+ All Categories
Home > Documents > CEC-500-2012-043 ovooooo

CEC-500-2012-043 ovooooo

Date post: 03-Apr-2018
Category:
Upload: seva0
View: 214 times
Download: 0 times
Share this document with a friend

of 112

Transcript
  • 7/29/2019 CEC-500-2012-043 ovooooo

    1/112

    Publ ic Interest Energy Research (PIER) ProgramFINAL PROJECT REPORT

    ADVANCEDLASERIGNITIONSYSTEMINTEGRATEDARICESYSTEMFORDISTRIBUTEDGENERATIONINCALIFORNIA

    MAY 2012

    CEC 500 2012 043

    Preparedfor: CaliforniaEnergyCommissionPreparedby: ArgonneNationalLaboratory

  • 7/29/2019 CEC-500-2012-043 ovooooo

    2/112

    Prepared by:

    Primary Author(s):Sreenath GuptaRaj Sekar

    Argonne National LaboratoryArgonne, IL, 60439

    Contract Number: 500-02-022

    Prepared for :

    California Energy Commission

    Avtar Bining, Ph.D.Project Manager

    Mike GravelyOffice ManagerEnergy Systems Research Office

    Laurie ten HopeDeputy DirectorRESEARCH AND DEVELOPMENT DIVISION

    Robert P. OglesbyExecutive Director

    DISCLAIMER

    This report was prepared as the result of work sponsored by the California Energy Commission. It

    does not necessarily represent the views of the Energy Commission, its employees or the State ofCalifornia. The Energy Commission, the State of California, its employees, contractors andsubcontractors make no warrant, express or implied, and assume no legal liability for the informationin this report; nor does any party represent that the uses of this information will not infringe uponprivately owned rights. This report has not been approved or disapproved by the California EnergyCommission nor has the California Energy Commission passed upon the accuracy or adequacy ofthe information in this report.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    3/112

    i

    Acknowledgments

    TheauthorsthanktheCaliforniaEnergyCommissionforthefunding,supportandguidance

    forthisproject.TheauthorswouldalsoliketothankMr.RonFiskum,TechnologyManager

    oftheAdvancedReciprocatingEngineSystemsProgramattheUnitedStatesDepartmentof

    Energyforcofundingthisproject.Wealsorecordourappreciationfortheinteractionwith

    AdvancedLaserIgnitionSystemConsortiumpartners.

    Pleasecitethisreportasfollows:

    Gupta,Sreenath,andRajSekar(ArgonneNationalLaboratory).2008.AdvancedLaserIgnitionSystemIntegratedARICESystemforDistributedGenerationinCalifornia.CaliforniaEnergy

    Commission,PIEREnvironmentallyPreferredAdvancedGenerationProgram.CEC500

    2012043.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    4/112

    ii

  • 7/29/2019 CEC-500-2012-043 ovooooo

    5/112

    iii

    Preface

    TheCaliforniaEnergyCommissionsPublicInterestEnergyResearch(PIER)Program

    supportspublicinterestenergyresearchanddevelopmentthatwillhelpimprovethe

    qualityoflifeinCaliforniabybringingenvironmentallysafe,affordable,andreliableenergy

    servicesandproductstothemarketplace.

    ThePIERProgramconductspublicinterestresearch,development,anddemonstration

    (RD&D)projectstobenefitCalifornia.

    ThePIERProgramstrivestoconductthemostpromisingpublicinterestenergyresearchby

    partneringwithRD&Dentities,includingindividuals,businesses,utilities,andpublicor

    privateresearchinstitutions.

    PIERfundingeffortsarefocusedonthefollowingRD&Dprogramareas:

    BuildingsEndUseEnergyEfficiency

    EnergyInnovationsSmallGrants

    EnergyRelatedEnvironmentalResearch

    EnergySystemsIntegration

    EnvironmentallyPreferredAdvancedGeneration

    Industrial/Agricultural/WaterEndUseEnergyEfficiency

    RenewableEnergyTechnologies

    Transportation

    AdvancedLaserIgnitionIntegratedARICESystemforDistributedGenerationinCaliforniaisthe

    finalreportfortheAdvancedLaserIgnitionIntegratedAdvancedReciprocatingInternal

    CombustionEngine(ARICE)SystemforDistributedGenerationinCaliforniaproject

    Contractnumber50002022conductedbyArgonneNationalLaboratory.Theinformation

    fromthisprojectcontributestoPIERsEnvironmentallyPreferredAdvancedGeneration

    Program.

    FormoreinformationaboutthePIERProgram,pleasevisittheEnergyCommissions

    websiteatwww.energy.ca.gov/research/orcontacttheEnergyCommissionat9166544878.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    6/112

    iv

  • 7/29/2019 CEC-500-2012-043 ovooooo

    7/112

    v

    Table of Contents

    Preface:................................................................................................................................................ iii

    Abstract............................................................................................................................................. xiii

    ExecutiveSummary............................................................................................................................ 1

    1.0 Introduction............................................................................................................................. 5

    1.0 Introduction............................................................................................................................. 5

    1.1. Background................................................................................................................ 5

    1.2. FundamentalsofIgnition......................................................................................... 8

    1.3. WhyLaserIgnition?.................................................................................................. 9

    1.4. ALISConsortium..................................................................................................... 10

    1.5. GoalsandObjectives............................................................................................... 11

    2.0 (Task2.2)NaturalGasAirIgnitionExperimentalStudy............................................... 13

    2.1. RationaleforTask2.2.............................................................................................. 13

    2.2. ExperimentalSetup................................................................................................. 14

    2.2.1. Rapidcompressionmachine.................................................................................. 14

    2.2.2. Laserignitionsystem.............................................................................................. 17

    2.2.3.

    Conventionalignitionsystem................................................................................ 17

    2.2.4. Operationalprocedure............................................................................................ 18

    2.3. ResultsandDiscussion........................................................................................... 19

    2.3.1. TestMatrix................................................................................................................ 19

    2.3.2. IgnitionLimits.......................................................................................................... 20

    2.3.5. ConclusionsforTask2.2......................................................................................... 24

    3.0 (Task2.3)DesignofALISComponents............................................................................ 25

    3.1. GoalsandObjectivesofTask2.3........................................................................... 25

    3.2. LaserSystem............................................................................................................ 28

    3.3. LaserPlugs............................................................................................................... 31

    3.4. HighPowerOpticalMultiplexer.......................................................................... 34

  • 7/29/2019 CEC-500-2012-043 ovooooo

    8/112

    vi

    3.4.1. ElectroOpticModulator(PockelsCell)............................................................... 34

    3.4.2. RotatingMirror........................................................................................................ 35

    3.4.3. Flipflop.................................................................................................................... 37

    3.5.

    FiberOpticDelivery............................................................................................... 38

    3.5.1. Solidcorefibers........................................................................................................ 39

    3.5.2. HollowGlassWaveguides(HGWs)..................................................................... 41

    3.5.3. Advancedaircorefibers........................................................................................ 42

    3.6. ElectronicInterface.................................................................................................. 43

    3.7. ResultsandConclusionsforTask2.3................................................................... 44

    4.0 (Task2.4)SingleCylinderLaserIgnitionStudies............................................................ 47

    4.1.

    StatementofWorkforTask2.4............................................................................. 47

    4.2. ExperimentalSetup................................................................................................. 48

    4.2.1. SingleCylinderEngine........................................................................................... 48

    4.2.2. OpenPathLaserIgnitionSetup............................................................................ 50

    4.2.3. Fibercoupledlaserignitionsetup........................................................................ 52

    4.3. TestMatrix................................................................................................................ 54

    4.4. ResultsandDiscussionforTask2.4...................................................................... 56

    4.4.1. FullLoadComparison(15barBMEP).................................................................. 58

    4.4.2. PartLoadComparison(10barBMEP)................................................................. 62

    4.4.3. FiberCoupledLaserIgnitionResults................................................................... 64

    4.5. ConclusionsforTask2.4......................................................................................... 65

    5.0 (Task2.5)IntegrateALISandRefineforPerformanceonaMultiCylinderEngine..67

    5.1. EngineandNaturalGasFuelingSystemInstallation........................................ 67

    5.1.1.

    Multicylinderengine............................................................................................. 67

    5.1.2. NaturalGasFuelingsystem................................................................................... 68

    5.2. ALISIntegration...................................................................................................... 69

    5.2.1. Mechanicalintegration........................................................................................... 70

    5.2.2. ElectronicIntegration.............................................................................................. 72

  • 7/29/2019 CEC-500-2012-043 ovooooo

    9/112

    vii

    5.2.3. ALIStesting.............................................................................................................. 75

    6.0 (Task2.6)PerformanceTestingofIntegratedALISARICESystem............................. 79

    6.1. StatementofWorkforTask2.6............................................................................. 79

    6.2.

    MultiCylinderEngineTests.................................................................................. 79

    7.0 (Task2.7)EconomicEvaluationforFeasibility................................................................ 81

    8.0 SummaryandConclusions................................................................................................. 83

    9.0 References.............................................................................................................................. 85

    10.0 GLOSSARY............................................................................................................................ 87

    APPENDIXA:AdvancedLaserIgnitionSystem(ALIS)Consortium

    APPENDIXB:FutureHighPowerOpticalMultiplexingTechnologies

  • 7/29/2019 CEC-500-2012-043 ovooooo

    10/112

    viii

    List of Figures

    Page

    Figure1.ComparisonofMaintenanceCostsforRichBurnandLeanBurnEngines...............6

    Figure2.OperationalRegionofaTypicalLeanBurnEngine.(Courtesy:SwRI)...................... 7

    Figure3.IgnitionLimitsofaTypicalFuelairSystem................................................................... 8

    Figure4.SchematicofaCapacitanceDischargeIgnition(CDI)System..................................... 9

    Figure5.ALISDevelopmentConsortium..................................................................................... 11

    Figure6.IgnitionLimitsofMethaneairMixturesEstablishedinaStaticChamber.Initial

    MixtureTemperature~22C.............................................................................................. 14

    Figure7.SchematicoftheRapidCompressionMachine............................................................ 16

    Figure8.APictureofArgonnesRapidCompressionMachine................................................. 16

    Figure9.SchematicoftheOpticalArrangementintheLaserIgnitionSystem........................ 17

    Figure10.ConventionalIgnitionSystemCart.............................................................................. 18

    Figure11.TypicalPressureTracesfromRCMOperation;P1=1bar,=0.7........................... 20

    Figure12.MeasuredversusCalculatedPeakCombustionPressuresforVariousMethaneair

    Mixtures,1.0

  • 7/29/2019 CEC-500-2012-043 ovooooo

    11/112

    ix

    Figure24.PhotographofaPockelsCellBasedTwoChannelMultiplexer.............................. 35

    Figure25.SchematicofaRotatingMirrorMultiplexer............................................................... 36

    Figure26.PhotographofArgonnesRotatingMirrorMultiplexer............................................ 36

    Figure27.SchematicofaFlipFlopMultiplexer........................................................................... 37Figure28.(a)SchematicofSetuptoMeasuretheTimeResponseoftheFlipFlop(b)A

    TypicalDetectorResponseCurve...................................................................................... 37

    Figure29.SchematicofLaserRefocusingSchemeattheDistalEndoftheOpticalFiber......39

    Figure30.FiberFaceLaserIntensityDistributionProfilesforanInjectionSchemeUsing(a)

    PlanoConvexLens,(b)CombinationofAxiconandPlanoConvexLens................... 40

    Figure31.TheRefractiveIndexDistributioninTwoSolidCoreFibers:(a)StepIndexFiber,

    and(b)GradientIndexFiber.............................................................................................. 41

    Figure32.(a)SchematicoftheCrossSectionofaHollowGlassWaveguide(HGW),and(b)APhotographShowingSparkGenerationUsingHGWintheLab.............................. 42

