+ All Categories
Home > Documents > Cebu Seminar Energy-based

Cebu Seminar Energy-based

Date post: 24-Oct-2014
Category:
Upload: deanna-reign-chavez
View: 66 times
Download: 5 times
Share this document with a friend
Popular Tags:
37
SAMPLE DESIGN PROBLEM SAMPLE DESIGN PROBLEM FOR A FOUR (4) STOREY FOR A FOUR (4) STOREY STEEL BUILDING USING STEEL BUILDING USING NSCP-5 NSCP-5 TH TH EDITION EDITION PIMENTEL & ASSOCIATES Presented by: ENGR. TONY C. PIMENTEL Engineering Consultants INCLUDES : INCLUDES : 1. 1. DESIGN CONCEPTS DESIGN CONCEPTS 2. CALCULATION OF BASE SHEAR 2. CALCULATION OF BASE SHEAR 3. PRELIMINARY SIZING – USING MODIFIED ENERGY 3. PRELIMINARY SIZING – USING MODIFIED ENERGY APPROACH APPROACH 4. PUSH-OVER ANALYSIS – VERIFICATION OF 4. PUSH-OVER ANALYSIS – VERIFICATION OF RESULTS RESULTS ASSOCIATION OF STRUCTURAL ASSOCIATION OF STRUCTURAL ENGINEERS OF THE PHILIPPINES ENGINEERS OF THE PHILIPPINES INC. INC. Continuing Professional Development
Transcript
Page 1: Cebu Seminar Energy-based

SAMPLE DESIGN SAMPLE DESIGN PROBLEM FOR A FOUR PROBLEM FOR A FOUR (4) STOREY STEEL (4) STOREY STEEL BUILDING USING BUILDING USING NSCP-5NSCP-5THTH EDITION EDITION

SAMPLE DESIGN SAMPLE DESIGN PROBLEM FOR A FOUR PROBLEM FOR A FOUR (4) STOREY STEEL (4) STOREY STEEL BUILDING USING BUILDING USING NSCP-5NSCP-5THTH EDITION EDITION

PIMENTEL & ASSOCIATES

Presented by:

ENGR. TONY C. PIMENTELEngineering Consultants

INCLUDES :INCLUDES :

1.1. DESIGN CONCEPTSDESIGN CONCEPTS

2. CALCULATION OF BASE SHEAR2. CALCULATION OF BASE SHEAR

3. PRELIMINARY SIZING – USING MODIFIED ENERGY 3. PRELIMINARY SIZING – USING MODIFIED ENERGY APPROACHAPPROACH

4. PUSH-OVER ANALYSIS – VERIFICATION OF RESULTS4. PUSH-OVER ANALYSIS – VERIFICATION OF RESULTS

ASSOCIATION OF STRUCTURAL ASSOCIATION OF STRUCTURAL ENGINEERS OF THE PHILIPPINES INC. ENGINEERS OF THE PHILIPPINES INC.

Continuing Professional Development

Page 2: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingDesign ConceptsDesign ConceptsGiven a Building Area as Follows :

60 m

40

mEconomy / Optimization

1. Material Optimization

2. Framing System Optimization

3. Member Design Optimization

4. Connection Optimization

General Objectives :

1. Material Optimization1. Material Optimization

Materials Allowed for Seismic Regions (NSCP- Section 515.4.1)

1. ASTM A36 (Structural Steel)

2. ASTM A441 (High Strength Structural Manganese Vanadium Steel)

3. ASTM A500 (Gr B & C) (Cold-formed Tubing)

4. ASTM A501 ( Hot-formed Structural Tubing)

5. ASTM A572 (Gr 42 & 50)

6. ASTM A588 (High Strength Low-Alloy fy = 345 MPa (min)

7. ASTM A913 (Gr 50 or 65)

8. ASTM A283 (Gr D) – Base Plates and Anchor Bolts

Ratio = Strength / CostRatio = Strength / Cost

Beams – ASTM A36Beams – ASTM A36

Columns – ASTM A36Columns – ASTM A36

Page 3: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingDesign ConceptsDesign Concepts2. Framing System - Preliminary2. Framing System - Preliminary

