–220 δ

RCH2–S 22–42

Halogens RCH2–P 10–25 δ

CH3X 5–25 Ar–P 120–130

RCH2X 5–38 Ar–N 130–138

R2CHX 39–62 Ar–O 130–150

R3CX 35–75 R–CN 118–123

Unsaturated Compounds δ

Aromatics 110–133

Alkenes 100–143

Alkynes 75–95

Page 16: CBC Databook 1

14

Chemical Shifts of Methyl, Methylene and Methine Protons Attached to Saturated Linkages

Methyl δ Methylene δ Methine δ

CH3–C 0.9 CH3–C–C=C 1.1

CH3–C–O 1.4 –CH2–C 1.4 >CH–C 1.5 CH3–C=C 1.6 –CH2–C–C=C 1.7

CH3–CO–N–R 2.0 –CH2–C–O 1.9 >CH–C–O CH3–C=C–CO 2.0 CH3–CO–OR 2.0

CH3–S 2.1 CH3–CO–R 2.2 –CH2–CO–OR 2.2

CH3–I 2.2 –CH2–CO–N–R 2.2 CH3–CHO 2.2 –CH2–CHO 2.2

CH3–Ar 2.3 –CH2–C=C 2.2 CH3–N 2.3 –CH2–C≡N 2.3

CH3–CO–OAr 2.4 –CH2–CO–R 2.4 –CH2–S 2.4 >CH–CHO 2.4 –CH2–C=C–CO 2.4

–CH2–N 2.5 CH3–CO–Ar 2.6 –CH2–Ar 2.6

CH3–Br 2.6 >CH–CO–R 2.7 >CH–C≡N 2.7 >CH–N 2.8

CH3–N–CO–R 2.9 CH3–N–Ar 3.0

CH3–Cl 3.0 >CH–Ar 3.0 –CH2–I 3.2 >CH–S 3.2

CH3–OR 3.3 >CH–CO–Ar 3.3 CH3–N+ 3.3 CH3–OH 3.4 –CH2–OR 3.4

–CH2–Br 3.5 –CH2–Cl 3.6 –CH2–OH 3.6

CH3–O–CO–R 3.7 >CH–OR 3.7 CH3–OAr 3.8 >CH–OH 3.9

CH3–O–C=C 3.8 >CH–Cl 4.0 –CH2–O–CO–R 4.1 >CH–Br 4.1 >CH–I 4.2 –CH2–OAr 4.3 >CH–O–CO–R 4.8

Page 17: CBC Databook 1

Chemical Shift Ranges of Protons Attached to Unsaturated Linkages

Proton δ Proton δ

–C≡C–H 1.8–3.1 –C=CH–O 6.0–8.1

–CH=C–N 3.7–5.0 Aromatic protons 6.0–9.0

–CH=C=O 4.0–5.0 –CH=C–CO 6.5–7.8

–C=CH– 4.5–6.0 H–CO–O, H–CO–N 8.0–8.2

–C=CH–N 5.7–8.0 R–CHO, Ar–CHO 9.4–10.5

–C=CH–CO 5.8–6.7

Chemical Shift Ranges of M–H, O–H and N–H Protons

Group δ Range

M–H (M = Transition metal) –30–0 Diagnostic of metal hydride

R–OH 2–10 H-bonded enols usually in range 11–16

R–NH2 R–NH–R' 2–5 Position depends strongly on solvent

Ar–NH2, Ar–NH–R' 3.5–6 or larger

R–CO–NH2 5–8.5 Often very broad (sometimes unobservable)

