+ All Categories
Home > Documents > CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry:...

CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry:...

Date post: 14-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
16
CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260271) Benjamin; Chapter 8.18.6 David Reckhow CEE 680 #26 1 Updated: 4 March 2020 Print version David Reckhow CEE 680 #20 2 Titrant Volume (mL) 0 5 10 15 20 25 30 35 40 45 pH 2 3 4 5 6 7 8 9 10 11 12 1 st Equivalence Point 2 nd Equivalence Point V ph V mo H + +HCO 3 - =H 2 CO 3 H + +CO 3 -2 = HCO 3 - H + + OH - =H 2 O A B Acid Titration Curve for a Water Containing Hydroxide and Carbonate Alkalinity From Lecture #20
Transcript
Page 1: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

1

Lecture #26

Coordination Chemistry: Hydrolysis 

(Stumm & Morgan, Chapt.6: pg.260‐271)

Benjamin; Chapter 8.1‐8.6

David Reckhow CEE 680 #26 1

Updated: 4 March 2020 Print version

David Reckhow CEE 680 #20 2

Titrant Volume (mL)

0 5 10 15 20 25 30 35 40 45

pH

2

3

4

5

6

7

8

9

10

11

12

1st

Equivalence Point

2nd

Equivalence Point

Vph Vmo

H ++HCO

3-=H

2 CO3

H++CO

3-2

=HCO3

-

H++OH

-=H2O

A

B

Acid Titration Curve for a Water Containing Hydroxide and Carbonate Alkalinity

Fro

m L

ectu

re #

20

Page 2: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

2

Acid Titration Curve for a Water Containing Carbonate and Bicarbonate Alkalinity

David Reckhow CEE 680 #20 3

Titrant Volume (mL)

0 5 10 15 20 25 30 35 40 45

pH

2

3

4

5

6

7

8

9

10

11

12

1st

Equivalence Point

2nd

Equivalence Point

Vph Vmo

Y[CO3-2

] + Z[HCO3-]

C

(Y + Z)[HCO3-]

(Y + Z)[H2CO3]

(Y + Z)Vs/Nt(Y)Vs/Nt

Fro

m L

ectu

re #

20

Buffer Intensity Amount of strong acid or base required to cause a specific small shift in pH

David Reckhow CEE 680 #17 4f

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

pH

2

3

4

5

6

7

8

9

10

11

12

g

-0.20.00.20.40.60.81.01.2

pH 3.35

pH 4.7

pH 8.35

Starting Point

Mid-point

End Point

dpH

dC

dpH

dC AB

10-2M HAc

BC

pH

BC

pH

Slope = 1/

Fro

m L

ectu

re #

17

Page 3: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

3

Base titration of an acid For a monoprotic

Lecture #16

CB [Na+] = [A‐] + [OH‐] ‐ [H+]

For a diprotic

Using the same ENE approach

David Reckhow CEE 680 #26 5

T

T

T

B

s

B

ss

BB

C

HOH

C

HOHA

C

C

moles

equ

MV

NVf

][][

][][][

1

𝑓2 𝐴 𝐻𝐴 𝑂𝐻 𝐻

𝐶

𝑓 2𝛼 𝛼𝑂𝐻 𝐻

𝐶

1

1

221

2 ][][

KH

KKH

][

][ 2

11

1

H

KKH1

𝐻𝐾 1

Example Titration Base titration

Vs = 1000 mL

Ms = 0.001 M

NB = 0.1 M

Starting acids

Pure water

1 mM HAc

1 mM H2CO3

David Reckhow CEE 680 #26 6

s

B

ss

BB

moles

equ

MV

NVf

pHi = 3.85 pKa = ??

pKas = ??

Page 4: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

4

Titration of Humics

Model for aquatic humic substances

Acetic acid + phenol

David Reckhow CEE 680 #18 7

Fro

m L

ectu

re #

18

Protons & Metals Ions

David Reckhow CEE 680 #26 8

Fig 6.2 pg.259

Why??

Page 5: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

5

FeOH(H2O)5+2

David Reckhow CEE 680 #28 9

Fe

O

H

Fe(OH)2(H2O)4+

David Reckhow CEE 680 #28 10

H

O

Fe

O

H

Page 6: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

6

Lake Taihu

David Reckhow CEE 680 #25 11

C106H263O110N16P

CO2 H2ONO3

-

HPO4-2

Limits to Growth

Another Problem Statement

Photosynthesis with nitrate assimilation 106 CO2 + 16 NO3

‐ + HPO4‐2 + 122 H2O + 18 H

+

=   C106H263O110N16P + 138 O2

Basis for stoichiometry  and limits to growth

Algal cells are:  C106H263O110N16P

But what if they are: C106H263O110N16P1Fe0.001

David Reckhow CEE 680 #25 12

Page 7: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

7

Elemental abundance in crust O Si Al Fe Ca Na Mg K Ti H P Mn F

David Reckhow CEE 680 #2 13

Elemental abundance in fresh water

David Reckhow CEE 680 #2 14

From: Stumm & Morgan, 1996; Benjamin, 2002; fig 1.1

Page 8: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

8

Complexation of hydroxide?