    Figure33.(a)SchematicoftheCrossSectionofaMultiLayerHollowGlassWaveguide,and

    (b)PhotographofanAirCorePhotonicBandgapFiber................................................ 43

    Figure34.SchematicDiagramoftheElectronicInterface........................................................... 44

    Figure35.SchematicoftheControlSchemeoftheBSCRESingleCylinderEngineUsing

    SwRIsRPECS...................................................................................................................... 49

    Figure36.PhotographShowingtheInstalledLaserPlugintheCombustionChamber........51

    Figure37.SetupfortheOpenPathLaserIgnitionTestsonaLargeBore,SingleCylinder

    BombardierBSCRE04Engine............................................................................................ 51

    Figure38.LayoutoftheFiberCoupledLaserIgnitionSystem.................................................. 52

    Figure39.FiberCoupledLaserIgnitionSystemasMountedontheBombardierBSCRE04

    Engine..................................................................................................................................... 53

    Figure40.ArbitraryCylinderPressureandHeatReleaseComparisontoClarify

    NomenclatureofCombustionParameters....................................................................... 57

    Figure41.COVofIMEPversusEquivalenceRatio(EQR)ataBMEPof15bar...................... 58

    Figure42.CombustionStabilitywithConventionalSparkIgnitionataBMEPof15bar......59

    Figure43.CombustionStabilitywithLaserIgnitionataBMEPof15bar................................ 59

    Figure44.BSNOXBrakeThermalEfficiencyTradeoffataBMEPof15bar............................. 61

    Figure45.CylinderPressureComparison..................................................................................... 61

  • 7/29/2019 CEC-500-2012-043 ovooooo

    12/112

    x

    Figure46.CylinderPressureandHeatReleaseComparison..................................................... 62

    Figure47.COVofIMEPversusEquivalenceRatioataBMEPof10bar.................................. 63

    Figure48.BSNOXBrakeThermalEfficiencyTradeoffataBMEPof10bar............................ 63

    Figure49.AComparisonofBurnDurationsforDifferentModesofIgnition......................... 64Figure50.APhotographoftheCumminsQSK19GEngineinoneoftheEngineTestCellsat

    ArgonneNationalLaboratory............................................................................................ 68

    Figure51.ASchematicoftheIntegratedALIS............................................................................. 70

    Figure52.AschematicoftheIntegratedALISShownInstalledonOneCylinderofaMulti

    CylinderEngine.................................................................................................................... 71

    Figure53.PictureoftheALISAssemblyMountedonArgonnesQSK19GEngine(Top

    View).LaserHeadontheRightisnotShown................................................................. 72

    Figure54.(a)SchematicRepresentationoftheuseofElectronicInterfaceina6cylinderEngine,(b)SchematicRepresentationoftheuseofElectronicInterfaceforLabScale

    Testing.................................................................................................................................... 73

    Figure55.FunctionalRepresentationoftheElectronicInterface............................................... 74

    Figure56.TimingDiagramfor1800rpmOperation,redPulsesTriggerLaserPowerSupply

    #1WhileBluePulsesTriggerLaserPowerSupply#2................................................... 74

    Figure57.Pictureofthe6ChannelALISAssemblyontheTestrig(TopView).AlsoShown

    aretheLaser,BNC565PulserandtheElectronicInterface.LaserPlugsarenot

    Visible..................................................................................................................................... 75

    Figure58.PictureofMisfireDetectionSystem............................................................................. 76

    Figure59.DataFromoneoftheLongTermDurabilityTests.................................................... 77

    FigureB1.(a)PhotographofaGalvanometerBasedSystem.Courtesy:Cambridge

    Technology,Inc.(b)UseofGalvanometerforLaserScanning[28]................................ 1

    FigureB2.PhotographofaPiezoBasedLaserScanner.Courtesy:PhysiqueInstrumente......2

    FigureB3.(a)PhotographofaMEMSBasedMirrorArray,and(b)TexasInstruments

    DigitalMirrorDevice............................................................................................................. 2

  • 7/29/2019 CEC-500-2012-043 ovooooo

    13/112

    xi

    List of Tables

    Page

    Table1.Performancetargetsforadvancedreciprocatinginternalcombustionengines..........5

    Table2.PerformanceRequirementsofanAdvancedIgnitionSystem(Courtesy:Caterpillar,

    CumminsandWaukesha).................................................................................................. 28

    Table3.PerformanceSpecificationsofSomeCommerciallyAvailablePulsedDPSSL..........31

    Table4.HollowGlassWaveguidesTestedforHighPowerLaserTransmission.................... 41

    Table5.SpecificationsofSwRIsBSCREEngine.......................................................................... 50

    Table6.TestMatrixforSingleCylinderLaserIgnitionStudies................................................. 55

  • 7/29/2019 CEC-500-2012-043 ovooooo

    14/112

    xii

  • 7/29/2019 CEC-500-2012-043 ovooooo

    15/112

    xiii

    Abstract

    TheprimarygoalofthisprojectwastodevelopandtestanAdvancedLaserIgnitionSystem

    (ALIS)forimprovingefficiencyandreducingengineoutemissionsofoxidesofnitrogen

    (NOx)fromnaturalgasfueledreciprocatingenginescommonlyusedfordistributed

    generationinCalifornia.Thespecificobjectiveoftheprojectwastodesign,developanddemonstrateanintegratedALISonamulticylindernaturalgasfueledreciprocatingengine

    meetingorexceedingCaliforniasDistributedGenerationEmissionsStandards.

    Leanoperationhasbeenthepreferredmodeofoperationfornaturalgasfueled

    reciprocatingenginesasitallowslowNOxemissionsandhighoverallefficiency.Laser

    ignitionappearspromisingasitachievesignitionathighpressuresandunderlean

    conditionsrelativelyeasily.Lasersarebecominglessexpensiveandmorecompactthan

    beforeandareattractivemeansofignitionforengines.

    Initially,thebasicdesignrequirementsforlaserignitionundertypicalincylinderconditions

    (temperaturenear500degreesCelsius,pressureunder77bar)wereestablished.Throughfundamentalignitionstudiesperformedinarapidcompressionmachine,thecharacteristics

    oflaserignitionandconventionalsparkignitiononmethaneairmixtureswerecompared.

    Therapidcompressionmachinestudiesdemonstratedsignificantdifferencesbetweenthe

    combustionprocessesassociatedwithlaserignitionandconventionalsparkignition.

    Subsequenttestsonalargeboresinglecylinderengineshowedthatlaserignitioncould

    potentiallyreduceNOxemissionsupto70percent.Alternately,foragivenNOxemissions

    level,laserignitioncanenhanceenginefuelconversionefficiencyby3percentagepoints.

    VariouscomponentsrequiredforALISweredeveloped.Afreespacelasertransmission

    designapproachwasusedduetononavailabilityofsuitablefiberoptics.Thesuccessfully

    developedcomponentswereintegratedandoptimizedforusewithamulticylinderengine.TheintegratedALISwastestedforanextendedperiodoftimeinthelaboratorytoprove

    systemreliability.AbriefenginetestwithALISwasattemptedinatestcellatCummins

    EngineCompanyandthesystemintegrationissueswereidentified.Futureworkisexpected

    tosuccessfullydemonstratetheperformanceandemissionsbenefitsofAdvancedLaser

    IgnitionSystemoperationinamulticylindernaturalgasfueledreciprocatingengine

    suitablefordistributedgenerationapplicationsinCalifornia.

    Keywords: Emissions,Engine,Ignition,Laser,Spark

  • 7/29/2019 CEC-500-2012-043 ovooooo

    16/112

    xiv

  • 7/29/2019 CEC-500-2012-043 ovooooo

    17/112

    1

    Executive Summary

    Introduction

    Withelectricgridinfrastructurecapabilitieslaggingbehindtheeverincreasingpower

    demandsinCalifornia,DistributedPowerGenerationhascomeintovogue.Mostofsuchinstallationsarenaturalgasfueledinternalcombustionengineswitheitherrichburn

    (equivalenceratio,~1.0)orleanburn(

  • 7/29/2019 CEC-500-2012-043 ovooooo

    18/112

    2

    Approach

    Theprojectcommencedwithanexhaustivesurveyoftheignitionliterature.Followingthis

    literaturereview,fundamentalignitiontestswereperformedonaRapidCompression

    Machinetocompareconventionalsparkignitionandlaserignition.

    AninitialsurveyofpossibleAdvancedLaserIgnitionSystemschemeswasperformedand

    twopromisingconfigurationswereidentified:(i)thelaserpercylinderconcept,and(ii)the

    multiplexedlaserconcept,whereintheoutputofasinglelaserisdistributedovervarious

    cylinders.Thelatterconceptwaschosenasitpromisedlowcostandsimplicityofthermal

    management.However,thisconceptrequiredthedevelopmentofthreemaincomponents,

    namely,laserplugs,multiplexersandfiberopticbeamdelivery.Forbreakdowntooccurin

    gases,therequiredlaserfluencyatthefocalpointisoftheorderof1012WattsperSquare

    Centimeter(W/cm2).Toachievesuchpeakfluencies,highpowerlaserpulseswithpeak

    powerofseveralmegawatts(MW)arerequired.Therefore,themaincomponentsofthe

    AdvancedLaserIgnitionSystemmustbedesignedtowithstandsuchhighpowerlevels.

    Guidancewasderivedinthedevelopmentofthesecomponentsthrough(i)datafromfundamentalignitionstudiesconductedontheRapidCompressionMachine,and(ii)

    requirementsoftheadvancedignitionsystemasspecifiedbyenginemanufacturers.Specific

    detailsofthehighpowercomponentsconsideredinthepresentprojectaredescribedbelow:

    LaserPlugs:Atwolensdesignthatsuccessfullymeetsthephysicalandfunctional

    requirementsofalaserplugwasdeveloped.Adaptationofthisdesignforvariousengine

    geometriesispossible.

    Multiplexers:Threeschemesthatdistributetheoutputofasinglelaseramongvarious

    cylinderswerepursued:(i)anelectroopticswitch,(ii)arotatingmirrorscheme,and(iii)a

    flipflopswitch.Thefirsttwoschemesfellshortoftherequirementseitherduetohighcostortheinabilitytoprovideignitiontimingvariationsinindividualcylinders.Theflipflop

    scheme,however,provedeffectiveinallrespects.

    FiberOpticBeamDelivery:Throughtestsandanalysesitwasdeterminedthatthefiber

    opticdeliveryrequirementsare(i)lowdivergenceatdistalend,(ii)highpowerlaser

    transmission,and(iii)preservationofmodequality.Initialtestsperformedusingsolidcore

    fibersshowedthattheyarelimitedbythematerialdamagethreshold.Subsequenttests

    performedusingHollowGlassWaveguidesshowedthattheyarelimitedbymodeshifts

    introducedbybendingoftheopticalfibers.Whilephotonicbandgapfibersappear

    promising,theyarenotreadilyavailablefortestsandtheirdevelopmentisexpectedtobe

    expensive.

    ElectronicInterface:AnelectronicinterfaceisrequiredfortheAdvancedLaserIgnition

    SystemtocommunicatewiththeElectronicControlUnitofanengineforignitiontiming

    coordination.InconsultationwithArgonnesindustrialpartner,Altronic,Inc.,thetiming

    modulesfromexistingignitionsystemsweremodifiedforthepresentpurpose.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    19/112

    3

    Inparallel,thebenefitsoflaserignitionweredemonstratedinasinglecylinderresearch

    engine.Forthispurpose,a9.5inchbore,11literdisplacementBombardiersinglecylinder

    engineatSouthwestResearchInstitutewasused.Testswereperformedcomparing

    conventionalcapacitancedischargesparkignition,freespacelaserignition,andfiber

    coupledlaserignition.