R–CO–NH–CO–R' 9–ca. 12 Often very broad

R–CO2H 10–ca. 13

Additivity Table for Estimation of the 1H Chemical Shifts of Methylene Groups

δ(CH2X1X2) = 1.25 + X1 + X2

substituent Xn substituent Xn sustituent Xn

alkyl 0.0 OCOR 2.7 SH, SR 1.0

vinyl 0.8 NH2, NR2 1.0 SO2R 1.7

alkynyl 0.9 NO2 3.0 -CHO 1.2

phenyl 1.3 F 2.1 -COR 1.2

OH 1.7 Cl 2.0 -CO2H 0.8

OR 1.5 Br 1.9 -CO2R 0.7

OPh 2.3 I 1.4 -CN 1.2

Page 18: CBC Databook 1

16

1H–1H Spin–Spin Coupling Constants

J / Hz J / Hz

C

H

H

CH CH O–8 to –18a 0–3

CH CH CH C CH6–8b 1–3

6–8b 4–6 H3C CH2 CH C CH

CH

H3C

H3C

CH C C CH6–8b 0–2

Ha

Heq

Ha

Heq

H

H

ortho a–a 8–13 6–9

meta a–e 2–6 1–3

para e–e 2–6 0–1

HH

C CH CH 5–12 4–11 cis

H

H

C CH CH C trans 6–13 12–18

H

H

C CH CH –3 to +3a O gem 5–8

aThe sign of J is unimportant for first-order spectra. bAssumes free rotation.

Page 19: CBC Databook 1

17

ULTRAVIOLET and VISIBLE

Absorption band intensities are expressed in terms of the molar absorption coefficient

lcA ε =

where A = dimensionless absorbance, c = molar concentration, and l = path length of the absorbing species. Units of ε may therefore be mol–1 dm3 cm–1 or 103 cm2 mol–1.

Absorption bands with maxima, λmax, below 215 nm are observable only as end absorption.

Compounds containing unconjugated π-bands show only end absorption. Saturated aldehydes and ketones do, however, show a low-intensity band with εmax = 10–30 mol–1 dm3 cm–1 in the range 275–295 nm.

Absorption Maxima of Substituted Benzenes Ph–R solvent: H2O or MeOH

R λmax / nm

εmax / mol–1

dm3 cm–1

λmax / nm

εmax / mol–1

dm3 cm–1

λmax / nm

εmax / mol–1

dm3 cm–1

–H 203 7400 254 204

–+NH3 203 7500 254 160

–Me 206 7000 261 225

–Cl, Br 210 7700 262 190

–OH 210 6200 270 1450

–OMe 217 6400 269 1480

–SO2NH2 217 9700 264 740

–CN 224 13000 271 1000

–CO2– 224 8700 268 560

–CO2H 230 11600 273 970

–NH2 230 8600 280 1430

–O– 235 9400 287 2600

–NHAc 238 10500

–CH=CH2 248 1400 282 750 291 500

–NO2 268 7800

–(E)-CH=CHCO2H 273 21000

Page 20: CBC Databook 1

18

Woodward–Fieser Rules for the Prediction of λmax Values for π–π* Transitions of Dienes, Polyenes and α,β-Unsaturated Aldehydes, Ketones and Acids

Basic Chromophore: Diene λmax (EtOH) / nm

214 Diene

Increment / nm

Each additional double bond extending the conjugation 30 Each homoannular dienea 39 The exocyclic nature of any double bondb 5 Each alkyl group or ring residue 5 Each auxochrome: OAcyl 0 OAlkyl 6 SAlkyl 30 Cl, Br 5

NAlkyl2 60 Basic Chromophore: α, β-unsaturated Aldehydes, Ketones and Acids λmax (EtOH) / nm

215 Six-ring or acyclic α,β-unsaturated ketone

202 Five-ring α,β-unsaturated ketone 209 α,β-unsaturated aldehyde 197 α,β-unsaturated acid

Increment / nm

Each additional double bond extending the conjugation 30 Each homoannular dienea 39 The exocyclic nature of any double bondb 5 Each alkyl group or ring residue 10 α

12 β

for aldehydes and ketones only 18 γ

Each auxochrome: OH 35 α

30 β

50 δ

OAcyl 6 α, β, δ

OAlkyl 35 α

30 β

17 γ

31 δ

SAlkyl 85 β

Cl 15 α

12 β

Br 25 α

30 β

NAlkyl2 95 β

aHomoannular diene: bExocyclic double bond:

Page 21: CBC Databook 1

19

Typical Electronic Absorption Intensities of Transition Metal Complexes

εmax / mol–1 dm3 cm–1 Type of Transition

Spin-forbidden, Laporte forbidden 0.01–1.0

Spin-allowed, Laporte forbidden 1.0–100

Spin-allowed, Laporte forbidden, but with d–p mixing (Td symmetry) and/or intensity stealing 100–1000