David Reckhow CEE 680 #2 15

NoYes, a bit

Yes, quite a bit

Precipitation and Dissolution

Environmental Significance

Engineered systems coagulation, softening, removal of heavy metals

Natural systems composition of natural waters

formation and composition of aquatic sediments

global cycling of elements

Composition of natural waters S&M, 3rd ed., figure 15.1 (pg. 873)

David Reckhow CEE 680 #26 16

Page 9: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

9

Intro: Chemical Reactions Driving force

Reactants strive to improve the stability of their electron configurations (i.e., lower G)

Types

Redox reactions: change in oxidation state

Coordinative reactions: change in coordinative relationships

David Reckhow CEE 680 #26 17

Intro: Coordinative Reactions Definition: where the coordination number or coordination partner changes

Types

Acid/base reactions

Precipitation reactions

Complexation reactions

David Reckhow CEE 680 #26 18

HClO + H2O = H3O+ + ClO-

Mg+2 + 2OH- = Mg(OH)2(s)

Cu+2 + 4NH3 = Cu(NH3)4+2

HClO = H+ + ClO-

Mg(H2O)2+2 + 2OH- = Mg(OH)2(s)

+ 2H2O

Cu(H2O)4+2 + 4NH3 = Cu(NH3)4

+2

+ 4H2O

Page 10: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

10

Coordination Chemistry: References Benjamin, 2002: Chapt. 8

Appendix A4

Stumm & Morgan, 1996: Chapt. 6

Butler, 1998: Chapt. 7 & 8

Pankow, 1991: Chapt. 18

Langmuir, 1997: Chapt. 3

Snoeyink & Jenkins, 1980: Chapt. 5

Morel & Hering, 1993: Chapt. 6 Morel, 1983: Chapt. 6

Buffle, 1988: Chapt. 5 & 6

David Reckhow CEE 680 #26 19

Coordination

Definition

Any combining of cations with molecules or anions containing free pairs of electrons

David Reckhow CEE 680 #26 20

Cu+2 + 4NH3 = Cu(NH3)4+2

Central atom

Ligand

Ligand atom

NH

HH

Complex or Coordination Compound

Page 11: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

11

Ligand types Constituent Ligand atoms

Nitrogen

Oxygen

Others: halides

Numbers of active ligand atoms per ligand

One: monodentate (e.g., ammonia)

Two: bidentate (e.g., oxalate)

Three: tridentate (e.g., citrate)

Six: hexadentate (e.g., EDTA)

David Reckhow CEE 680 #26 21

MultidentateResulting complexes are called chelates

Coordination Basics Importance

Affects solubility of metals e.g., Al(OH)3 solubility

Used in Analytical chemistry Determination of hardness

Metals act as buffers in natural waters

Coordination Number

1 for Hydrogen

2, 4, or 6 for most metals

David Reckhow CEE 680 #26 22

Page 12: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

12

Ion Pairs & Complexes Two types of complex species

Ion Pairs Ions of opposite charge that form an association of lesser charge

Ion pairs are separated by at least one water molecule

These are called “outer‐sphere” complexes

Complexes Metal ion and neutral or anionic ligand

Direct bond formed with no water molecule between

These are called “inner‐sphere” complexes

David Reckhow CEE 680 #26 23

Ion pair stability Determined based on simple coulombic interactions

David Reckhow CEE 680 #26 24

Ion Charge

Log K (I=0)

Log K (seawater)

1 0 to 1 -0.5 to 0.5

2 1.5 to 2.4 0.1 to 1.2

3 2.8 to 4.0

Page 13: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

13

Natural Particle as Ligands Natural Particles

High surface area

Usually coated with oxygen‐containing surface groups which can donate electrons to metals (i.e., act as ligands)

David Reckhow CEE 680 #26 25

OH

S

O-

S

O-M

S

M+

Chemical Speciation

David Reckhow CEE 680 #26 26Fig 6.1, pg. 258

Page 14: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

14

Protons & Metals Ions

David Reckhow CEE 680 #26 27

Fig 6.2 pg.259

All “free” metals and protons are actually hydrated in water

Both can bind with hydroxide

David Reckhow CEE 680 #26 28

Fig 6.3Pg.259

Cu(NH3)X

Page 15: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

15

Brønsted & Lewis Acidity Definition of Acids

Brønsted: proton donors Species with excess H+

Lewis: electron acceptors H+, metal ions, others

Strength Tendency to accept electrons (or donate protons)

Measured by equilibrium constant

David Reckhow CEE 680 #26 29

Complexes: Coordination #

Me(Ligand)x Fe(H2O)6

+3

Fe(H2O)4(OH)2+1

PtCl6‐2

Cu(NH3)4+2

Si(OH)4HgS2

‐2

HOH

David Reckhow CEE 680 #26 30

6

4

2

CoordinationNumber

Coordination # Depends on:1. Size of central Atom2. Charge of central Atom3. Size of Ligand

Page 16: CEE 680 Lecture #26 3/4/2020 · CEE 680 Lecture #26 3/4/2020 1 Lecture #26 Coordination Chemistry: Hydrolysis (Stumm & Morgan, Chapt.6: pg.260‐271) Benjamin; Chapter 8.1‐8.6

CEE 680 Lecture #26 3/4/2020

16

To next lecture

David Reckhow CEE 680 #26 31


Recommended