What to consider ?What to consider ? 1. 1. Floor Framing SystemFloor Framing System

2.2. Column Layout SytemColumn Layout Sytem

3.3. Floor to Floor HeightFloor to Floor Height

4.4. Lateral Framing SystemLateral Framing System

5.5. Foundation SystemFoundation System

Page 4: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingDesign ConceptsDesign Concepts

Span (m) Depth (in) say8.00 14.17 1610.00 17.71 1812.00 21.25 2414.00 24.80 2616.00 28.34 3018.00 31.88 3220.00 35.42 3622.00 38.97 40

Preliminary Beam SizingPreliminary Beam Sizing

dminFy( ) L[ ]

800

Preliminary Beam Preliminary Beam Sizing – Use 24 inches Sizing – Use 24 inches

( or 600 mm )( or 600 mm )

Page 5: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingDesign ConceptsDesign ConceptsPreliminary Floor HeightPreliminary Floor Height

inches mm16 400 3725 375018 450 3775 380020 500 3825 385022 550 3875 390024 600 3925 4000 Use This26 650 3975 400028 700 4025 410030 750 4075 410032 800 4125 415034 850 4175 420036 900 4225 4250

Beam DepthFloor Ht (mm) Final Flr. Ht (mm) Remarks

1. Slab Thickness = 125 mm

2. Beam Depth

3. Utilities ( MEP) = 500 mm

4. Ceiling Height = 2700 mm

Use Floor Height Use Floor Height = 4000 mm= 4000 mm

1

2

3

4

Floor

Heig

ht

Page 6: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingDesign ConceptsDesign ConceptsPreliminary Column LayoutPreliminary Column Layout

What to consider ?What to consider ?

1.1. Practical Span – Square Practical Span – Square

2 . Cost of Columns2 . Cost of Columns

3.3. Column SectionColumn Section

4.4. VibrationsVibrations

W (m) L (m) L / W 48 60 Ratio

1 3.00 16.00 20.00 1.252 4.00 12.00 15.00 1.253 5.00 9.60 12.00 1.254 6.00 8.00 10.00 1.255 7.00 6.86 8.57 1.256 8.00 6.00 7.50 1.257 9.00 5.33 6.67 1.258 10.00 4.80 6.00 1.259 11.00 4.36 5.45 1.25

No No. Bays

Therefore :Therefore :

Use 12.0m x 12.0m Column Use 12.0m x 12.0m Column LayoutLayout

Page 7: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingDesign ConceptsDesign ConceptsDetermine No. of BaysDetermine No. of Bays

Floor Area 30984 ft2No Bays Rho Remarks Comments

4.00 1.64 NG ! > 1.256.00 1.45 NG ! > 1.258.00 1.27 NG ! > 1.25

10.00 1.09 OK Optimum Rho ~ 1.012.00 0.91 OK Practical use Rho = 1.014.00 0.73 OK16.00 0.55 OK18.00 0.36 OK20.00 0.18 OK22.00 0.00 OK

2 20 NoBays( )[ ]

1.25 GrndFlrArea

Therefore :Therefore :

Use 12-Bays each Use 12-Bays each Direction (X & Y)Direction (X & Y)

Page 8: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingDesign ConceptsDesign Concepts

A B C D E F

1

2

3

4

5

12 12 12 12 1212

12

12

12

Proposed Structural LayoutProposed Structural Layout

Page 9: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingProposed Structural LayoutProposed Structural Layout

Page 10: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingNo Structural Elements Slab Beam Column Seismic