    Theenginewasoperatedat10barand15barBrakeMeanEffectivePressure(BMEP)at900

    revolutionsperminute(rpm).Sweepsoffuelairequivalenceratio(from0.5to0.65)and

    ignitiontiming(from25degreesBeforeTopDeadCenter,to8degreesAfterTopDead

    Center)wereperformedwhileadjustingtheairboosttokeepthemeanpowerconstant.

    Results

    Reviewofpreviouslypublishedignitionliteratureshowedsignificantspreadindata

    concerningthecombustionbehaviorofnaturalgasairmixtureswithlaserignition.

    Subsequently,intheRapidCompressionMachinestudies,methaneairmixturesunder

    typicalincylinderconditions(temperature~500degreesCelsius,pressure

  • 7/29/2019 CEC-500-2012-043 ovooooo

    20/112

    4

    Inviewoftheaforementionedbenefitsoflaserignition,effortsweredirectedatdeveloping

    anintegratedAdvancedLaserIgnitionSystem.Previouslydevelopedcomponentswere

    integratedintoasinglesystemwhilerelyingonafreespacelaserbeamdelivery.Tests

    conductedinalaboratoryenvironmentshowedtheintegratedsystemtohavetherequired

    timeresponseandperformance.

    Conclusions

    Inconclusion,theprojecttitledAdvancedLaserIgnitionIntegratedARICESystemfor

    DistributedGenerationinCaliforniaproducedimportantresultsofpracticalsignificance

    towardthedevelopmentofanadvancedlaserignitionsystemforreciprocatingengines.

    FundamentalRapidCompressionMachinestudiesclearlyshowedthepotentialbenefitsof

    laserignitioncomparedtoconventionalsparkignition:(i)Laserignitionextendedthelean

    operatinglimitofmethaneairmixturestotheleanflammabilitylimit(ll=0.5),and(ii)Combustionrateswereacceleratedwithlaserignition.

    SinglecylinderengineexperimentsperformedwithlaserignitionrealizedthepotentialbenefitsevidencedintheRapidCompressionMachinestudies.Comparedtoconventional

    sparkignition,laserignitionextendedtheleanmisfirelimitbyabout10percentatBMEPsof

    10and15bar,increasedoverallburnrates,andimprovedcombustionstabilityatalltest

    points.Mostimportantly,laserignitionshowedareductionofbrakespecificNOx(BSNOx)

    emissionsby~70percentatconstantengineefficiencyoralternately,anincreaseinbrake

    thermalefficienciesofupto3percentagepoints,whilemaintainingBSNOxemissions

    constant.

    Thisprojectwasasuccessattheresearchlevel,whereforthefirsttimeamulticylinder

    enginedesignoflaserignitionsystemwasshowntoworkeffectivelyinthelaboratory.Itis

    recommendedthataseparatematerialsresearchprojectbeundertakentodevelopfiber

    opticlaserenergydeliverysystemsuitableforengineconditions.Thefinalstep,toestablish

    thetechnicalviabilityoftheAdvancedLaserIgnitionSystemconcept,isperformingaseries

    ofmulticylinderengineteststodocumenttheefficiencyandemissionsbenefitsofthelaser

    ignitionsystem.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    21/112

    5

    1.0 Introduction

    1.1. Background

    ReciprocatingInternalCombustionEnginearecommonlyusedforDistributedGeneration

    (DG)andCombinedHeatandPower(CHP)applications.AsshowninTable1,accordingtotheCaliforniaEnergyCommissionsAdvancedReciprocatingInternalCombustionEngine

    (ARICE)program,theperformanceandemissiontargetssetforstationaryreciprocating

    enginesbyyear2010arebrakethermalefficiencygreaterthan44%andbrakespecific

    nitrogenoxideemissionslessthan0.01gramsperbrakehorsepowerhour(g/bhphr).

    Table 1. Performance Targets for Advanced Reciprocating Internal Combustion Engines

    Parameter 2007 2008 2009 2010Efficiency

    Brake Thermal Efficiency 35% 38% 40% 44%Fuel-to-Electric Efficiency*** 32% 34% 38% 42%

    Overall Efficiency (CHP) 85% 85% 85% 85%Emissions shaft power (g/bhp-hr)

    Oxides of Nitrogen (NOx)

  • 7/29/2019 CEC-500-2012-043 ovooooo

    22/112

    6

    Primarily,therearethreetechnicalapproachestomeetCaliforniasDGemissionsand

    performancetargetsspecifiedinTable1:Richburn(equivalenceration[]greaterthan1.0)operationwithexhaustgasrecirculation(EGR)anduseofthreewaycatalyst,Low

    temperaturecombustionstrategiessuchasHomogenousChargeCompressionIgnition

    (HCCI),andLeanburnoperation(~0.60.7).

    Richburnengineoperation(~1.0),usuallyentailstheuseofanexhaustgasoxygensensoralongwithanadvancedenginecontroller.Thecontrolleroscillatesthecombustion

    equivalenceratiobetween0.95and1.05therebyenablingtheoxidationandreduction

    processesinthethreewaycatalyst.EGRhelpskeepthecombustiontemperatureslowand

    theoverallefficiencyhigh.However,suchastrategyintroducescorrosivecombustion

    byproductsandothercontaminantsbackintotheenginewhichcompromiseshardwarelife

    andlubricantquality.Suchastrategycouldprovetobeverycompetitivewithefficienciesas

    highas38%andverylowemissions.However,asshowninFigure1,effortsbyGeneral

    ElectricJenbacherspreadover1.3millionrunninghourson17differentengineshave

    shownthatenginemaintenancecostsincreaseby42%.

    Figure 1. Comparison of Maintenance Costs for Rich-Burn and Lean-Burn Engines.

    HCCIandothersimilarstrategiesrelyonextremelyleanfuelairmixtures(

  • 7/29/2019 CEC-500-2012-043 ovooooo

    23/112

    7

    timingcontroland(iii)startabilityarereportedtobeaproblem.Inlightofsuchissues,the

    leanburntechnologyappearsverypromising.

    Leanburnoperation(~0.60.7),hasremainedtheprimarychoiceofthegasengineindustry.Inthisstrategy,air,farinexcessofthatrequiredforcompletecombustionofthe

    fuel,isinductedintothecylinderduringeachcombustioncycle.Tooffsettheenergydensity,intakeairboostisemployedwiththeuseofaturbocharger.Theresultinglow

    combustiontemperaturesandhighincylinderpressuresensureverylowNOxemissions

    (~0.5gramsperkilowatthour[g/kWh]or0.37g/bhphr)whilesimultaneouslyachieving

    highfuelconversionefficiencies(~38%).Usuallyanaftertreatmentsystemisnotusedwith

    leanburnengines.

    Figure2showsthetypicaloperationofaleanburnengine.Theseenginesareoperatedat

    theintersectionofknock(autoignition)limitandmisfire(leanignition)limit,soastoattain

    maximumefficiencyandsimultaneouslylowNOxemissions.Boostlimitandpreturbine

    limitareimposedbytheturbochargerconstruction.Also,asthesparktimingisadvanced,

    combustionstartsearlyinthecompressionstrokeandtheknocklimitisencountered.Ontheotherhand,assparktimingisretarded,thegasdensityatthetimeofignitiontendstobe

    higherresultinginmisfire.Byextendingthemisfirelimitthroughjudiciouschoiceofan

    ignitionsystem,substantialbenefitsinefficiencyandemissionscanbeachieved.

    0

    10

    20

    30

    40

    50

    60

    6.5 7 7.5 8 8.5 9 9.5 10

    Dry Exhaust Gas Oxygen Mole Fraction (%)

    SparkTiming(deg

    BTDC)

    KnockLimi

    t

    KnockLim

    it

    MisfireLim

    itMisfi

    reLimit

    BoostL

    imit

    BoostL

    imit

    Pre-TurbinePre-Turbine

    LimitLimit

    DesiredCa

    libration

    DesiredCa

    libration

    MaxMax

    BTEBTE

    The shape of this windowThe shape of this window

    is combustion chamber &is combustion chamber &

    ignition system dependentignition system dependent

    Figure 2. Operational Region of a Typical Lean-Burn Engine. (Courtesy: SwRI)

    Figure2,recastincombustionterminology,isshowninFigure3.Thisrepresentsthe

    ignitionlimitsofatypicalfuelairsystemfor0.51.0.Forrichmixtures,selfignitionoccursaboveacertainpressuretherebydefiningtheselfignitionlimit.Alsoforagiven

    modeofignition,aleanlimitexists(ll)formixturesleanerthanwhich(

  • 7/29/2019 CEC-500-2012-043 ovooooo

    24/112

    8

    cannotbeachieved.Formethaneairmixturesllis5.01%.ForachievingmaximumcombustionefficiencyandlowNOxemissions,leanburnenginesareoperatedatthe

    intersectionofleanignitionlimitandtheselfignitionlimit.Betterperformancecanbe

    achievedbyextendingtheleanignitionlimitbychoosinganadvancedignitionsystem.

    Equivalence Ratio,

    0.40.50.60.70.80.91.0

    Pressure(au.)

    1

    2

    3

    4

    NonFlamableRegion

    Self-ignitionlimit

    LeanIgnitionLimit

    IgnitableMixture

    Lean-burn engine Operation

    Figure 3. Ignition Limits of a Typical Fuel-Air System.

    1.2. Fundamentals of Ignition

    Inatypicalsparkplug,successfulsparkingisachievedwhenthepotentialdropacrossthe

    sparkgapexceedsthedielectricbreakdownthresholdoftypicalgases.Thesparking

    potentialacrosstheelectrodesisgivenbyPaschenslaw:

    ( )dpfVb ,= (1)

    where,pisthepressureofthegasanddisthesparkgap.Thebreakdownvoltage,Vb,

    exhibitsalineardependenceontheproductpd.Theelectrodeshapeandmaterialarealso

    foundtohavesignificantinfluenceonthesparkignitionprocess[1].Oncegasbreakdown

    occursandaplasmakernelisestablished,energytransferoccursmainlythroughdiffusion

    onthesurfacetothesurroundinggas.Whethersuchadiffusionprocessresultsina

    successfulcombustionflamefrontdependsuponthekernelenergyexceedingMinimum

    IgnitionEnergy(MIE),thekernelsizeexceedingacertainsize,turbulenceandgasspeed[2].

    Inpractice,factorsinfluencingsuccessfulsparkcreationfaroutweighthoseinfluencingits

    transformationintoaflamefront,anditisnormallyassumedthatonceasparkiscreatedthe

    mixtureissuccessfullyburned.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    25/112

    9

    1.3. Why Laser Ignition?

    Inpresentturbochargedoftheleanburnnaturalgasengines,CapacitanceDischarge

    Ignition(CDI)systemsareusedasschematicallyshowninFigure4.Thoughthesesystems

    areratedat100150millijoules(mJ)perstrike,afterthermallossestypically4060mJis

    transmittedtothesparkkernelatratesofvoltageriseof500Voltspermillisecond(V/s).In

    CDIsystems,energystoredinahighvoltagecapacitor(at~175VoltsDirectCurrent(VDC)

    isdischargedthroughahighvoltagecoilresultinginvoltagesinexcessof28kilovoltsdirect

    current(kVDC)acrossthesparkpluggaps.

    HVCoil

    SparkPlugs

    DCSource

    ElectronicDistributor

    CapacitorCircuit

    Figure 4. Schematic of a Capacitance Discharge Ignition (CDI) System.