Spin-allowed, Laporte allowed; charge transfer > 1000

Spectrochemical Series

Common Ligands

I – < Br – <Cl – < S2–~ SCN – <F– < OH – < O2– ~ H2O < NCS– < py < NH3

< ethylenediamine (en) < bipyridine (bipy), PR3 < CH3 – < CN– ≈ CO

Metal Ions

Mn2+ < Ni2+ < Co2+ < Fe2+ < V2+ < Fe3+ < Cr3+ < V3+ < Co3+

< Mn4+ < Mo3+ < Rh3+ < Ru3+ < Pd4+ < Ir3+ < Re4+ < Pt4+

Δo values for metals of the first transition series are typically in the ranges M2+: 7000–16000 cm–1 and M3+: 13000–26000 cm–1 for all but the strongest ligands.

In any group Δo increases with atomic mass of the metal, i.e. 3d < 4d < 5d.

For tetrahedral complexes, Δt ≈ Δo . 94

32Δ (3+ ion) ≈ Δ(2+ ion) for isoelectronic ions.

The Trans-Effect Series

CN –, CO > PR3, H – > CH3 – > C6H5

– > NO2 –, I – > Br – > Cl – > py, NH3 > OH – > H2O

Page 22: CBC Databook 1

20

MASS SPECTROMETRY

Common Fragmentations and Fragment Ions in Mass Spectrometry

Common Fragmentations

m / z Fragment Lost Inference

M – 3 to M – 14 highest mass peak observed is itself a fragment and not a molecular ion

M – 15 CH3 M – 17 OH alcohol or carboxylic acid

NH3 primary amine, odd molecular weight

M – 18 H2O alcohol, aldehyde, ketone

M – 26 C2H2

CN nitrile, odd molecular weight

M – 31 CH3O methyl ester or ether

M – 35 or M – 37 Cl a molecular ion consisting of two peaks of intensity 3:1, two mass units apart, indicates a monochloro compound

M – 43 CH3CO methyl ketone

M – 58 CH2=C(OH)CH3 McLafferty rearrangement, methyl ketone with γ-hydrogen

M – 77 C6H5 monosubstituted

M – 79 or M – 81 Br a molecular ion consisting of two peaks of equal intensity, two mass units apart, indicates a monobromo compound

M – 91 C7H7 benzylic

M – 105 C6H5CO aromatic ketone or ester

M – 127 I

Fragment Ions

m / z Fragment Inference

18 H2O+

28 CO+, C2H4+, N2

+

30 CH2NH2+ primary amine, odd molecular weight

31 CH2OH+ primary alcohol

57 C4H9+ tert-butyl group

58 CH2=C(OH)CH3 methyl ketone

65 C5H5+ secondary fragment from tropylium ion

77 C6H5+ monsubstituted aromatic

91 C7H7+ tropylium ion, usually the base peak

Page 23: CBC Databook 1

SYMBOLS AND ABBREVIATIONS COMMONLY ENCOUNTERED IN ORGANIC CHEMISTRY

Groups

R alkyl generalised alkyl group

Me methyl –CH3

Et ethyl –CH2CH3

Pr propyl –CH2CH2CH3

i-Pr isopropyl –CH(CH3) 2

Bu, n-Bu butyl –CH2CH2CH2CH3

i-Bu isobutyl –CH2CH(CH3) 2

s-Bu, sec-Bu sec-butyl –CH(CH3)CH2CH3

t-Bu, tert-Bu tert-butyl –C(CH3)3

Ar aryl generalised aromatic ring

Ph (φ) phenyl –C6H5

Ac acetyl (ethanoyl) –COCH3

Bn benzyl –CH2C6H5

Boc, BOC or t-Boc t-butoxycarbonyl –COOC(CH3)3

Bz benzoyl –COC6H5

Ms mesyl (methanesulfonyl) –SO2CH3

Tf triflyl (trifluoromethanesulfonyl) –SO2CF3

Ts tosyl (toluenesulfonyl) –SO2C6H4CH3 (para)