1

1 1/2" Topping Cover on 5 Ply H20 Proofing Membrane on 1" Thk Topping

28 28 28 28

2 5" thk Conc. Slab 62.5 62.5 62.5 62.53 MEP Utilities 15 15 15 15

4Acoustic Ceiling on T- Runners

3 3 3 3

5 Beam Weight - 6 6 66 Column Weight - - 3 3

108.5 114.5 117.5 117.5Total Roof Dead Load 110 115 118 118

Roof Dead Load

No Structural Elements Slab Beam Column Seismic

13/4 " Thk Ceramic Tiles on 1 1/2" Thk Mortar

23 23 23 23

2 5" thk Conc. Slab 62.5 62.5 62.5 62.53 Movable Partition 20 20 20 104 MEP Utilities 15 15 15 15

5Acoustic Ceiling on T- Runners

3 3 3 3

6 Beam Weight - 6 6 67 Column Weight - - 3 3

123.5 129.5 132.5 122.5Total Roof Dead Load 125 130 135 125

Typical Dead Load

Regular StructureRegular Structure= 0.90 W= 0.90 W

Effective Mass Effective Mass SeismicSeismic

Dead Load Dead Load ComputationComputation

Page 11: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingRoof Deck LLr = 80 psf

Typical Floor Area = 80 psf ( Code Minimum = 50 psf Office)Slab Beam Girder

No Reduction 80AI = 12 x 6 = 72 m2 (or 775 ft2) 63.2 psf 50.4 psfRF = (0.25 + 15/ sqrt(775)) say 65 say 55RF = 0.79 (79%)AI = 12 x 12 = 144m2 (or 1549.21 ft2)RF = 0.63 (63%)

STRUCTURAL ELEMENTS

Level DL LL TA AI RF RF DL+LL SUM DL+LLRoof Deck 118 80 1549.21 6196.8 0.44 0.5 245 245

4th 135 80 1549.21 12393.6 0.38 0.5 271 5163rd 135 80 1549.21 18590.4 0.36 0.5 271 7872nd 135 80 1549.21 24787.2 0.35 0.5 271 1058

COLUMN - INTERIOR

Level DL LL TA AI RF RF DL+LL SUM DL+LLRoof Deck 118 80 775 3098.42 0.52 0.52 124 124

4th 135 80 775 6196.8 0.44 0.5 136 2603rd 135 80 775 9295.3 0.41 0.5 136 3962nd 135 80 775 12393.6 0.38 0.5 136 532

COLUMN - EDGE

Level DL LL TA AI RF RF DL+LL SUM DL+LLRoof Deck 118 80 387 1549.2 0.63 0.63 65 65

4th 135 80 387 3098.4 0.52 0.52 69 1343rd 135 80 387 4647.6 0.47 0.5 68 2022nd 135 80 387 6196.8 0.44 0.5 68 270

COLUMN - CORNER

Live Load Live Load ComputationComputation

Page 12: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingCalculation of Base ShearCalculation of Base Shear

1. Location of Site to Nearest Fault [ NSCP Fig. 208.1] Cebu Lineament > 15 km

2. Seismic Source Type = B > 10 km and >15 km [ NSCP Table 208.3 ]

3. Zone Factor = 0.40

4. Soil Profile = Soft Soil Profile < 15 blow/foot SPT = 10 [NSCP-Table 208.2]

5. Near Source Factor Acceleration Na = 1.0 [NSCP Table 208-7 & 8]

Velocity Nv = 1.0

6. Seismic Coefficient Acceleration Ca = 0.36 Na = 0.36 (1.0) = 0.36

Velocity Cv = 0.36

There are 2 Base Shear used in design practiceThere are 2 Base Shear used in design practice

2. Base Shear due to Drift Requirements2. Base Shear due to Drift Requirements2. Base Shear due to Drift Requirements2. Base Shear due to Drift Requirements1. Base Shear due to Strength Requirements1. Base Shear due to Strength Requirements1. Base Shear due to Strength Requirements1. Base Shear due to Strength Requirements