    Withapushtowardsleanengineoperation,withaconcomitantrequirementtomaintain

    enginespecificpower,theintakeairpressureisincreased.Leanoperationalongwithhigh

    intakeairpressureresultsinveryhighchargedensitiesatthetimeofignition.Suchhighgas

    densitiesnecessitatesparkgapvoltagesinexcessof40kilovolts(kV)thatcannotbe

    achievedusingcurrentCDIsystems.Thisoftenleadstoincreasedmisfiringwithsubsequent

    lossoffuelefficiencyandincreasedunburnedhydrocarbon(UHC)emissions.HigherUHC

    emissionsareessentiallyvolatileorganiccompounds(VOC),whicharecurrentlyregulated

    inCalifornia.Toaddresstheseproblems,variousresearchorganizationshavebeenexploringalternatewaystoachieveignition[36].Amongthesealternatemethods,laser

    ignitionprovesattractiveasitoffersthefollowingperformancebenefits:

    Successfulignitionofmixturesathighpressuresensuresreducedoccurrenceof

    misfire,andconsequentlyimprovedfuelefficiencyandlowerUHCemissions,

    Potentiallylowermaintenanceastherequirementtomaintainareasonablesparkgap

    iseliminated,

  • 7/29/2019 CEC-500-2012-043 ovooooo

    26/112

    10

    Extensionofleanoperatinglimits,therebyenablinglowerNOxemissions,

    Shorterignitiondelaysandenhancedcombustionrates,whichallowretarded

    timingstherebyreducingNOxemissions,and

    Locationofignitionkernelawayfromthewalls,therebyenhancingoverallefficiency

    duetoreducedheatlosstothecylinderhead.Withsuchpotentialbenefits,anattempttouselaserignitionforreciprocatingengineswas

    madebyDaleandSmyasearlyas1974[7].However,thesizeandcostoflasersystemsat

    thattimeweretoolargetoreducelaserignitiontopractice.Overthelasttwodecades,on

    accountofthedevelopmentsinelectroopticsystems,thereisarenewedinterestinlaser

    ignitionforreciprocatingengines.Thepresenteffortaimedto(i)determinethebenefitsthat

    accruewiththeuseoflaserignition,and(ii)developandintegratesystemstoreducelaser

    ignitiontopracticeoncommercialmulticylinderengines.Thiswascarriedoutintechnical

    tasks,Tasks2.12.6,asdescribedbelow.

    AspartofTask2.2,fundamentalignitionstudieswereperformedinaRapidCompression

    Machine(RCM)tocomparethecharacteristicsoflaserignitionandconventionalsparkignitiononmethaneairmixtures.TheRCMstudiesdemonstratedsignificantdifferences

    betweenthecombustionprocessesassociatedwithlaserignitionandconventionalspark

    ignition.InTask2.4,thepracticalimplicationsofthealteredcombustionbehaviorwithlaser

    ignitionweredeterminedthroughexperimentsonasinglecylinderresearchengine.Ina

    paralleltask(Task2.3),variouscomponentsrequiredforanAdvancedLaserIgnition

    System(ALIS)weredeveloped.InTask2.5,thesuccessfulcomponentsdevelopedinTask

    2.3wereintegratedintoasinglesystemandoptimizedforusewithamulticylinderengine.

    Task2.6,fieldtestingforperformance,isstillanongoingeffort.AbrieftestingonaQSK

    19G6cylinderengineatCumminsTechnicalCenterwascarriedout.Theprogressmadein

    individualtasksisgivenhenceforth.Thisisconcludedwithasummaryoftheoverallproject.

    1.4. ALIS Consortium

    AttheinitiativeoftheUnitedStatesDepartmentofEnergy(U.S.DOE)Advanced

    ReciprocatingEngineSystems(ARES)programmanager,Mr.RonaldFiskum,andthe

    EnergyCommissionsARICEprogrammanager,Dr.AvtarBining,anALISconsortiumwas

    formed.AsshowninFigure5,thisconsortiumcomprisedArgonneNationalLaboratory

    (ANL),ColoradoStateUniversity(CSU),NationalEnergyTechnologyLaboratory(NETL)

    andSouthwestResearchInstitute(SwRI)astechnicalpartners.Oversightfortheprogram

    wasprovidedbyindustrialpartnersCaterpillar,Cummins,WaukeshaandAltronicInc.

    aswellasthefundingagenciesU.S.DOEDistributedEnergyProgramandCalifornia

    EnergyCommissionsARICEProgram.Researchideasandprogresswerediscussedand

    sharedthroughregulartechnicalmeetings.Additionally,therewasenoughinteraction

    amongparticipantsthroughsidebarmeetingsheldatvariousconferencesites.Asummary

    ofconsortiumactivitiesandalistofpublicationsareprovidedinAppendixA.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    27/112

    11

    Figure 5. ALIS Development Consortium

    1.5. Goals and Objectives

    Laserignitioncanovercometheignitionproblemsinleanburnnaturalgasenginesand

    furtherhasthepotentialtoimproveengineefficiencyandloweremissions.Theoverall

    benefitsduetolaserignitioncanbesummarizedas:

    1. Improvedoverallefficiency,

    2. Reducedfuelconsumption,3. LowerNOxandunburnedhydrocarbon(UHC)emissions,

    4. Enhancedpowerdensity,and

    5. Reducedoverallmaintenancerequirements.

    Theseperformanceimprovementstranslatetoimprovingtheenergycost/valueofCalifornias

    electricity.Simultaneously,byloweringNOxandUHCemissions,theenvironmentalandpublic

    healthcosts/riskofCaliforniaselectricityarereduced.

    TheoverallgoalsoftheproposedALISsystemare:

    1.

    MeetorexceedthecurrentandfutureCaliforniaemissionsrequirementsandhaveotherdesirableenvironmentalattributes.

    2. Improvefueltoelectricityconversionefficiency.

    3. Lowercapitalcosts,installationcosts,operationandmaintenancecost,andlifecycle

    costs.

    4. Enhancereliability,maintainability,durabilityandusability.

    5. Possessmultifuelusecapabilities,suchaswithsewergas,landfillgasetc.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    28/112

    12

    Ingeneral,theproposedALISsystemisexpectedtoleadtotheadoptionanduseof

    improvedARICEtechnologieswithinCalifornia.

    Technical and economic/cost performance objectives

    TheoveralltechnicalgoalofthisprojectwastodevelopaCommercial/ProductionReady

    ALISintegratedARICEfordistributedgeneration(DG)inCaliforniabymeetingorexceedingYear2007PerformanceTargetsofARICE(cf.Table1.).

    Thespecifictechnicalobjectivesoftheprojectwere:

    1. Completionofexperimentalstudiestodeterminecomponentdesignspecifications.

    2. Developmentofviablecomponentsforhighpowerlasertransmissionandtheir

    integrationintoanALIS.

    3. SuccessfulintegrationanddevelopmentofALISthatachievesthetechnical

    requirementsspecifiedbytheindustry.

    4. PerformanceevaluationofanintegratedALISARICEsystemonamulticylinderengine.

    5. DemonstrationoftheintegratedALISARICEsysteminmeetingorexceeding2007

    ARICEperformancetargets.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    29/112

    13

    2.0 (Task 2.2) Natural Gas-Air Ignition Experimental Study

    2.1. Rationale for Task 2.2

    Withtherenewedinterestinlaserignition,therehavebeenquiteafewpaststudies

    evaluatinglaserbasedignitioninstaticchambers[8,9].AsshowninFigure6,suchstudieshaveshownthatlasersenableignitionofmixturesatpressureshigherthanthosethatcanbe

    ignitedbyconventionalcoilbasedCapacitanceDischargeIgnition(CDI)systems.However,

    nosignificantextensionofleanignitionlimitwasfoundwithlaserignition.Thelean

    ignitionlimitsforbothmodesofignitionappearedtocoincideat equalto0.67.

    Similarly,throughtestsperformedonRicardoProteussinglecylinderengineequivalent

    ration,McMillianetal.[10]reportextensionofleanignitiontoequivalentto0.51with

    Kopeceketal.[11]reportingthesametoequivalentto0.42(useablerangeequivalentto

    0.46).Withmostoftheleanburnenginesoperatedclosetotheintersectionofleanignition

    limitandselfignitionlimit,suchaspreadindatawarrantsasystematicstudyunderin

    cylinderlikeconditions.Toattainthisgoal,oneneedstoperformignitiontestsinaRapidCompressionMachine(RCM)thatsimulatestypicalnaturalgasengineconditions.Asmost

    oftheleanburnenginesareoperatedclosetotheintersectionofignitionlimitandknock

    limit,theselfignitionlimitneedstobedeterminedaswell.Also,mappingoftheminimum

    laserenergiesrequiredforsuccessfulignitionunderdifferentmixtureconditionswould

    assistinthedevelopmentofALIS.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    30/112

    14

    Figure 6. Ignition Limits of Methane-Air Mixtures Established in a Static Chamber(Initial Mixture Temperature ~ 22 C).

    2.2. Experimental Setup

    2.2.1. Rapid Compress ion Machine

    Asmostofthecurrentstationarypowergenerationenginesareoperatedatspeedslessthan

    1800rpm,therapidcompressionmachine(RCM)wasdesignedwithcompressiontimeless

    than17milliseconds.Overallthesystemwasdesignedtowithstandconditionsattheendof

    combustionof362barand3,000Kelvin(K).Also,withthecompressionratio(CR)oftypical

    gasenginesbeing12.5,theRCMwasdesignedforaCR=12.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    31/112

    15

    ThedesignconceptthatwasusedbyArgonneisanimprovementovertheonedeveloped

    byMassachusettsInstituteofTechnology(MIT)[12].AschematicoftheRCMisshownin

    Figure7.ApictureofthesystemisshowninFigure8.ThisRCMconsistsoftwopistons

    which,whenreleased,traveltowardseachotherwithextremelysmallresultantvibration.

    EachsideoftheRCMconsistsofthreeseparatechamberseachcarryingapiston.Allthe

    threepistonsaremountedontothesamecentralTitaniumshaftthatforcestheirmovementinunison.Theoutermostchamberisapneumaticchambercarryinga6inchdiameter

    aluminumpiston.Theinnermostisacompressionchamberwhereina2.5inchdiameter

    aluminumpistoncompressestheexperimentalgasesintothecentralignitionchamber.In

    themiddleisahydraulicchamberthatcontainshydraulicoilpressurizedto165bar.Special

    designfeatureswithinthehydraulicchamberallowedholdingthepistonintheretracted

    positioneventhoughpressurizedairat20.7barwaspresentinthepneumaticchamber.The

    samedesignfeaturesallowedreleaseofthepistonsynchronizedwithanexternalsparking

    event.Similaradditionalfeaturesinthehydraulicchamberallowedholdingthepistonin

    thecompressedpositiontherebyavoidingthepistonbounceatthecommencementof

    combustion.VariousportsonthecompressionchambersallowedfillingtheRCMwithdrycompressedairand99.99%puremethane.Fineorificesinthegaslinesalongwithahigh

    resolutionpressuretransducerallowedestablishingmixturesoftherequiredpressuresand

    equivalenceratiosaccurately.Aportonthecombustionchamberallowedignitionwitha

    conventionalsparkplug(18mmthread,Jstyle)poweredbytheAltronicPM1(CDI)

    ignitionsystem.Asecondportalloweddirectingandfocusingalaser(focallength13mm)

    toachieveignition.AthirdportcarryingaKistler4073A500pressuretransducerallowed

    recordingthepressuretraces.Afourthportcarriedanexhaustvalve.Atotalof22

    pneumaticallydrivensolenoidvalvesinterfacedtoacomputerallowedremoteoperationof

    theRCM.AcomputerprogramwritteninNationalInstruments(NI)LabviewdrivingNI

    FieldPointsystemallowedautomationoftheprocesses.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    32/112

    16

    Figure 7. Schematic of the Rapid Compression Machine.

    Figure 8. A Picture of Argonnes Rapid Compression Machine.