TMS trimethylsilyl (or tetramethylsilane in NMR) –Si(CH3)3

TBDPS tert-butyldiphenylsilyl –SiPh2C(CH3)3

TBS tert-butyldimethylsilyl (also seen as TBDMS) –Si(CH3)2C(CH3)3

THP tetrahydropyranyl

Z benzyloxycarbonyl or Cbz C6H5CH2OCO–

Reagents, Solvents and Others

aq. aqueous HMPA hexamethylphosphoramide

n-BuLi or nBuLi n-butyllithium hν light

cat. catalyst or catalytic IR infrared

D deuterium LDA lithium diisopropylamide

DIBAL diisobutylaluminium hydride mCPBA meta-chloroperoxybenzoic acid

DMAP 4-dimethylaminopyridine NMR nuclear magnetic resonance

DMF N,N-dimethylformamide PCC pyridinium chlorochromate

DMSO dimethyl sulfoxide PDC pyridinium dichromate

DCM dichloromethane TBAF tetra-n-butylammonium fluoride

Et2O diethyl ether TFA trifluoroacetic acid

EI electron impact (ionisation) THF tetrahydrofuran

FAB fast-atom bombardment Δ heat

Page 24: CBC Databook 1

THE PROTEINOGENIC AMINO ACIDS

For the generalised L-α−amino acid structure: H2N CO2H

HRor in zwitterionic form

H3N CO2

HR

All have S absolute configuration except cysteine which is R

Amino Acid R Amino Acid R

Glycine (Gly or G) H- Cysteine (Cys or C) HS

Alanine (Ala or A) CH3- Methionine (Met or M) H3CS

Valine (Val or V) H3C CH3

Histidine (His or H)

HN

N

Leucine (Leu or L) CH3

H3C

Lysine (Lys or K) H2N

Isoleucine (Ile or I) H3C HCH3

Arginine (Arg or R)

HNH2N

NH

Phenylalanine (Phe or F)

Aspartic acid (Asp or D) HO2C

Tryptophan (Trp or W)

HN

Glutamic acid (Glu or E) HO2C

Serine (Ser or S) HO

Asparagine (Asn or N) H2N

O

Threonine (Thr or T) H OHCH3

Glutamine (Gln or Q)

H2N

O

Tyrosine (Tyr or Y)

HO

L-Proline:

Proline (Pro or P): NH

CO2HH

NH2

CO2

Hor

Page 25: CBC Databook 1

23

Page 26: CBC Databook 1

24

GROUP THEORY Character Tables

CS = Ch E σh

A' 1 1 x, y, Rz x2, y2, z2, xy A" 1 –1 z, Rx, Ry yz, xz

C2v E C2 σv(xz) σ'v(yz)

A1 1 1 1 1 z x2, y2, z2 A2 1 1 –1 –1 Rz xy B1 1 –1 1 –1 x, Ry xz B2 1 –1 –1 1 y, Rx yz

C3v E 2C3 3σv

A1 1 1 1 z x2 + y2, z2 A2 1 1 –1 Rz E 2 –1 0 (x, y), (Rx, Ry) (x2 – y2, xy) (xz, yz)

C4v E 2C4 C2 2σv 2σd

A1 1 1 1 1 1 z x2 + y2, z2 A2 1 1 1 –1 –1 Rz B1 1 –1 1 1 –1 x2 – y2 B2 1 –1 1 –1 1 xy E 2 0 –2 0 0 (x, y), (Rx, Ry) (xz, yz)

C5v E 2C5 2C52 5σv

A1 1 1 1 1 z x2 + y2, z2 A2 1 1 1 –1 Rz E1 2 2 cos 72º 2 cos 144º 0 (x, y), (Rx, Ry) (xz, yz) E2 2 2 cos 144º 2 cos 72º 0 (x2 – y2, 2xy)

Page 27: CBC Databook 1

25

D2h E C2(z) C2(y) C2(x) i σv(xy) σv(xz) σv(yz)

Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 –1 –1 1 1 –1 –1 Rz xy B2g 1 –1 1 –1 1 –1 1 –1 Ry xz B3g 1 –1 –1 1 1 –1 –1 1 Rx yz Au 1 1 1 1 –1 –1 –1 –1 B1u 1 1 –1 –1 –1 –1 1 1 z B2u 1 –1 1 –1 –1 1 –1 1 y B3u 1 –1 –1 1 –1 1 1 –1 x

D3h E 2C3 3C2 σh 2S3 3σv

A'1 1 1 1 1 1 1 x2 + y2, z2 A'2 1 1 –1 1 1 –1 Rz E' 2 –1 0 2 –1 0 (x, y) (x2 – y2 , 2xy) A"1 1 1 1 –1 –1 –1 A"2 1 1 –1 –1 –1 1 z E" 2 –1 0 –2 1 0 (Rx, Ry) (xz, yz)

D4h E 2C4 C 2 2C'2 2C"2 i 2S4 σh 2σv 2σd

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2 A2g 1 1 1 –1 –1 1 1 1 –1 –1 Rz B1g 1 –1 1 1 –1 1 –1 1 1 –1 x2 – y2 B2g 1 –1 1 –1 1 1 –1 1 –1 1 xy Eg 2 0 –2 0 0 2 0 –2 0 0 (Rx, Ry) (xz, yz) A1u 1 1 1 1 1 –1 –1 –1 –1 –1 A2u 1 1 1 –1 –1 –1 –1 –1 1 1 z B1u 1 –1 1 1 –1 –1 1 –1 –1 1 B2u 1 –1 1 –1 1 –1 1 –1 1 –1 Eu 2 0 –2 0 0 –2 0 2 0 0 (x, y)

Page 28: CBC Databook 1

26

D2d = Vd E 2S4 C2 2C'2 2σd

A1 1 1 1 1 1 x2 + y2, z2 A2 1 1 1 –1 –1 Rz B1 1 –1 1 1 –1 x2 – y2 B2 1 –1 1 –1 1 z xy E 2 0 –2 0 0 (x, y), (Rx, Ry) (xz, yz)

C∞v E C2 2C φ∞ … ∞ σv

A1 ≡ Σ+ 1 1 1 … 1 z x2 + y2, z2 A2 ≡ Σ–

1 1 1 … –1 Rz E1 ≡ Π 2 –2 2 cos φ … 0 (x, y), (Rx, Ry) (xz, yz) E2 ≡ Δ 2 2 2 cos 2φ … 0 (x2 – y2, xy) E3 ≡ Φ 2 –2 2 cos 3φ … 0

… … … … … …

D∞h E 2C φ∞ … ∞ σv i 2S φ

∞ … ∞ C2

Σg+ 1 1 … 1 1 1 … 1 x2 + y2, z2

Σg–

1 1 … –1 1 1 … –1 Rz Πg 2 2 cos φ … 0 2 –2 cos φ … 0 (Rx, Ry) (xz, yz) Δg 2 2 cos 2φ … 0 2 2 cos 2φ … 0 (x2 – y2, 2xy)

… … … … … … … … … Σu

+ 1 1 … 1 –1 –1 … –1 z Σu

– 1 1 … –1 –1 –1 … 1

Πu 2 2 cos φ … 0 –2 2 cos φ … 0 (x, y) Δu 2 2 cos 2φ … 0 –2 –2 cos 2φ … 0

… … … … … … … … …

Page 29: CBC Databook 1

27

PHYSICAL DEFINITIONS AND FORMULAE

Classical Mechanics

amF = Newton’s Second Law F = force, m = mass, a = acceleration

xFW = W = work done, F = force, x = distance moved vmp = p = momentum, m = mass, v = velocity

mpvmT2

22

21 == T = kinetic energy, m = mass, v = velocity,

p = momentum

AFP = P = pressure, F = force, A = area

AgmP = P = pressure, m = mass,

g = acceleration due to gravity, A = area

Vm

=ρ ρ = density, m = mass, V = volume

P = pressure exerted by a column of density ρ and height h where g = acceleration due to gravity,