Base Shear ParametersBase Shear Parameters

Page 13: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingChoosing The Lateral Resisting Choosing The Lateral Resisting

SystemSystem

Three (3) Accepted Steel Framing SystemThree (3) Accepted Steel Framing System

Moment Resisting Space Frame R = 8.5Moment Resisting Space Frame R = 8.5

Eccentric Braced Frame R = 7.0Eccentric Braced Frame R = 7.0

Concentric Braced Frame R = 6.4Concentric Braced Frame R = 6.4

Choose – Moment Resisting Choose – Moment Resisting Space FrameSpace Frame

Page 14: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingCalculation of Base ShearCalculation of Base Shear

1. Base Shear due to Strength Requirements1. Base Shear due to Strength Requirements1. Base Shear due to Strength Requirements1. Base Shear due to Strength Requirements

This Base shear is used for final design. The minimum base shear This Base shear is used for final design. The minimum base shear coefficient is set to 3% of the Effective Seismic Weightcoefficient is set to 3% of the Effective Seismic Weight

Strength Requirements

• Total Height from base ( hn ) = 4.0 x 4 = 16.0m

• Period Calculation – Method A [NSCP Eq. 208-9]

Ct = 0.853 (Special Moment Resisting Space Frame)

TA = 0.682 secs

TA Ct hn 3

4

V1Cv I RT( )

W

Velocity Velocity

V1 = 0.166 WV1 = 0.166 W

V22.5 Ca I( )

R

W

AccelerationAcceleration

V2 = 0.106 WV2 = 0.106 W

Page 15: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingMinimum Base ShearMinimum Base Shear

V4 0.11( ) Ca( ) I( )[ ] W V4 = 0.0396 WV4 = 0.0396 W

V3 = 0.03765 WV3 = 0.03765 WV30.8( ) Z( ) Nv( ) I( )[ ]

R

W

Page 16: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary Sizing

1. Base Shear due to Drift Requirements1. Base Shear due to Drift Requirements1. Base Shear due to Drift Requirements1. Base Shear due to Drift Requirements

Calculation of Base ShearCalculation of Base Shear

Using a simplified period calculation ( METHOD B) by Teal 1975 & Using a simplified period calculation ( METHOD B) by Teal 1975 & Method by Baker 1997Method by Baker 1997

The Fundamental period can be estimated using a Rayleigh FormulaThe Fundamental period can be estimated using a Rayleigh Formula

TB 0.25( )R Cs

Where : Where : ΔΔR = Allowable roof deflectionR = Allowable roof deflection

Cs = V / W base Shear CoefficientCs = V / W base Shear Coefficient

Page 17: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary Sizing

Calculating Calculating ΔΔR = Maximum Inelastic Response Displacement R = Maximum Inelastic Response Displacement [NSCP 208.5.9][NSCP 208.5.9]

M 0.7( ) R( ) s[ ]

s0.02( ) H( )[ ]

0.7( ) R( )

Calculating Calculating CSCS

CsCv( ) I( )[ ]

R( ) T( )

1.05( )

ΔΔs = 60.95 mm or (2.4 inches)s = 60.95 mm or (2.4 inches)

ΔΔs = Elastic Deformations = Elastic DeformationΔΔM allow = 0.02 HM allow = 0.02 H

ρρ = reliability index 1.0 = reliability index 1.0

Accidental TorsionAccidental Torsion

Cs = 0.1344 / TCs = 0.1344 / T

Page 18: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingSubstituting :Substituting :

TB 0.25( )2.4( )

0.1344( )

T

TB = 1.054 / TTB = 1.054 / T

TB = 1.026 secs ( ETABS OUTPUT TB = 0.98 secs )TB = 1.026 secs ( ETABS OUTPUT TB = 0.98 secs )TB = 1.026 secs ( ETABS OUTPUT TB = 0.98 secs )TB = 1.026 secs ( ETABS OUTPUT TB = 0.98 secs )