    Photo Credit: Argonne National Laboratory

  • 7/29/2019 CEC-500-2012-043 ovooooo

    33/112

    17

    2.2.2. Laser Ignition System

    ThelaserignitionsystemisschematicallyshowninFigure9.Thebeamoutputofa

    frequencydoubledNeodymium:YttriumAluminumGarnet(Nd:YAG)laser(Spectra

    PhysicsGCR170)wasroutedthroughacombinationofhalfwaveplateandpolarizerto

    varythelaserpower.Abeamsplitterandapowermeterallowedmonitoringofthelaserpower.Afastshutterwith3millisecondtimeresponseallowedincidenceofasinglepulse

    fromthelaserpulsetrain.AllofthetimingwascontrolledbytheNIFieldPointsystem.

    To RCM FastShutter

    Iris

    Laser powerHead & Meter

    532 nm

    GCR170Nd:YAGLaser

    BeamDump

    1064 nm

    Protective Enclosure 2

    BeamDump

    1/2 wavplateGlan Taylor

    PolarizerT70/R30 Mirror

    Protective Enclosure 1

    Figure 9. Schematic of the Optical Arrangement in the Laser Ignition System.

    2.2.3. Conventional Ignition System

    ACDIsystem,modifiedforthepresenttests,wassuppliedbyAltronic,Inc.Thissystem,

    whenactivatedremotelybya5volt(V)pulsesuppliesignitionenergytothesparkplug

    placedonthewallofthecombustionchamber.Thearrangementwassuchthatthespark

    wassupplied30msfollowingtheendofpistonstroke.Suchadelaywasnecessarytoallow

    thelockingmechanismtoengagecompletelybeforetheinitiationofcombustion.Figure10

    showsapictureofthisignitionsystem.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    34/112

    18

    Figure 10. Conventional Ignition System Cart.

    Photo Credit: Argonne National Laboratory

    2.2.4. Operational Procedure

    Inatypicalexperiment,theRCMpistonswereretractedandheldintheretractedposition.

    Subsequently,agasmixtureoftherequiredequivalenceratioandinitialpressure,P1,was

    establishedinthecompressionchambers.Afterallowing5minutesforthegasestomix,the

    pneumaticchamberswerepressurizedwithcompressedairat20.7barsuppliedbya150

    Literairtank.Thepistonswerereleasedbyactivatingtheappropriatevalvesequencing.A

    photodetectorsensingthepistonpositionprovidedthenecessarysignalforsequencingthe

    laserpulseortheconventionalignitionspark.Toallowforlockingofthepistonsinthe

    compressedpositionandtherebyavoidapistonbouncebackatthecommencementof

    combustion,ignitionwasinitiated30msfollowingtheendofcompressionstroke.Also,one

    secondfollowingtheendofcompressionstroke,theexhaustvalvewasopened.

    Subsequently,thepistonswereretractedandthecompressionandcombustionchambers

    werepurgedtoprepareforthenextexperimentalrun.Atypicaltestrunrequired20to30

    minutesforexecution.

    Oscillosco e

    Sparkplugs

    Ignition

    coils

    Electronic

    control

    24VDCpower

  • 7/29/2019 CEC-500-2012-043 ovooooo

    35/112

    19

    2.3. Results and Discussion

    2.3.1. Test Matrix

    Withtheabovesetup,testswereperformedwhilevaryingtheinitialpressureofthe

    mixture,P1,andtheequivalenceratio,.ThemixturesestablishedintheRCMwerelimited

    to1.0>>0.4,3.0>P1>1.0barandinitialtemperature,T1=298K.AtypicalpressuretraceobtainedduringonesuchtestrunisshowninFigure11.AsshowninFigure11,whenthe

    pistonsarereleased,thegaseousmixtureisisentropicallycompressedtoP2.Astheignition

    (sparking)eventissequenced20to30msfollowingendofcompression,thereisasmall

    pressuredropresultingfromheattransfertothecombustionchamberwalls,(P2P2).

    Followinganignitiondelayaftertheincidenceofspark,thepressurerisessteeplytoP3due

    tocombustion.Subsequentpressuredropisprimarilyduetocondensationofwatervapor

    andheattransfertowallsofthechamber.

    Fromthermodynamics,onehastherelations

    ( )

    CRPP 12 = (2)

    and

    ( )( )112= CRTT (3)

    where,CRisthecompressionratioandistheratioofspecificheatatconstantpressure(Cp)tospecificheatatconstantvolume(Cv),whichequals1.4forair.

    AregressionanalysisperformedonthemeasuredvaluesofP2assumingas1.4showedthatthecompressionratioforthepresentRCMis10.0asopposedto12.0thatitwas

    originallydesignedfor.Withthisadjustedcompressionratio,calculationswereperformed

    assumingadiabaticcombustionbyusingNationalAeronauticsandSpaceAdministration(NASA)ChemicalEquilibriumforApplications(CEA2)program.Fromsuchcalculations,as

    showninFigure12,itwasobservedthatthemeasuredP3valueswereonanaverage83%of

    thecalculatedP3values,withleanermixturesexhibitinglowervalues.Also,itoughttobe

    notedthatinthepresenttests,forallmixtureconditions,thetemperatureatthetimeof

    ignition,T2wasabout765K(perEquation3).

  • 7/29/2019 CEC-500-2012-043 ovooooo

    36/112

    20

    Time (ms)

    -50 0 50 100 150 200 250 300

    Pressure(Bar)

    0

    10

    20

    30

    40

    50

    60

    70

    trial 1trial 2

    trial 3P2

    P1

    P3

    Ignition

    IsentropicCompression

    Pr. risedue to

    combustion

    Pr. drop due to watercondensation and heat transfer

    Pr. dropdue toheat transferP2'

    Figure 11. Typical Pressure Traces from RCM Operation; P1 = 1 bar, = 0.7

    P3 Calculated (Bar)

    0 50 100 150 200 250 300

    P3

    Measur

    ed(Bar)

    0

    50

    100

    150

    200

    250

    300

    Figure 12. Measured Versus Calculated Peak Combustion Pressures for

    Various Methane-Air Mixtures, 1.0 < P1

  • 7/29/2019 CEC-500-2012-043 ovooooo

    37/112

    21

    betweenthemaximumpulseenergyofabout75mJandminimumpulseenergyof5mJ.

    Witheachtestthewindowwithinwhichthethresholdenergywaspresentwashalveduntil

    thefinalthresholdvaluewasdeterminedwithinanaccuracyof2.25mJ/pulse.

    Theignitionboundariesdeterminedthroughsuchtestsexpressedasafunctionofpressure

    atthetimeofignition,P2,areshowninFigure13.ItisprominentlynoticedthatselfignitiondominatesformixtureswithP2greaterthan63bar.Also,itisnoticedthattheleanignition

    limitwhileusingtheCDIsystemisat0.6.Ontheotherhand,byusinglaserignitionthis

    couldbeextendedallthewaytotheflammabilitylimitofofabout0.5.Suchextensionsare

    ofsignificanceasthecurrentleanburnenginesareoperatedattheintersectionofself

    ignitionlimitsandleanignitionlimits.

    Followingsuchobservations,wearenotsureoftheclaimsmadebyresearchersatGE

    Jenbacherwhoreportextensionofleanignitiontoof0.417byusingalaser.

    Figure 13. Ignition Boundaries Determined by Using an RCM.

    2.3.3. Minimum Required Energy Scans

    Fortheignitionboundariesestablishedabove,MinimumRequiredEnergy(MRE)valuesfor

    successfullaserignitionweredeterminedforvariousmixtureconditions.Values

    determinedforalensfocallength,fof13millimetersandlaserbeamqualityofM25areshowninFigure14.Itisobservedthatexceptforof1.0,MREvaluesdecreasedwith

    increaseinpressurefinallyresultinginselfignition.ThevaluesalongacrosssectionofP2of

  • 7/29/2019 CEC-500-2012-043 ovooooo

    38/112

    22

    37.7barareshowninFigure15.Foravariationoftheequivalenceratio,itisnoticedthata

    minimaexistsatof0.85forthesemethaneairmixtures.Alsoitisnoticedthatthereisa

    sharpriseintheMREvaluesformixturesleanerthanof0.7.Suchatrendwasalsonoticed

    atotherpressures.

    P2

    (Bar abs.)

    20 30 40 50 60 70

    M

    RE(mJ/pulse)

    0

    20

    40

    60

    80

    100

    = 1.0 = 0.7 = 0.65 = 0.6 = 0.55 = 0.5

    Figure 14. Minimum Required Laser Energies (MRE) for a Lens Focal Length f = 13 mm and

    Laser Beam Quality of M2 5.

    0.50.60.70.80.91.0

    MRE(mJ/pulse)

    20

    30

    40

    50

    60

    70

    Figure 15. Minimum Required Laser Energies for P2 37.7 bar.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    39/112

    23

    2.3.4. Ignition Delays and Rates of Pressure Rise

    Leannaturalgasairmixturesarecharacterizedbyslowflamevelocitiesandlongerignition

    delaysthatareofconcernforleanburnengineoperation.Previousstudiesin1cylinder

    engines[10,13]haveshownthatlaserignitionresultsinsmallerignitiondelaysandfaster

    combustion.AsshowninFigure16,similartestsperformedintheRCMshowedthatignitiondelayincreasedwithleanoperationforbothCDIignitionaswellaslaserignition.

    However,thebenefitsintermsofsmallerignitiondelayswereonlypronouncedunderlean

    conditionsandatof1.0.

    SimilarcomparisonoftherateofpressureriseisshowninFigure17.Againitwasfound

    thatfastercombustionratesoccurforleanoperationandforof1.0bytheuseoflaser

    ignition.Thereversaloftrendsfor0.75

  • 7/29/2019 CEC-500-2012-043 ovooooo

    40/112

    24

    2.3.5. Conclusions for Task 2.2

    ThroughignitiontestsconductedinaRapidCompressionMachinethatsimulatedin

    cylinderconditionsofaleanburnnaturalgasengine,itwasobservedthatlaserignition

    extendstheleanoperatinglimitofmethaneairmixturestotheflammabilitylimit(of0.5)

    whereasconventionalCDIignitiononanaverageislimitedtomixturesricherthanof0.6.

    MinimumRequiredEnergiesforsuccessfullaserignitionexhibitedasharpincrease

    followedbyaplateauregionformethaneairmixturesleanerthanof0.7.Suchatrend

    showsthatalaserignitionsystemdevelopedtooperateatof0.65willsuccessfullyoperate

    underallotherpossibleoperatingconditions.

    Toreapthetruebenefitsoflaserignition,therequiredhardwarecomponentsfortheALIS

    needtobedeveloped.ThiswaspursuednextinTask2.3.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    41/112

    25

    3.0 (Task 2.3) Design of ALIS Components

    Fromaninitialsurveyofpossibleconfigurationsforalaserbasedignitionsystem,two

    promisingconceptswereidentified:(i)Thelaserpercylinderconcept,and(ii)The

    multiplexedlaserconcept.

    InthelaserpercylinderconceptschematicallyshowninFigure18,aminiaturelaserisbuilt

    directlyoverthecylinderhead.Thecostofsuchaconfigurationislikelytobeveryhigh,as

    asinglelaserisrequiredforeachcylinder.Also,thermalmanagementinthelasersystem

    becomesanissueasthecylinderheadtemperaturescouldbeashighas130oCelsius(C).

    However,thisconfigurationdoesnotrequiretheuseofahighpowerdeliverysystem(e.g.,

    afiber).AspartoftheALISconsortium,NationalEnergyTechnologyLaboratory(NETL)

    haspursuedthedevelopmentofalaserpercylinderignitionsystem,detailsofwhichare

    providedinReference[14].

    Alternately,asshowninFigure19,theoutputofasinglelasercanbedistributedamongthevariouscylindersofamulticylinderengine.ThiswasprimarilypursuedbyArgonne

    NationalLaboratory.Thisconfigurationbenefitsfromthecostsavingsthatresultfromthe

    useofasinglelaseraslasersarethemostexpensivecomponentsofALIS.Also,thelaser

    systemisisolatedfromtheheatandvibrationoftheengine.However,thissystemrequires

    thedevelopmentofassociatedhighpowercomponentsincludinglaserplugs,optical

    multiplexerandfiberdeliverysystem.