A = area, V = volume hg

AgV

AgmP ρ=

ρ==

Electrical Energy

RIV = Ohm’s Law V = electrical potential¸ I = current, R = resistance

tRIR

tVtIVE 22

=== E = energy, V = electrical potential¸ I = current, t = time, R = resistance

tEW = W = power, E = energy, t = time

Electrostatics

rqqV

0

21

4 επ= V = potential energy of two charges q1 and q2

separated by r, for a medium of permittivity, ε0 Coulomb’s Law

20

21

4 rqqF

επ= F = force acting between two charges q1 and q2

separated by r, for a medium of permittivity, ε0

Page 30: CBC Databook 1

������������ �����

������������

��� � ��

���� � �

��� � �

��

��� �

��� �

���� � ���� � � �

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���

�����������������������������������

� �

��

����������������� �

������ ������

��� � � � � ��� � � � � ����� � ������ � ��������� � � � ������ � � � ����� � ������ �

����

���� � � � ���� � �� � ������ � ������ � ���

���� ���� � �� � ��� ���� � � �

���� ��������

��

���

��

���

������ ���� �� � �� �� � ��� ���� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������

����������������

�������������������������������������

�������� ����� ����������

������ �� � ���� ��� � � ���� ��� � � ��� �� � � ���� ����

������ �� � ���� ��� � � ���� ��� � � ��� �� � ���� �� ���� � � � ���� �� � � � � � ���� �

����������� ������� ���� � � �

�����

��

��� �

����

����

�� � � �

�������!��� ������� �� � � �� ���� � � ���� �

������� ��� � � ���! � � ����� � � ��� �

��"�� ��� � � �! � � ���� � � �� �

�������� ��#���������� �� ����������

���� � ���� � ����� ��������� ��

�� ����� �� ������� ��

�� � �� �� ����

��� ��� ��� ���

��� �� � ��� �� ��� �� ��

���� ��

��� �� �� ��� �� ��� ���

���� ��

$�� � �� � %� �"������� �� �&

"������ ���� �

������ � �

��

�� �

��

��

#������� ���� �

��

���

��

��

����

��� � ��

��

Page 31: CBC Databook 1

�!��� ���� �

������ �

��

��

��

��

���!�� � �$��������� '� ���� � ������

������

����� �� �

����� ��

����������� $� "����

����

���� � �� �

����

����

%�&���� �����������

�� ��� �� ���

������ � � ��������

� �

�������

��� �

��� �� � ��������

� �

������

�������

��� �

� �

������

����

���

��� � � �� �� � ���������

� �

������

����

���

��� � � ��� � �� � ���������

'������� ��������� �� � � ��������

�� ��� � � ������ ��

����

���� ����� ��

���� � � � �� �

�����

��

���

(���� ������� � � �� � ����� � � � �! �� � �! �� %���)�� ���*�����

��

��

��

����� ��� &

��&���� �����

+�$"��� ������ ���� � ���� �� ���� ��

��� �����

��

��� ������ � � �

,���� ������ ��� �� � ���� �� ���� ��

��� �����

��

��� ������ � � �

����)�� ������ �� ��� � � ������ ��

����

���� ����� ��

���� � � � ���� � ��

-��)����� ������ �� � ���� � � � �� �� � � � ���� � ��

.��������� ���� � � � � ���

����

�� � � � ��� ��

$������)�� ���� �� � �� ��

���

�� ��

� � � � ��� � � ��

,������)����� ���� � �� ��

����

/�� �

0� � � � ��� ��

���� � � � ��

����

��� �

� � � � ��� ��

Page 32: CBC Databook 1

���������� ������� �� (%

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������

����������������������������������������

����������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������

� �

1 ����� ����

���������������

������������

�����������������������������������������������������������������������

� �

�������� �������� �������� �������� �������� �������� �������� �������� �������� ��������

����������������

����������������

����������������

��������

����������������������������������������������������������������

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

����������������������������������������������������������������

���� �� ��

������� ��� �� ��

�������� ���� ��� �� ��

� � � � �� � � � � �� � � � � ��

� � � ��� � ����

� � � ��� � ����

� � � ��� �

������ �������

������� �� � �� �� ��

�������� ���� �� � �� ��� � �� �� ��

��������� ��������

������� � ���

�����

�����

���

�������� ���� � ��

���

��

����

��

�� ��� �

��

���� �

��

�� ���� �

��

���

������� � ) *����$���

$�� � � ���� ��&

,��� ��#������� �� �

���

��

����

���

��

����

,��� ����2��2� �� � � ���� �� � � ����!��

���

���

��

��

��

��

���

��

��

��

��

������� � �� � � �����

��

��

� ����

��

��

����

��

��

����� �� ������� 2��%�� �� � � ���� ��!