V1Cv I RT( )

W

Velocity Velocity

V1 = 0.125 WV1 = 0.125 W

V22.5 Ca I( )

R

W

AccelerationAcceleration

V2 = 0.120 WV2 = 0.120 W

Page 19: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingCalculation of Seismic WeightCalculation of Seismic Weight

Roof = Wseis x A roof = 0.118 ksf (30.984) = 3656 kipsRoof = Wseis x A roof = 0.118 ksf (30.984) = 3656 kips

Typical = Wseis x A typ = 0.125 ksf (30.984) = 3873 kipsTypical = Wseis x A typ = 0.125 ksf (30.984) = 3873 kips

Total Bldg Weight = 3656 kips + 3 (3873 kips) = 15275 kipsTotal Bldg Weight = 3656 kips + 3 (3873 kips) = 15275 kips

Vdes = 0.120 W = 0.120 (15275 kips) = 1833 kips Vdes = 0.120 W = 0.120 (15275 kips) = 1833 kips (Ultimate)(Ultimate)

For X- Direction per Frame = 1833 / 2 = 916.5 kips For X- Direction per Frame = 1833 / 2 = 916.5 kips say 917 kipssay 917 kips

Page 20: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingDistribute Lateral ForcesDistribute Lateral Forces

V ult 917Level h (ft) Wt/ Flr (k) W x h % F Fx ult Fx serRoof 52.48 3656 191866.9 0.386245 354.1865 252.99034th 39.36 3873 152441.3 0.306878 281.4068 201.00483rd 26.24 3873 101627.5 0.204585 187.6045 134.00322nd 13.12 3873 50813.76 0.102293 93.80226 67.00161Total 15275 496749.4 1.000000 917 655

Base Shear

253 k253 k

201 k201 k

134 k134 k

67 k67 k

Page 21: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingModified Energy MethodModified Energy Method

External Force = Internal ForceExternal Force = Internal Force

Lateral ForcesLateral Forces Column -Beam Connections Column -Beam Connections Yielding Yielding

1

n

i

Fi( ) hi( )[ ] 1

nc

i

Myc

i1

1

ns

k 1

nb

j

2( ) My b j k[ ]

1

n

i

Fi( ) hi( )[ ] 1

nc

i

Myc

i1

1

ns

k 1

nb

j

2( ) My b j k[ ]

Lateral Lateral ForcesForces

ColumnColumn BeamBeam

By Leelataviwat (2002)By Leelataviwat (2002)

Page 22: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingModified Energy MethodModified Energy Method

Desired Yield Mechanism Desired Yield Mechanism

Strong Column Weak Beam (SCWB)Strong Column Weak Beam (SCWB)

Page 23: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingBeam Distribution FactorBeam Distribution Factor

253 kips253 kips

454 kips454 kips

588 kips588 kips

655 kips655 kips

Story ShearsStory Shears

Vi Vrf

12

1.0001.000

1.3401.340

1.5241.524

1.6101.610

n

5.4745.474

Optimization of Beam Forces Along Height of Optimization of Beam Forces Along Height of BuildingBuilding

Page 24: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingCalculate :Calculate :

1

nc

i

Myc

i1

Case 1Case 1

NC1 = 2 X 5NC1 = 2 X 5

Case 2Case 2

NC2 = 2 X 7NC2 = 2 X 7

Mc11

n

i

Vi

h( )

2( ) NC1( )

MC1454( ) 4 3.28( )[ ]

2 5( ) MC2

655( ) 4 3.28( )[ ]

2 7( )

MC1 = 596 FT-KIPSMC1 = 596 FT-KIPS MC2 = 614 FT-KIPSMC2 = 614 FT-KIPS

1

nc

i

Myc

i1

= 614 X 7 = 4298 FT-KIPS= 614 X 7 = 4298 FT-KIPS

Page 25: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingCalculate Roof Beam Moments :Calculate Roof Beam Moments :Mc1