    OutsidetheconsortiumGEJenbacher,andAVLarepursuingbothlaserpercylinderand

    multiplexedlaserapproachesoracombinationapproachofthetwo[11].

    3.1. Goals and Objectives of Task 2.3

    ThegoalofTask2.3wastodevelopvarioushardwarerequiredforALIS,accordingtothe

    specificationsdeterminedthroughtestsinearliertask,Task2.2.Thisentailsselectionof

    somecandidatetechnologiesandtestingthemforperformance.Thesuccessfulcandidates

    weresortedfurthertomeettheprojectobjectives.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    42/112

    26

    Figure 18. Schematic of the Laser-Per-Cylinder Concept.

    Laserplugs

    Laser Multiplexer

    fiber optic delivery

    ElectronicInterface

    EngineECU

    Natural Gas Multi-cylinder Engine

    Figure 19. Schematic of the Multiplexed Laser Concept.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    43/112

    27

    Thespecificobjectivesofthistaskaredescribedbelow:

    1. Designanddeveloplaserplugswiththefollowingspecifications.

    i. Havethesamethreadsizeasaconventionalsparkplug,i.e.,M18x1.5,

    ii. Providepressuresealingto3,000poundspersquareinch(psi).

    iii. Withstandtemperaturesashighas2,400C.

    iv. Minimizefirstandsecondsurfacereflections.

    v. Minimizeoveralllaserenergyrequirements.

    vi. Providesufficientreliabilitywhiletransmittinglaserenergiesofabout60mJ

    perpulse.

    vii. Beselfcleaningofanydeposits.

    viii. Facilitatecouplingtofiberoptictransmission.

    2. Developfiberopticsystemsthatareabletotransmittherequiredlaserenergiesfor

    ALISoperation.Intheprocess,evaluatetheperformanceofthefollowingtechnologies,amongothers,fortransmissivity,flexibility,andeaseofconnectivity.

    i. Conventionalsilicacoreof1to2millimeter(s)diameterfiberswith

    appropriatecladding.

    ii. Fiberswithtaperedends.

    iii. Hollowfibersystems.

    3. Developanopticalmultiplexercapableofdistributingthelaseroutputamong

    variouscylindersofanaturalgasengine,whileminimizingtransmissionlossesand

    facilitatingtherequiredignitiontimingadvanceorretard.Thiscanbeperformedby

    evaluatingthefollowingcandidatetechnologiesamongothers.

    i. Fiberoptictelecommunicationmultiplexer.

    ii. Rotatinggratingtypeindexingsystem.

    4. Developorselectalasersystemthatcan

    i. Providetherequiredlaserenergies.

    ii. Operatewithminimalmaintenance.

    iii. Haveasmallfootprint.

    iv. Providetheaforementionedfeaturesatalowcost.

    5. DevelopanelectronicinterfaceincollaborationwithAltronic,Inc.,whichintegrates

    thefunctionsoflaserhead,ElectronicControlUnit(ECU),andindexerintoone

    singleunit.Thiselectronicinterfaceshouldenhanceeaseofinstallation,improve

    durability,satisfythesafetyrequirementsofnaturalgasengines,haveasmall

    footprint,belightweight,andfacilitatemanufacturinginlargequantities.

    InadditiontothedatagatheredintheearlierTask2.2,guidanceindesignwasalsoderived

    fromperformancerequirementsoftheignitionsystemasspecifiedbyengine

    manufacturers,asgiveninTable2.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    44/112

    28

    Table 2. Performance Requirements of an Advanced Ignition System (Courtesy: Caterpillar,Cummins and Waukesha )

    1 Cost (current dollars) Value Units

    - First Cost (add $1/kWe for CSA requirement) 4.00 $ / kWe- Life Cycle Cost (including system replacement at major) 0.25 $ / MWe-h

    2 Performance

    -Maximum ignition pressure (peak cylinder pressure) 220 bar

    -Minimum air/fuel ratio 0.9 -

    -Maximum air/fuel ratio (with swirl) 2.5 -

    -Minimum methane number (hydrogen capable) 0 -

    - Maximum methane number (landfill capable) 140 -

    - Ignition timing repeatability (non-mechanical) 0.08 CA

    - Ignition timing accuracy (non-mechanical) 0.08 CA

    - COV (ARES steady state, 0.5 g/bhp-hr NOx, 25 bar BMEP)

  • 7/29/2019 CEC-500-2012-043 ovooooo

    45/112

    29

    havewavelengthsof1064nanometers(nm),532nmor266nm.Thefocalspotdiameterofa

    collimatedlaserbeamfocusedbyalensisgivenby[15]

    ==D

    f

    M

    Ww oo

    4 (4)

    where,

    wo=focalspotdiameterforidealGaussianmodelaser(microns),

    Wo=focalspotdiameterforatypicalmultimodelaser(microns),

    M=isthemodequality,

    =laserwavelength(microns),

    f=lensfocallength(cm),and

    D=laserbeamdiameter(cm).

    AsevidentfromEquation4,smallerwavelengthsresultinsmallerfocalspotdiameters.Asa

    result,theuseofsmallerwavelengthsisdesirabletoachievealaserfluxdensityofabout

    1012Wattspersquarecentimeter(W/cm2),whichisrequiredforsparking.Withtheharmonic

    generationprocessbeingatbest50%efficient,theoreticallyspeaking,afactoroftwo

    advantageisachievedbygoingtoahigherharmonic.However,acompromiseisnecessary

    asthesystemcomplexityincreases.Forthepresentpurpose,awavelengthof532nmwas

    chosen.

    Fromafunctionalstandpoint,itwasidentifiedthatthelaserneedstohavethefollowing

    operationalcharacteristics:

    Wavelength=532or1064nm,

    pulsewidth

  • 7/29/2019 CEC-500-2012-043 ovooooo

    46/112

    30

    mitigatedinthecaseofdisklasersandfiberslasersduetothelargesurfaceareatovolume

    ratioofthelasingmedia.Onaccountoftherapidadvancementsinfiberlasertechnology,it

    isexpectedthatdisklaserswouldbecomeobsoleteinthenearfuture[16].However,asof

    2005,bothfiberlasersanddisklaserswerecostprohibitiveforthecurrentapplication.

    Figure 20. A Commercially-Available Diode Pumped Solid State Laser (DPSSL)Model: Centurion, Manufacturer: Big Sky Laser, Inc., 100 Hz, 45mJ/pulse.

    Photo Credit: Argonne National Laboratory

    DiodePumpedSolidStateLasers(DPSSL),ontheotherhand,areideallysuitedforthe

    presentpurpose.Withthecostoflaserdiodescontinuallydecreasingandtheirpower

    continuallyincreasing,DPSSLareanticipatedtomakemanynewapplicationspossible.

    Mostattractivetothecurrentapplicationisthefactthattheonlycomponentthatrequires

    maintenance,thelaserdiode,hasalifetimegreaterthan109shots,whichforatypicalARICE

    enginecantranslateto2.5years.AnexampleofacommerciallyavailableDPSSLisshownin

    Figure20.TheperformancedataofDPSSLfromthreedifferentmanufacturersistabulated

    inTable3below.TheMK88lasersystemfromKigre,hasthesmallestfootprintandhas

    alreadybeenshowntoachievesparkinginthelabusinga13millimeter(mm)focallength

    lens.However,therepetitionrateofthislasermakesitsuitableonlyforthelaserper

    cylinderapplicationshowninFigure18.Ontheotherhand,thesystemsfromBigSkylaser

    andJMARaresuitableforthepresentapplication.

    Table3providesasnapshotoftheDPSSLtechnologyavailableasof2005.Thistechnologyis

    makingrapidprogresswithaveryfavorablecostandperformancetrajectoryamenableto

    thelaserignitionapplication.Basedontheseconsiderations,itwasdecidedtopostponethe

    selectionofaspecificlaserforthepresentapplication.Consequently,allofthe

    demonstrationsinthepresentprojectareperformedusingcompactNd:YAGlasersthatare

    alreadyavailableatArgonneNationalLaboratory.Exceptforlongevityofthepumpsource,

    theperformanceoftheselaserswillmimicthatofDPSSLinallotherrespects

  • 7/29/2019 CEC-500-2012-043 ovooooo

    47/112

    31

    Table 3. Performance Specifications of Some Commercially-Available Pulsed DPSSL

    Specification

    Manufacturer

    Kigre Big Sky Laser JMARModel number MK-88 Centurion Britelight-24

    Wavelength ( m) 1.54 1.064 1.064

    Energy/pulse (mJ/pulse) 3-5 45 80

    Pulse width (ns) 7 7 7

    Repetition rate (Hz) 0 20 100 300

    Beam quality (M2) 1.1 * 109 >1010

    Beam diameter (mm) 0.8 3 8

    Laser head size (W x D x L) 0.85 2 3 5 3 9 18 30 12

    Laser Power Supply size 10 5 3.5 * 19 rack 38 high

    * Informationnotavailable

    3.3. Laser Plugs

    Laserplugsareelementsthatintroduceanopticalwindowsothatlaserradiationcanbe

    focusedtocreateasparkinsidethecylinder.Additionalrequirementsfortheirperformance

    aregivenbelow:Footprintsimilartothatofstandard18mmsparkplug[17],Pressure

    rating~300bar,Temperaturerating~3,000Konelementsexposedtocombustion,and

    shouldbeselfcleaningofcarbonandoildeposits.

    Afteracoupleofiterations,atwolensdesignwasfoundtobeappropriateforALIS.As

    showninFigure21,theoutputofafiberopticcableiscollimatedusingaplanoconvexlens.

    Thecollimatedoutputisrefocusedinsidethecylinderusingasapphirelensof13mmback

    focallength.Suchanarrangementallowedrefocusingtoaspotsizeof240micrometers

    (m).RaytracingiterationsperformedusingZEMAXsoftwareshowedthattheuseof

    multielementlensesdoesnotreducethefinalspotsizeanyfurther.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    48/112

    32

    Figure 21. Ray Propagation Scheme Inside a Laser Plug.

    InthearrangementshowninFigure21,thethicknessoftheplanoconvexsapphirelenswas

    chosentowithstandpressuresupto300bar.Withsuchathicklens,itisveryimportantthat

    thecurvedsideofthelensbepointedtowardsthelasersoastoavoidinternalreflections

    thatwillleadtointernalcrackingofthelens.Suchalenswasalsofoundtowithstand

    typicalincylindercombustiontemperatures.

    ThephysicalarrangementoftheaforementionedlensconfigurationisshowninFigure22.

    Asnoticedinthisarrangement,thelaserplugconsistedofatoppartandabottompart

    separatedbyanaluminumspacer.Thebottompartcarriedthenecessaryexternalthreadsto

    fastentheentirelaserplugassemblyintothecylinderhead.Acoppercrushgasketinthe

    bottompartprovidedthenecessarysealingtopreventleakageofcombustiongasesbeyond

    thesapphirelens.Thetoppartcarriedalenstube,whichinturn,housedthecollimating

    planoconvexlens.Afiberopticconnector(SMAtype)separatedfromthecollimatinglens

    allowedcouplingoftheincominglaserradiation.

    Throughtestsperformedbyincorporatingthislaserplugina4kilowatts(kW)naturalgas

    engine,itwasobservedthatthelaserfluxdensityontheexitfaceofthesapphirelenswas

    critical.Atlowlaserfluxdensitiesdistinctcarbondepositswerevisibleonthelens.Abovea

    certainthreshold,thelaserradiationablatedsuchdepositsandthelenswasfoundtobeselfcleaning.Cautionneedstobeexercisedtokeepthelaserfluxdensitieswellbelowthe

    materialdamagethresholdof5gigawattspersquarecentimeter(GW/cm2).Similarlaser

    ignitiontestswereperformedbyGEJenbacherandtheydemonstratedsatisfactory

    performanceofthelensarrangementforover5000hoursofoperation[9].

