+ All Categories
Home > Documents > CE 530 Molecular Simulation - University at Buffalokofke/ce530/Lectures/... · 2014. 4. 29. · CE...

CE 530 Molecular Simulation - University at Buffalokofke/ce530/Lectures/... · 2014. 4. 29. · CE...

Date post: 30-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
26
1 CE 530 Molecular Simulation Lecture 21 Histogram Reweighting Methods David A. Kofke Department of Chemical Engineering SUNY Buffalo [email protected]
Transcript
  • 1

    CE 530 Molecular Simulation

    Lecture 21 Histogram Reweighting Methods

    David A. Kofke

    Department of Chemical Engineering SUNY Buffalo

    [email protected]

  • 2 Histogram Reweighting ¡ Method to combine results taken at different state conditions ¡ Microcanonical ensemble

    ¡ Canonical ensemble

    ¡ The big idea: •  Combine simulation data at different temperatures to improve

    quality of all data via their mutual relation to Ω(E)

    ( , , ) 1microstates

    E V NΩ = ∑

    1( , )N N EeQ

    βπ −=r p Probability of a microstate

    ( ; ) ( )( )

    EeE EQ

    βπ β

    β

    −=Ω Probability of an energy

    Number of microstates having this energy

    Probability of each microstate

  • 3 In-class Problem 1. ¡ Consider three energy levels

    ¡ What are Q, distribution of states and at β = 1?

    0 0

    1 1

    2 2

    1 0 ln1100 2.3 ln101000 6.9 ln1000

    EEE

    Ω = = =Ω = = =Ω = = =

  • 4 In-class Problem 1A. ¡ Consider three energy levels

    ¡ What are Q, distribution of states and at β = 1?

    0 1 20 1 2ln1 ln10 ln10001 100 1000

    1 1 100 0.1 1000 0.00112

    E E EQ e e e

    e e e

    β β β− − −

    − − −

    =Ω +Ω +Ω

    = + += × + × + ×=

    0

    1

    2

    00

    11

    22

    1 0.08312

    10 0.83312

    1 0.08312

    E

    E

    E

    eQ

    eQ

    eQ

    β

    β

    β

    π

    π

    π

    Ω= = =

    Ω= = =

    Ω= = =

    0 0

    1 1

    2 2

    1 0 ln1100 2.3 ln101000 6.9 ln1000

    EEE

    Ω = = =Ω = = =Ω = = =

    0.083 00.833 2.30.083 6.92.49

    i iE Eπ== ×+ ×+ ×=

  • 5 In-class Problem 1A. ¡ Consider three energy levels

    ¡ What are Q, distribution of states and at β = 1?

    ¡ And at β = 3?

    0 1 20 1 2ln1 ln10 ln10001 100 1000

    1 1 100 0.1 1000 0.00112

    E E EQ e e e

    e e e

    β β β− − −

    − − −

    =Ω +Ω +Ω

    = + += × + × + ×=

    0

    1

    2

    00

    11

    22

    1 0.08312

    10 0.83312

    1 0.08312

    E

    E

    E

    eQ

    eQ

    eQ

    β

    β

    β

    π

    π

    π

    Ω= = =

    Ω= = =

    Ω= = =

    0 0

    1 1

    2 2

    1 0 ln1100 2.3 ln101000 6.9 ln1000

    EEE

    Ω = = =Ω = = =Ω = = =

    3ln1 3ln10 3ln1000

    3

    1 100 1000

    1 1 100 0.001 1000 10001.1

    Q e e e− − −

    = + +

    = × + × + ×=

    0

    1

    2

    1 0.911.11 0.091.10.0 0.001.1

    π

    π

    π

    = =

    = =

    = =

    0.083 00.833 2.30.083 6.92.49

    i iE Eπ== ×+ ×+ ×=

    0.91 00.09 2.30.00 6.90.21

    E = ×+ ×+ ×=

  • 6

    Histogram Reweighting Approach ¡ Knowledge of Ω (E) can be used to obtain averages at any

    temperature

    ¡ Simulations at different temperatures probe different parts of Ω (E) ¡ But simulations at each temperature provides information over a

    range of values of Ω (E) ¡ Combine simulation data taken at different temperatures to obtain

    better information for each temperature

    E

    Ω(E) β1 β2 β3

  • 7 In-class Problem 2. ¡ Consider simulation data from a system having three energy

    levels •  M = 100 samples taken at β = 0.5 •  mi times observed in level i

    ¡ What is Ω (E)?