1

n

i

Vi

h( )

2( ) Nc( )

Myrf1

n

i

Fi( ) hi( )

1

n

i

Myci

1

2 Nbeams( )

n

1

n

i

Fi hi

LevelNo Yield

BeamMyb β Σ

Roof 2 4 1.000 8.0004th 2 4 1.340 10.7203rd 2 6 1.524 18.2882nd 2 6 1.610 19.320

TOTAL 56.328

2 Nb n

1

nc

i

Myc

i1

= 614 X 7 = 4298 FT-KIPS= 614 X 7 = 4298 FT-KIPS

Myroof = ( 25584 – 4298 ) / 56.33 = 378 ft-Myroof = ( 25584 – 4298 ) / 56.33 = 378 ft-kips / roof beamkips / roof beam

Level h (ft) Fi (kips) Fi x hRoof 52.48 253 13277.4404th 39.36 201 7911.3603rd 26.24 134 3516.1602nd 13.12 67 879.040

TOTAL 25584.000

Page 26: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingBeam Moments Design :Beam Moments Design :

Level β -BDF MEQ Mgrav Mot Sx Reqd AISC Section Sx ActualRoof 1.000 378.000 83.000 461.000 232.828 W 27 X 94 243.0004th 1.340 506.520 95.000 601.520 303.798 W 30 X 116 329.0003rd 1.524 576.072 95.000 671.072 338.925 W 33 X 118 359.0002nd 1.610 608.580 95.000 703.580 355.343 W 33 X 118 359.000

SxxMtot( ) 12 0.66 Fy

Page 27: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingColumn Moments Design :Column Moments Design :

Level Sxact Mcap No Beams McaptotalRoof 243 481.14 4.00 1924.564th 329 651.42 4.00 2605.683rd 359 710.82 6.00 4264.922nd 359 710.82 6.00 4264.92

Total 13060.08

1

n

i

Fi( ) hi( )[ ] 1

nc

i

Myc

i1

1

ns

k 1

nb

j

2( ) My b j k[ ]

1

n

i

Fi( ) hi( )[ ] 1

nc

i

Myc

i1

1

ns

k 1

nb

j

2( ) My b j k[ ]

Lateral Lateral ForcesForces

ColumnColumn BeamBeam

Level Coeff F hi Fi x hiRoof 0.386 F 52.48 20.26 F4th 0.307 F 39.36 12.08 F3rd 0.205 F 26.24 5.38 F2nd 0.102 F 13.12 1.34 F

Total 39.06 F

39.06 F = 4298 + 1306039.06 F = 4298 + 13060Adjust Lateral Forces Adjust Lateral Forces F = 445 kipsF = 445 kipsReduced Lateral Reduced Lateral

ForcesForces

Page 28: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingColumn Moments Design :Column Moments Design :

Reduced Lateral Reduced Lateral ForcesForces

0.386 * 445 = 172 k0.386 * 445 = 172 k

0.307 * 445 = 137 k0.307 * 445 = 137 k

0.205 * 445 = 91 k0.205 * 445 = 91 k

0.102 * 445 = 45 k0.102 * 445 = 45 k

Page 29: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingColumn Moments Design :Column Moments Design :

172 k172 k

137 k137 k

91 k91 k

45 k45 k

MrfTot = 1924 ft-MrfTot = 1924 ft-kipskips

M4Tot = 2608 ft-kipsM4Tot = 2608 ft-kips

M3Tot = 4266 ft-kipsM3Tot = 4266 ft-kips

M2Tot = 4266 ft-kipsM2Tot = 4266 ft-kips

2275 ft-kip2275 ft-kip

1924 ft-kip1924 ft-kip

-333 ft-kip-333 ft-kip

-1780 ft-kip-1780 ft-kip

2487 ft-kip2487 ft-kip

-2762 ft-kip-2762 ft-kip

1504 ft-kip1504 ft-kip

- 4336 ft-kip- 4336 ft-kip

H =

4m

(1

3.1

2

H =

4m

(1

3.1

2

ft)ft)