  • 7/29/2019 CEC-500-2012-043 ovooooo

    49/112

    33

    Figure 22. Schematic of a Two-Lens Laser Plug.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    50/112

    34

    3.4. High-Power Optical Multiplexer

    Theopticalmultiplexerperformsafunctionsimilartotheconventionalignitionsystem:It

    distributestheoutputofapulsedlaseramongvariouslaserplugsinstalledindifferent

    enginecylinders.Thefunctionalrequirementsofsuchahighpoweropticalmultiplexerare

    listedbelow:

    Ignitiontimingvariationof048crankangle(CA)beforetopdeadcenter(BTDC).

    Lasertriggerpulsegeneration.

    Individualcylinderignitiontimingvariationof6CA.

    Additionally,thesystemneedstobeoflowcostandmustconformtothedurabilitytargets

    oftheoverallsystemof80,000hours.

    Asurveywasperformedtoevaluatepotentialtechnologiesthatconformtothe

    aforementionedrequirementsandthefollowingthreewereidentified:(i)Electrooptic

    switches,(ii)Rotatingmirrorsystems,and(iii)Flipflopsystems.Theresultsfromtheperformanceevaluationofprototypesofthesesystemsarediscussedbelow.Itoughttobe

    notedthatthesystemdesignsconsideredbelowconformtoa6cylinder,1800rpm,4stroke

    engine.Thesecanbeextendedtoengineswithmorenumberofcylinders,ifnecessary.

    3.4.1. Electro-Optic Modulator (Pockels Cell)

    APockelscellactsasanelectroopticswitchbecauseitrotatesthepolarizationofthelaser

    lightby90degreeswhenactivated.AsshowninFigure23,apolarizingbeamsplittercan

    directthebeamonewayortheotherbasedonthepolarizationstateofthelaserbeam

    incidentonitfromthePockelscell.AlineararrayofsuchPockelscellbeamsplitter

    combinationscanbeusedforthepresentmultiplexingpurpose.Forevaluation,atwochannelsystemwasfabricatedatANLanditdemonstratedtherequiredperformance(see

    Figure24).

    Figure 23. Schematic of a Pockels Cell-Based Multiplexer [18].

  • 7/29/2019 CEC-500-2012-043 ovooooo

    51/112

    35

    Figure 24. Photograph of a Pockels Cell-Based Two-Channel Multiplexer.

    Photo Credit: Argonne National Laboratory

    Thisschemefacilitatesmanipulationofthelaserbeamwithouthavinganymechanical

    movementofthecomponents.However,thenumberofrequiredopticalsurfacesincreases

    withthenumberofenginecylindersandeventuallybecomestoounwieldy.Additionally

    voltagesashighas5kVarerequiredforactivatingthePockelscell.Underthepresent

    marketconditions,itwasestimatedthatthecostassociatedwiththisschemeamountsto

    about$2,000percylinder,whichisconsideredtobetoohigh.

    3.4.2. Rotating Mirror

    Thisschemeisbasedonthetraditionalmechanicaldistributorsystemofthe1980s.As

    showninFigure25,amirror,placedat45degreestotheincominglaserbeam,isrotated

    synchronouslywiththecamshaft.Asaresult,thebeamisrotatedat90degreesaboutan

    axiscoincidentwiththeincominglaserbeam.Laserfiringattheappropriatecrankangleis

    facilitatedbyatimingdiskfittedontheshaft.Adifferentialgearsystemallowsignition

    timingvariationbyintroducingaphaseshiftbetweenthemirrorandthecamshaft.Allof

    thecomponentsrequiredforthissystemaresimple,costeffective,andoffertherequired

    durability.Therefore,aprototypesystemwasdesignedandassembled.Aphotographofthe

    systemisshowninFigure26.Testsperformedinthelabusingasmallelectricalmotorfordrivingthesystemshowedthatithastherequiredperformance.Throughsuchtrialsitalso

    becameevidentthatsignificantperformanceadvantagescanbegainedbyusingamirror

    inclinedatangles

  • 7/29/2019 CEC-500-2012-043 ovooooo

    52/112

    36

    gasengines.Therotatingmirrorsystemdoesnotallowthisflexibility.Therefore,

    developmentoftheflipflopmultiplexingschemewaspursued.

    Figure 25. Schematic of a Rotating Mirror Multiplexer.

    Figure 26. Photograph of Argonnes Rotating Mirror Multiplexer.

    Photo Credit: Argonne National Laboratory

  • 7/29/2019 CEC-500-2012-043 ovooooo

    53/112

    37

    3.4.3. Flip-flop

    Aflipflopmultiplexerconsistsofalineararrayofmirrors.Anindividualmirror,when

    activated,movesintothepathofthelaserbeamanddeflectsitintotherespectivefiber

    injectionport.Thissystem,schematicallyshowninFigure27,facilitatestimingvariationof

    individualcylinders.Totesttheperformanceoftheflipflopsystem,arotaryactuator(Model6EM)wasobtainedfromtheLedexDivisionofSaiaBurgess,anautomotiveparts

    supplier.Thisactuator,whenactivated,rotatesitsshaftby22.5andmovesthemirrorinto

    oroutofthepathofthebeam.Ina4stroke,1800rpm,6cylinderenginethetargetresponse

    timeforsuchasystemis11ms.Thetimeresponseofaonechannelsystemwasmeasured

    usingthearrangementshowninFigure28(a).AsnoticedinFigure28(b),thesystemshows

    verylittlebounceandinaddition,exhibitsatimeresponseoflessthan7ms.Subsequently,

    effortswereundertakentodevelopasixchannelsystemforusewitha6cylinderengine.

    Asmentionedpreviously,withadvancesinactuatorsandmicroelectromechanicalsystems

    (MEMS)technologymanyothermultiplexingschemes,otherthanthosediscussedabove,

    arepossible.SomeofthesearediscussedinAppendixB.Thefinalchoiceislikelytobedictatedbydurabilityandthecostofthesesystems.

    Figure 27. Schematic of a Flip-Flop Multiplexer.

    Time (ms)

    0 5 10 15 20

    N

    ormalizedDetectorResponse

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    (a) (b)

    Figure 28. (a): Schematic of Setup to Measure the Time Response of the Flip-Flop(b): A Typical Detector Response Curve.

    Fiber couplingassembly

    Mirror

    Laser beam

    Lens

    Diode

    LaserDeactivated

    Activated

    5 mm high Laser Sheet

  • 7/29/2019 CEC-500-2012-043 ovooooo

    54/112

    38

    3.5. Fiber-Optic Delivery

    AspartofthecurrentALISscheme,itwasenvisionedthatthepulsedoutputofalaserwill

    betransmittedviaopticalfiberstolaserplugsinstalledinindividualcylinders.The

    functionalrequirementsspecifiedbyenginemanufacturersfortheopticalfiberstobeused

    inamulticylinderenginearegivenbelow:

    Length>3m.

    Atleastone90obendwitharadiusofcurvature130C.

    Additionally,toachievesparkingatthedistalendofthefiber,alaserfluxdensityof1012

    W/cm2isnecessarywhenrefocused.

    ForagivenfiberandatwolenssystemshowninFigure29,theLagrangeinvariantyields

    se NAsNAa = (5)

    Asaresult,thelaserfluxdensityatthefocalspot=2s

    llaser (6)

    where,

    a = corediameterofthefiber(microns)

    s = focalspotsize(microns)

    NAe = numericalapertureatthefiberexithalfconeangleatfiberexit

    NAs

    = numericalapertureatthefocalspot

    Ilaser = intensityoflaser(Watts).

    CombiningEquations5and6,thefollowingequationisobtained:

    Laserfluxdensityatthefocalspot

    2

    2

    e

    slaser

    NA

    NA

    a

    l (7)

    InEquation7,thefirsttermisdeterminedbythefibercorematerialdamagethreshold.In

    thesecondterm,NAsisdeterminedbythespaceavailableforthelaserplug.Forfibersof

    shortlengths(~3m)thenumericalapertureatinjectionendisapproximatelyequaltothat

    atthefiberexit,i.e.,NAiNAe;inotherwords,theexitconeangleisdeterminedbytheinjectionschemeused.Hencethelaserfluxdensitycanbemaximizedbymakingajudicious

    choiceofboththeopticalfiberandtheinjectionscheme.

    However,inderivingEquation7ithasbeenassumedthatthefiberismodepreserving.For

    thepresentcasewheretransmissionofhighlaserpowerisrequired,theuseofmultimode

    fibersisrequired.Asisusuallythecase,withtheintroductionofhigherordermodesthe

    energyisnotequallydistributedandisskewedtowardsthehigherordermodes.These

  • 7/29/2019 CEC-500-2012-043 ovooooo

    55/112

    39

    aspectsofactualphysicalbehaviorarenotcapturedbyEquation7.Nevertheless,this

    equationprovidesanacceptablebasisthatassistsinthechoiceoftheopticalfiberandthe

    injectionscheme.

    Withtheinsightprovidedintheaforementionedarguments,differenttypesoffiberswere

    obtainedandtestedforsparkinginthelaboratory.Theresultsofsucheffortsarediscussedbelow.

    aNAe NAs

    R

    s

    Figure 29. Schematic of Laser Refocusing Scheme at the Distal End of the Optical Fiber.

    3.5.1. Solid Core Fibers

    Largelydrivenbyadvancesinthetelecomindustry,therehavebeenrapiddevelopmentsin

    solidcorefibertechnologyoverthepasttwodecades.Currently,stepindex(seeFigure

    31(a))solidcorefiberswith1mmcorediameterandadamagethresholdof5GW/cm2are

    readilyavailable.Initialeffortstoinjectsuchfiberslimitedthemaximumlaserenergy

    transmissionto8mJperpulse.Theprimarymodeoffailureinsuchfiberswasmaterialdamageattheentranceendofthefiber.Analysisshowedthatsignificantgainsintermsof

    transmittedlaserenergycouldbeobtainedbyensuringthatthelaserbeamcrosssection

    profileisincidentonthefaceofthefiberasuniformlyaspossible.Forinstance,asshownin

    Figure30(a),thebeamcrosssectionincidentonthefiberfacewiththeuseofasimpleplano

    convexlenshadaPeaktoAverage(P/A)ratioof15.6.However,aprofilethatdistributed

    theenergymoreevenlyonthefiberfacewasachievedusinganappropriateaxiconlens

    combination(seeFigure30(b)).TheP/Aratioinsuchacasewas3.9andtransmittedlaser

    energywasashighas30mJ/pulse.

    Nevertheless,suchadvancedinjectionschemesintroducehigherordermodesandthe

    qualityofthebeamexitingthefiberdegrades.Despitethebesteffortstocountertheseeffects,thetradeoffbetweenthemaximumtransmittablelaserenergyandthegenerationof

    higherordermodesproveddifficulttoovercomeandsparkingcouldnotbeachieved.In

    thisrespect,thegradientindexfibershowninFigure31(b)appearedpromisingasithad

    bettercapabilitytopreservebeamquality.Initialtrialsinthelabshowedthatthesefibers

    sufferfromlowmaterialdamagethreshold.Ultimately,itwasdecidedtodirectthepresent

    efforttowardstrategieswithhollowcorefibers.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    56/112

    40

    With Axicon

    (P/A) = 3.9

    Max. Transmitted 27 mJ/p

    Axicon

    Simple Plano-convex lens

    (P/A) = 15.6

    Max. Transmitted 8 mJ/p

    With Axicon

    (P/A) = 3.9

    Max. Transmitted 27 mJ/p

    With Axicon

    (P/A) = 3.9

    Max. Transmitted 27 mJ/p

    Axicon

    Simple Plano-convex lens

    (P/A) = 15.6

    Max. Transmitted 8 mJ/p

    AxiconAxicon

    Simple Plano-convex lens

    (P/A) = 15.6

    Max. Transmitted 8 mJ/p

    Simple Plano-convex lens

    (P/A) = 15.6

    Max. Transmitted 8 mJ/p

    (a) (b)

    Figure 30. Fiber Face Laser Intensity Distribution Profiles for an Injection Scheme Using(a): Plano-Convex Lens, (b): Combination of Axicon and Plano-Convex Lens.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    57/112

    41

    n

    n

    (a) (b)

    Figure 31. The Refractive Index Distribution in Two Solid Core Fibers: (a) Step-Index Fiber, and(b) Gradient-Index Fiber.