    0 0

    1 1

    2 2

    4 0 ln146 2.3 ln10050 9.2 ln10000

    m Em Em E

    = = == = == = =

  • 8 In-class Problem 2. ¡ Consider simulation data from a system having three energy

    levels •  M = 100 samples taken at β = 0.5 •  mi times observed in level i

    ¡ What is Ω (E)?

    0 0

    1 1

    2 2

    4 0 ln146 2.3 ln10050 9.2 ln10000

    m Em Em E

    = = == = == = =

    ( ) ( )( )

    EeE EQ

    βπ

    β

    −=ΩReminder

  • 9 In-class Problem 2. ¡ Consider simulation data from a system having three energy

    levels •  M = 100 samples taken at β = 0.5 •  mi times observed in level i

    ¡ What is Ω (E)?

    0 0

    1 1

    2 2

    4 0 ln146 2.3 ln10050 9.2 ln10000

    m Em Em E

    = = == = == = =

    ( )( )( )

    EEE eQ

    βπβ

    −⎛ ⎞Ω= ⎜ ⎟⎝ ⎠Hint

    Can get only relative values!

  • 10 In-class Problem 2A. ¡ Consider simulation data from a system having three energy

    levels •  M = 100 samples taken at β = 0.5 •  mi times observed in level i

    ¡ What is Ω (E)?

    0 0

    1 1

    2 2

    4 0 ln146 2.3 ln10050 9.2 ln10000

    m Em Em E

    = = == = == = =

    0 0

    1 1

    2 2

    0.50

    0.51

    0.52

    0.04 1 .04

    0.46 100 4.6

    0.50 10000 50

    m UA AM

    m UA AM

    m UA AM

    e Q Q Q

    e Q Q Q

    e Q Q Q

    β

    β

    β

    +

    +

    +

    Ω = = × =

    Ω = = × =

    Ω = = × =

    ( 0.5)AQ Q β≡ =

  • 11 In-class Problem 3. ¡ Consider simulation data from a system having three energy

    levels •  M = 100 samples taken at β = 0.5 •  mi times observed in level i

    ¡ What is Ω (E)?

    ¡ Here’s some more data, taken at β = 1 •  what is Ω(E)?

    0 0

    1 1

    2 2

    4 0 ln146 2.3 ln10050 9.2 ln10000

    m Em Em E

    = = == = == = =

    ( 0.5)AQ Q β≡ =

    0 1 250 48 2m m m= = =

    0 0

    1 1

    2 2

    0.50

    0.51

    0.52

    0.04 1 .04

    0.46 100 4.6

    0.50 10000 50

    m UA A AM

    m UA A AM

    m UA A AM

    e Q Q Q

    e Q Q Q

    e Q Q Q

    β

    β

    β

    +

    +

    +

    Ω = = × =

    Ω = = × =

    Ω = = × =

  • 12 In-class Problem 3. ¡ Consider simulation data from a system having three energy

    levels •  M = 100 samples taken at β = 0.5 •  mi times observed in level i

    ¡ What is Ω (E)?

    ¡ Here’s some more data, taken at β = 1 •  what is Ω (E)?