Page 30: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingPreliminary SizingPreliminary SizingColumn Moments Design :Column Moments Design :

Peff = Po + Mx (m)Peff = Po + Mx (m)

m = 1.7 for W 14m = 1.7 for W 14Po up = 142 k / colPo up = 142 k / colPo dn = 290 k / colPo dn = 290 k / col

Peff = 142 + (2487 /5) (1.7) = 988 ft-kipPeff = 142 + (2487 /5) (1.7) = 988 ft-kip

Peff = 290 + (4336 /7) (1.7) = 988 ft-kipPeff = 290 + (4336 /7) (1.7) = 988 ft-kip

W 14 x 176 UpperW 14 x 176 Upper

W 14 x 257 LowerW 14 x 257 Lower

Page 31: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingVerification of ResultsVerification of Results

0.585

0.464

0.942

0.653

0.763

0.506

0.741

0.629

0.682

0.867

0.48

0.773

0.633

0.363

0.966

0.716

0.839

0.491

0.773

0.636

0.577

0.448

0.753

0.705

0.817

0.491

0.751

0.592

0.545

0.443

0.769

0.732

0.791

0.447

0.844

0.469

0.561

0.466

0.842

0.561

0.78

0.337

0.631

0.221

Load 1

XY

Z

Capacity Member Ratios:Capacity Member Ratios:

Page 32: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingVerification of ResultsVerification of Results

Story DriftStory Drift

Story Drift Allowable = 2.4 inchesStory Drift Allowable = 2.4 inches

Page 33: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingVerification of ResultsVerification of ResultsPush Over AnalysisPush Over Analysis

Page 34: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingVerification of ResultsVerification of ResultsPush Over AnalysisPush Over Analysis

(4400 kN,90mm)

(5400 kN,130mm)(5700 kN,300mm)

(5400 kN,460mm)

Beam Gr. 36Beam Gr. 36Column Gr. 36Column Gr. 36

Page 35: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingVerification of ResultsVerification of ResultsPush Over AnalysisPush Over Analysis

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 40

0.08

0.16

0.24

0.32

0.4

0.48

0.56

0.64

0.72

0.8Response Spectrum

Period (T)

Spe

ctra

l Acc

eler

atio

n

Sa5%i

SaEQ1i

SaEQ2i

Push1Saj

Push2Saj

Ti Ti Ti Push1T j Push2T j

Additional Additional CapacityCapacity

Beam Gr 36 / Column Gr 36Beam Gr 36 / Column Gr 36

Beam Gr 36 / Column Gr 50Beam Gr 36 / Column Gr 50

5% Damping5% Damping

7% Damping7% Damping

3% Damping3% Damping

Page 36: Cebu Seminar Energy-based

Design of a Four (4) Storey Steel BuildingVerification of ResultsVerification of ResultsSummary :Summary :

1.1.Preliminary Analysis – Using Modified Preliminary Analysis – Using Modified Energy MethodEnergy Method

2.2.Verification of Section Capacities – Verification of Section Capacities – STAAD Pro 2003 , ETABS 8, etcSTAAD Pro 2003 , ETABS 8, etc

3.3.Final Verification Using Push Over Final Verification Using Push Over Analysis for Performance Based Analysis for Performance Based EngineeringEngineering

Page 37: Cebu Seminar Energy-based

THANK YOU VERY MUCH !!!THANK YOU VERY MUCH !!!

ASSOCIATION OF STRUCTURAL ASSOCIATION OF STRUCTURAL ENGINEERS OF THE PHILIPPINES INC. ENGINEERS OF THE PHILIPPINES INC.

Continuing Professional Development

PIMENTEL & ASSOCIATES

Presented by:

ENGR. TONY C. PIMENTELEngineering Consultants


Recommended