    3.5.2. Hollow Glass Waveguides (HGWs)HollowGlassWaveguides(HGW)havethestructureillustratedinFigure32(a).Theyare

    essentiallyglasscapillarytubescoatedontheinsidewithsilverandareflectivityenhancing

    dielectric.ThemodeoftransmissionthroughHGWsisfirstsurfacereflectionwhiletotal

    internalreflectionisthemodeoftransmissioninsolidcorefibers.Asaresultofthe

    transmissioninairthedamagethresholdofthesefibersis40timeslarger,i.e.,200GW/cm2.Also,HGWstendtopreservethemodequalityandexitthebeamatalowcone

    angle,bothcharacteristicsrenderingthemideallysuitedforsparkgeneration.However,

    thesefiberstendtohavehighertransmissionlossescomparedtosolidcorefibers.

    Additionally,theyexhibitcertainuniquecharacteristics:

    Transmissionlosses(corediameter)3.

    Bendinglosses(bendradius)1.

    Initialevaluationsinthelabshowedthatthe700mcoreHGWswereideallysuitedastheyofferedthebestcompromisebetweenflexibilityandtransmission.Subsequently,700mcoreHGWswereobtainedfromthreedifferentsourcesandtestedinthelaboratory.Their

    characteristicsareasgivenbelowinTable4.

    Table 4. Hollow Glass Waveguides Tested for High-Power Laser Transmission

    Source CoatingOptimized for

    Wavelength

    Polymicro Technologies Proprietary 3.2 m

    Rutgers University Ag/CdS 0.532 m

    Tohoku University Ag/ COP 0.532 m

  • 7/29/2019 CEC-500-2012-043 ovooooo

    58/112

    42

    QuartzAir core

    Silver Dielectric

    (a) (b)

    Figure 32. (a) Schematic of the Cross-Section of a Hollow Glass Waveguide (HGW), and (b) APhotograph Showing Spark Generation Using HGW in the Lab.

    Photo Credit: Argonne National Laboratory

    SparkingwasachievedinthelaboratorywithallthreefibersshowninTable4.Inallthree

    cases,theinjectionwasperformedwithlensesoffocallengthgreaterthan250mminto

    fiberstypically12meterslong.However,thefibersfromTohokuUniversity[19]offeredthe

    lowesttransmissionlosses(seeFigure32(b)).Subsequently,afibercoupledlasersystem

    wasdevelopedusingthesefibersandtheoperationofasinglecylinderenginewas

    demonstrated[18,20].However,thedownsidewiththesefiberswasthattheywerevery

    bendsensitive;forbends>45,sparkingwasseverelyaffected[18,21].Consequently

    advancedfibersthatarerelativelybendinsensitivearedesirable,whileretainingthe

    favorablecharacteristicsoftheHGWfibersfromTohokuUniversity.

    3.5.3. Advanced Air-Core Fibers

    Forfutureonenginelaserignitionapplications,twokindsofadvancedfibertechnologies

    appearpromising:(i)multilayerhollowglasswaveguides,and(ii)hollowcorephotonic

    bandgapfibers.TheseareschematicallyshowninFigures33(a)and33(b).Bothrelyon

    multiplereflectionstoconfinelighttothecentralaircore,andmostimportantlybothfibers

    arebendinsensitive.Manufacturingprocessesofbothkindsoffibersareveryinvolvedand

    thosethatarecommerciallyavailablewithcorediameters

  • 7/29/2019 CEC-500-2012-043 ovooooo

    59/112

    43

    Several layers ofDielectric coatings

    Air core

    (a) (b)

    Figure 33. (a) Schematic of the Cross-Section of a Multi-Layer Hollow Glass Waveguide, and(b) Photograph of an Air-Core Photonic Bandgap Fiber

    3.6. Electronic Interface

    Innaturalgasfueledstationaryengines,theElectronicControlUnit(ECU)performstwo

    primaryfunctions:(i)providingignitionwithfeedbackfromatimingdisk,and(ii)speed

    controlwithfeedbackfromagovernor.Inmostofthegasfueledengines,thesefunctions

    areperformedbytwoseparateunits.Earlierinthereport,asshowninFigure19,itwas

    envisionedthatanelectronicinterfacewouldberequiredfortheALIStocommunicatewith

    theignitioncontrolpartofECUforignitiontimingcoordination.InconsultationwithArgonnesindustrialpartner,Altronic,Inc.,anelectronicinterfacewasdevelopedthat

    utilizescommerciallyavailableconventionalignitionsystems.

    Onesuchsystemtodriveaflipflopmultiplexerandalaserisschematicallyshownin

    Figure34.Thepositionofatimingdiskmountedonthecrankshaftissensedbyamagnetic

    pickup.ThesignalfromthemagneticpickupisprocessedbytheECU/Conventional

    ignitionsystemtoprovidea165VDCpulsethatisusuallyfedtotheprimarysideofthe

    ignitioncoil.Inthepresentelectronicinterfacesuchasignalisusedtogeneratea24VDC

    pulseusingaresistorstepdowncircuit(representedasaboxinFigure34).The24VDCsignal,inturn,isusedtodriveacorrespondingrotaryactuator.Theendofstrokeofthe

    rotaryactuatorissensedbyanopticalsensorandatriggersignalisprovidedtothelaser

    afterroutingitthroughanORgate.Insuchasystem,theindividualcylinderignitiontiming

    variationisprovidedbytheECU/conventionalignitionsystem.Onesuchsystemwas

    successfullysimulatedandtestedatArgonneusingAltronic,Inc.sCD200system.

    Howeverthebasicdesignofthesystemisnotspecifictoaparticularmodelor

    manufacturer.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    60/112

    44

    RotaryActuator

    opticalsensor

    1 2 3 4 5 6

    ECU/Conv.

    Ign Sys

    Laser

    ORGate

    165 VDC7 ns pulse

    primary

    24 VDC8 s wide pulse

    5 VDC TTL

    Mag.Pickup

    TimingDisk

    Electronic Interface

    Mirror

    Figure 34. Schematic Diagram of the Electronic Interface

    3.7. Results and Conclusions for Task 2.3

    FromaninitialsurveyofseveralpossibleALISschemes,twopromisingconfigurationswere

    identified:(i)thelaserpercylinderconcept,and(ii)themultiplexedlaserconcept,wherein

    theoutputofasinglelaserisdistributedovervariouscylinders.Thelatterconceptwas

    chosenasitpromisedlowcostandsimplicityofthermalmanagement.However,this

    conceptrequiredthedevelopmentofthreehighpowercomponents,namely,laserplugs,

    multiplexersandfiberopticbeamdelivery.Guidancewasderivedinthedevelopmentof

    suchcomponentsthrough(i)datafromfundamentalstudiesconductedinanearliertask(Task2.2),and(ii)requirementsoftheadvancedignitionsystemasspecifiedbyengine

    manufacturers.Specificdetailsofthehighpowercomponentsconsideredinthepresenttask

    aredescribedbelow:

    LaserPlugs:Atwolensdesignthatsuccessfullymeetsthephysicalandfunctional

    requirementsofalaserplugwaseasilyachieved.Adaptationofthisdesignforvarious

    enginegeometriescanbeeasilyachieved.

    Multiplexers:Threeschemesthatdistributetheoutputofasinglelaseramongvarious

    cylinderswerepursued:(i)anelectroopticswitch,(ii)arotatingmirrorscheme,and(iii)a

    flipflopswitch.Thefirsttwoschemesfellshortoftherequirementseitherduetohighcost

    ortheinabilitytoprovideignitiontimingvariationsinindividualcylinders.Theflipflop

    scheme,however,provedeffectiveinallrespects.

    HighPowerFiberOpticBeamDelivery:Throughtestsandanalysesitwasdeterminedthat

    thefiberopticdeliveryrequirementsare(i)lowdivergenceatdistalend,(ii)highpower

    lasertransmission,and(iii)preservationofmodequality.Initialtestsperformedusingsolid

    corefibersshowedthattheyarelimitedbythematerialdamagethreshold.Subsequenttests

  • 7/29/2019 CEC-500-2012-043 ovooooo

    61/112

    45

    performedusingHollowGlassWaveguidesshowedthattheyarelimitedbymodeshifts

    introducedbybendingoftheopticalfibers.Whilephotonicbandgapfibersappear

    promising,theyarenotreadilyavailablefortestsandtheirdevelopmentisexpectedtobe

    expensive.

    ElectronicInterface:AnelectronicinterfaceisrequiredfortheALIStocommunicatewiththeECUofanengineforignitiontimingcoordination.InconsultationwithArgonnes

    industrialpartner,Altronic,Inc.,thetimingmodulesfromexistingignitionsystemswere

    adaptedforthepresentpurposeeasily.

  • 7/29/2019 CEC-500-2012-043 ovooooo

    62/112

    46

  • 7/29/2019 CEC-500-2012-043 ovooooo

    63/112

    47

    4.0 (Task 2.4) Single-Cylinder Laser Ignition Studies

    EarliertestsperformedinanRCM,inTask2.2,showedthatlaserignitionextendsthelean

    ignitionlimitallthewaytotheleanflammabilitylimit(=0.5)fornaturalgasairmixtures.

    Additionally,itwasfoundthatforleanoperationlaserignitionacceleratestherateof

    combustion.Theobjectiveofthepresenttask(Task2.4)istodeterminetheimpactofsuch

    alteredcombustionbehavioronthetradeoffbetweenbrakethermalefficiencyandNOx

    emissionsinanaturalgasfueledengine.

    4.1. Statement of Work for Task 2.4

    Thegoalofthistaskwastoperformlaserignitiontestsonsinglecylindernaturalgas

    enginesoftwosizeclassessoastoevaluatetheeffectsofignitiontiming,equivalenceratio

    andintakeairpressureonemissionsandperformance.Thefollowingactionswereplanned

    tobeperformedinthistask:

    Prepareatestplanforoptimizingignitiontiming,efficiencyandNOxemissions

    whileavoidingknockinordertodeterminetheperformancebenefitsbytheuseof

    laserignition.Also,advantagesbytheuseofmultipointignitioningasengines

    needstobedetermined.SuchtestsaretobeperformedbyNETLonaRicardo

    Proteusengine.

    PerformthetestsontheRicardoProteusenginepertheapprovedtestplan.

    Prepareasimilartestplanforimplementationonalargeboreenginetodetermine

    theperformancebenefitsbytheuseoflaserignition.Suchtestsaretobeperformed

    bySwRIonaCAT3401engine.

    PerformthetestsonCAT3401pertheapprovedtestplan.

    Inatypicalreciprocatingenginechemicalenergyduringcombustionisconvertedto

    mechanicalworkonthepiston.Thenetshaftpowerisaresultofsuchworkperformedon

    thepistonslessthemechanicallosses.Whilethemechanicallossesoriginateatvarious

    pointsofaworkingengine,themostsignificantofthem(upto50%)


Recommended