���

��

��

���

��

��

���

��

��

���

��

��

����� �� ����������� 2��%��� �� � � ���� �� �� � � ���� ��!

���

��

��

���

��

��

���

��

��

���

��

��

���

��

��

���

��

��

���

��

��

���

��

��

���

��

��

���

��

��

Page 33: CBC Databook 1

."��� ����������� �� � � ���� �� �� �� � � �� �� �� ����! �������

��

��

��

��

��

'��������� �� � � ���� ��!

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

� ��

��

��

��

�������� �������� �������� ����

��������

��������

��������

����

��������

��������

��������

����

�������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �

�������������������������� �������������������������� �������������������������� �������������������������� �������������������������� �������������������������� ��������������������������

��������������������������

��������������������������

��������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������

����������������������������������������������

3��� � �� � ����� ��� � ����� ���

� ��

��

���

��

�� � ��

��

� ��

��

���

��

�� � ��

��

+�������� ���!���

+�,���-���!��� �� �� �� � ������)�� ���� �� ����!

���� � �� � ������ �����

������.� ���� �����2� ���! �"������ � � ����! �� � �����!

� ���

��

���� �� � �

��

��� ���� ���� �� � � � ������ ���� �� � � � ������

���!�� � ����� �/�����

4�� ��� %��� �������5���� 6� � � �� � �� ! �7"��� ����%�� �� ������ ���� ���!

� ��� � � ��� � ��

� � � ��� (���� � ��

!

����

��

��� 0���1 ��"��'��

��� � " �" 8 #

%�� � $ �� 9 %

�)) : & �)����� ; '

���� 3 ( �� < �

������� . )� * ��� = +

1�� > , ���) ? -

�� @ . �" , /

���� A �� 0 "������ B 1

��� ' 2 ��� C �

D�� E 3 ��� F 4

�)%� G 5 ��� H 6

)" + 7 �)�� I 8

Page 34: CBC Databook 1

(Blank Page)

Page 35: CBC Databook 1

(Blank Page)

Page 36: CBC Databook 1

32

PERIODIC TABLE OF THE ELEMENTS 1

H 2

He 3

Li 4

Be 5

B 6

C 7

N 8

O 9

F 10

Ne 11

Na 12

Mg 13

Al 14

Si

15

P 16

S 17

Cl 18

Ar 19

K 20

Ca 21

Sc 22

Ti 23

V 24

Cr 25

Mn 26

Fe 27

Co 28

Ni 29

Cu 30

Zn 31

Ga 32

Ge 33

As 34

Se 35

Br 36

Kr 37

Rb 38

Sr 39

Y 40

Zr 41

Nb 42

Mo 43

Tc 44

Ru 45

Rh 46

Pd 47

Ag 48

Cd 49

In 50

Sn 51

Sb 52

Te 53

I 54

Xe 55

Cs 56

Ba 57

La 72

Hf 73

Ta 74

W 75

Re 76

Os 77

Ir 78

Pt 79

Au 80

Hg 81

Tl 82

Pb 83

Bi 84

Po 85

At 86

Rn 87

Fr 88

Ra 89

Ac 104

Rf 105

Db 106

Sg 107

Bh 108

Hs 109

Mt

58

Ce 59

Pr 60

Nd 61

Pm 62

Sm 63

Eu 64

Gd 65

Tb 66

Dy 67

Ho 68

Er 69

Tm 70

Yb 71

Lu

90

Th 91

Pa 92

U 93

Np 94

Pu 95

Am 96

Cm 97

Bk 98

Cf 99

Es 100

Fm 101

Md 102

No 103

Lr


Recommended