    0 0

    1 1

    2 2

    4 0 ln146 2.3 ln10050 9.2 ln10000

    m Em Em E

    = = == = == = =

    0 0

    1 1

    2 2

    0.50

    0.51

    0.52

    0.04 1 .04

    0.46 100 4.6

    0.50 10000 50

    m UA A AM

    m UA A AM

    m UA A AM

    e Q Q Q

    e Q Q Q

    e Q Q Q

    β

    β

    β

    +

    +

    +

    Ω = = × =

    Ω = = × =

    Ω = = × =

    ( 0.5)AQ Q β≡ =

    0 1 250 48 2m m m= = =

    0

    1

    2

    0.50 1 .500.48 100 480.02 10000 200

    B B

    B B

    B B

    Q QQ QQ Q

    Ω = × =Ω = × =Ω = × =

    ( 1.0)BQ Q β≡ =

  • 13

    Reconciling the Data

    ¡ We have two data sets

    ¡ Questions of interest •  what is the ratio QA/QB? (which then gives us ΔA) •  what is the best value of Ω1/Ω0, Ω2/Ω0? •  what is the average energy at β = 2?

    ¡ In-class Problem 4 •  make an attempt to answer these questions

    0

    1

    2

    .044.650

    A

    A

    A

    QQQ

    Ω =Ω =Ω =

    0

    1

    2

    .5048200

    B

    B

    B

    QQQ

    Ω =Ω =Ω =

  • 14 In-class Problem 4A. ¡ We have two data sets

    ¡ What is the ratio QA/QB? (which then gives us ΔA) •  Consider values from each energy level

    ¡ What is the best value of Ω1/Ω0, Ω2/Ω0? •  Consider values from each temperature

    ¡ What to do?

    0

    1

    2

    .044.650

    A

    A

    A

    QQQ

    Ω =Ω =Ω =

    0

    1

    2

    .5048200

    B

    B

    B

    QQQ

    Ω =Ω =Ω =

    0 1 20 1 2

    0.04 4.6 500.50 48 200

    0.50 48 2000.04 4.6 5012.5 10.4 4

    A A AB B B

    A A AB B B

    Q Q QQ Q Q

    Q Q QQ Q Q

    Ω Ω ΩΩ Ω Ω= = =

    = = = = = =

    1 20 0

    1 20 0

    4.6 500.04 0.04

    48 2000.05 0.5

    0.5 115 1250

    1 96 400

    A AA A

    B BB B

    Q QQ Q

    Q QQ Q

    β

    β

    Ω ΩΩ Ω

    Ω ΩΩ Ω

    = = = = =

    = = = = =

  • 15

    Accounting for Data Quality

    ¡ Remember the number of samples that went into each value

    •  We expect the A-state data to be good for levels 1 and 2 •  …while the B-state data are good for levels 0 and 1

    ¡ Write each Ω as an average of all values, weighted by quality of result

    0

    1

    2

    0

    1

    2

    .044.65

    600

    445

    A

    A

    A

    mmm

    QQQ

    Ω =Ω =Ω =

    ===

    0

    2

    0

    1

    2

    1

    .504820

    504820

    B

    B

    B

    mm

    QQQ m

    ==

    Ω =Ω =Ω ==

    ( ) ( )0, 0,0 00 0, 0,

    A BA BA B

    est est estA A B B

    m mU UA A B BM M

    w w

    w e Q w e Qβ β

    Ω = Ω + Ω

    = +

    ( ) ( )( )

    EeE EQ

    βπ

    β

    −=Ω

  • 16

    Histogram Variance

    ¡ Estimate confidence in each simulation result

    ¡ Assume each histogram follows a Poisson distribution •  probability P to observe any given instance of distribution

    •  the variance for each bin is

    0

    1

    2

    0

    1

    2

    .044.65

    600

    445

    A

    A

    A

    mmm

    QQQ

    Ω =Ω =Ω =

    ===

    0

    2

    0

    1

    2

    1

    .504820

    504820

    B

    B

    B

    mm

    QQQ m

    ==

    Ω =Ω =Ω ==

    31 21 2 3

    1 2 31 2 3

    [{ }] !!

    [{ , , }] !! ! !

    imi

    ii

    mm m

    P m Mm

    P m m m Mm m m

    π

    π π π

    =

    =

    u1 u2 u3

    piInstance

    2im i im Mσ π= =

  • 17

    Variance in Estimate of Ω ¡ Formula for estimate of Ω

    ¡ Variance

    0, 0,0 00

    A BA BA B

    m mE EestA A B BM Mw e Q w e Q

    β βΩ = +

    ( ) ( )

    0 02 20, 0,0

    0 02 2

    0 00 00 0

    0 0

    2 22 2 2 2 2 2 21 1

    2 22 2 2 21 10, 0,

    2 22 2 2 21 1

    2 21 10 0

    A Best A B

    A B

    A B

    A B

    E EA BA B

    A A B B

    A BA B

    E EA A m B B mM M

    E EA A A A B B B BM M

    e eE EA A B BM Q M Q

    E EA A B BM M

    w e Q w e Q

    w e Q M w e Q M

    w e Q w e Q

    w e Q w e Q

    β β

    β β

    β β

    β β

    β β

    σ σ σ

    π π

    − −

    Ω

    Ω Ω

    = +

    = +

    ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠= Ω + Ω

    ( ) ( )( )

    EeE EQ

    βπ

    β

    −=Ω

  • 18

    Optimizing Weights ¡ Variance

    ¡ Minimize with respect to weight, subject to normalization •  In-class Problem 5

    Do it!

    0 00

    2 2 21 10 0

    A Best

    A B

    E EA A B BM Mw e Q w e Q

    β βσΩ = Ω + Ω

  • 19

    Optimizing Weights ¡ Variance

    ¡ Minimize with respect to weight, subject to normalization •  Lagrange multiplier

    ¡ Equation for each weight is ¡ Rearrange

    ¡ Normalize

    ( )0

    2 1est aMin wσ λΩ⎡ ⎤− −⎢ ⎥⎣ ⎦∑

    002 aa a

    QEa Mw e

    β λΩ =

    ( ) ( )( )

    Eie mE E

    Q M

    βπ

    β

    −=Ω ≈

    0

    012

    Ea aa

    e Ma Qw

    βλ

    Ω=

    0

    0 0

    /Ea a aE EA Be M e MA BQ QA B

    e M Qaw

    β

    β β

    − −+

    =

    0 00

    2 2 21 10 0

    A Best

    A B

    E EA A B BM Mw e Q w e Q

    β βσΩ = Ω + Ω

  • 20

    Optimal Estimate

    ¡ Collect results

    ¡ Combine

    0

    0 0

    /Ea a aE EA Be M e MA BQ QA B

    e M Qaw

    β

    β β

    − −+

    =

    0, 0,0 00

    A BA BA B

    m mE EestA A B BM Mw e Q w e Q

    β βΩ = +

    0 0 0 00, 0,0 0

    0 0

    1

    0

    1

    0, 0,

    E E E EA B A BA BA B A BA BA B A A B B

    E EA BA BA B

    m me M e M e M e ME EestA BQ Q Q M Q M

    e M e MA BQ Q

    e Q e Q

    m m

    β β β β

    β β

    β β− − − −

    − −

    ⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞Ω = + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦

    ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦⎢ ⎥⎣ ⎦

  • 21

    Calculating Ω

    ¡ Formula for Ω

    ¡ In-class Problem 6 •  explain why this formula cannot yet be used

    0 0 1

    0 0, 0,E EA BA BA B

    e M e MestA BQ Q m m

    β β− − −⎡ ⎤ ⎡ ⎤Ω = + +⎣ ⎦⎢ ⎥⎣ ⎦

  • 22

    Calculating Ω

    ¡ Formula for Ω

    ¡ We do not know the Q partition functions

    ¡ One equation for each Ω

    ¡ Each equation depends on all Ω

    ¡ Requires iterative solution

    0 0 1

    0 0, 0,E EA BA BA B

    e M e MestA BQ Q m m

    β β− − −⎡ ⎤ ⎡ ⎤Ω = + +⎣ ⎦⎢ ⎥⎣ ⎦

    0 1 20 1 2

    a a aE E EaQ e e e

    β β β− − −=Ω +Ω +Ω

    0 0

    0 01 2 1 20 1 2 0 1 2

    1

    0 0, 0,E EA BA B

    E EE E E EA BA A B B

    e M e MestA Be e e e e e

    m mβ β

    β ββ β β β

    − −

    − −− − − −

    Ω +Ω +Ω Ω +Ω +Ω⎡ ⎤ ⎡ ⎤Ω = + +⎣ ⎦⎢ ⎥⎣ ⎦

  • 23

    In-class Problem 7 ¡ Write the equations for each Ω using the example values

    0 0

    0 01 2 1 20 1 2 0 1 2

    1

    0 0, 0,E EA BA B

    E EE E E EA BA A B B

    e M e MestA Be e e e e e

    m mβ β

    β ββ β β β

    − −

    − −− − − −

    Ω +Ω +Ω Ω +Ω +Ω⎡ ⎤ ⎡ ⎤Ω = + +⎣ ⎦⎢ ⎥⎣ ⎦

    0

    1

    2

    0.544650

    mmm

    β ====

    0

    1

    2

    0 ln12.3 ln1009.2 ln10000

    EEE

    = == == =

    0

    1

    2

    150482

    mmm

    β ====

    100A BM M= =

  • 24

    In-class Problem 7 ¡ Write the equations for each Ω using the example values

    ¡ Solution

    0

    1

    2

    0.544650

    mmm

    β ====

    0

    1

    2

    0 ln12.3 ln1009.2 ln10000

    EEE

    = == == =

    0

    1

    2

    150482

    mmm

    β ====

    100A BM M= =

    [ ]0 1 2 0 1 2

    10.1 100 0.01 100

    1 1 0.1 0.01 1 0.01 0.0001 46 48est −× ×

    Ω + Ω + Ω Ω + Ω + Ω⎡ ⎤Ω = + +⎣ ⎦

    [ ]0 1 2 0 1 2

    11 100 1 100

    0 1 0.1 0.01 1 0.01 0.0001 4 50est −× ×

    Ω + Ω + Ω Ω + Ω + Ω⎡ ⎤Ω = + +⎣ ⎦

    [ ]0 1 2 0 1 2

    10.01 100 0.0001 100

    2 1 0.1 0.01 1 0.01 0.0001 50 2est −× ×

    Ω + Ω + Ω Ω + Ω + Ω⎡ ⎤Ω = + +⎣ ⎦

    1 2

    0 094.7 943.2Ω Ω= =

    Ω Ω

    0 0

    0 01 2 1 20 1 2 0 1 2

    1

    0 0, 0,E EA BA B

    E EE E E EA BA A B B

    e M e MestA Be e e e e e

    m mβ β

    β ββ β β β

    − −

    − −− − − −

    Ω +Ω +Ω Ω +Ω +Ω⎡ ⎤ ⎡ ⎤Ω = + +⎣ ⎦⎢ ⎥⎣ ⎦

  • 25

    In-class Problem 7A. ¡ Solution

    ¡ Compare

    ¡ “Exact” solution

    ¡ Free energy difference

    1 2

    0 094.7 943.2Ω Ω= =

    Ω Ω

    1 20 0

    1 20 0

    4.6 500.04 0.04

    48 2000.05 0.5

    0.5 115 1250

    1 96 400

    A AA A

    B BB B

    Q QQ Q

    Q QQ Q

    β

    β

    Ω ΩΩ Ω

    Ω ΩΩ Ω

    = = = = =

    = = = = =

    0

    1

    2

    0.544650

    mmm

    β ====

    0

    1

    2

    150482

    mmm

    β ====

    1 2

    0 0100 1000Ω Ω= =

    Ω Ω

    0 1 2

    0 1 2

    1 0.1 0.01 9.741 0.01 0.0001

    A

    B

    QQ

    Ω + Ω + Ω= =Ω + Ω + Ω

    “Design value” = 10

    (?)

  • 26

    Extensions of Technique

    ¡ Method is usually used in multidimensional form ¡ Useful to apply to grand-canonical ensemble

    ¡ Can then be used to relate simulation data at different temperature and chemical potential

    ¡ Many other variations are possible

    31!

    ( , , )

    NN N N Eh NN

    N E

    N U

    e d d e

    U V N e e

    βµ β

    βµ β

    Ξ =

    = Ω

    ∑ ∫

    ∑∑

    r p


Recommended