+ All Categories
Home > Documents > 半無限冷却モデル half space cooling model -...

半無限冷却モデル half space cooling model -...

Date post: 09-Jul-2020
Category:
Upload: others
View: 11 times
Download: 0 times
Share this document with a friend
6
半無限冷却モデル half space cooling model "T "t = # " 2 T "z 2 T = T 1 at t = 0 z > 0 T = T 0 at z = 0 t > 0 T " T 1 as z "# t > 0 1次元の熱伝導方程式を解く (1) (2) 境界条件: - アセノスフェアは一定温度Tm - アセノスフェアはある時刻(t=0)に地表 z=0)に上昇 - 地表の温度は常にT0 - 下限の条件はない(半無限モデル) - 水平方向への熱の拡散はない
Transcript
Page 1: 半無限冷却モデル half space cooling model - OFGSofgs.aori.u-tokyo.ac.jp/~okino/seps18/SEPS18-03appendix...t=x/u T"T 1 T 0 "T 1 =erfc( z 2#x/u 1" T"T 0 T 1 "T 0 =1"erf( z 2#x/u

半無限冷却モデル half space cooling model

!

"Q = kAT2#T

1

L"t

qz = #1

A

dQ

dt= #k

dT

dz

!

dQz

dzdz =

dqz

dzdz(dxdy)dt = k

d2T

dz2dVdt

!

"Q = cpm"T

!

cpm"T = cp#dVdT

!

cp"dVdT = kd2T

dz2dVdt

dT

dt=

k

cp"

d2T

dz2

# =k

cp"

$T

$t=#

$ 2T

$x 2+$ 2T

$y 2+$ 2T

$z2%

& '

(

) *

!

"T

"t=#

" 2T

"z2

!

T = T1at t = 0 z > 0

T = T0at z = 0 t > 0

T" T1as z"# t > 0

!

" =T #T

1

T0#T

1

$"

$t=%

$ 2"

$z2

" z,0( ) = 0

" 0,t( ) =1

" &,t( ) = 0

1次元の熱伝導方程式を解く

(1)

(2)

境界条件: - アセノスフェアは一定温度Tm - アセノスフェアはある時刻(t=0)に地表(z=0)に上昇 - 地表の温度は常にT0 - 下限の条件はない(半無限モデル) - 水平方向への熱の拡散はない

Page 2: 半無限冷却モデル half space cooling model - OFGSofgs.aori.u-tokyo.ac.jp/~okino/seps18/SEPS18-03appendix...t=x/u T"T 1 T 0 "T 1 =erfc( z 2#x/u 1" T"T 0 T 1 "T 0 =1"erf( z 2#x/u

プレート冷却モデル単純に地表からの冷却だけを考慮した場合、熱境界層の厚さはどうなるか?

!

"Q = kAT2#T

1

L"t

qz = #1

A

dQ

dt= #k

dT

dz

!

dQz

dzdz =

dqz

dzdz(dxdy)dt = k

d2T

dz2dVdt

!

"Q = cpm"T

!

cpm"T = cp#dVdT

!

cp"dVdT = kd2T

dz2dVdt

dT

dt=

k

cp"

d2T

dz2

# =k

cp"

$T

$t=#

$ 2T

$x 2+$ 2T

$y 2+$ 2T

$z2%

& '

(

) *

!

"T

"t=#

" 2T

"z2

!

T = T1at t = 0 z > 0

T = T0at z = 0 t > 0

T" T1as z"# t > 0

!

" =T #T

1

T0#T

1

$"

$t=%

$ 2"

$z2

" z,0( ) = 0

" 0,t( ) =1

" &,t( ) = 0

(Fundamentals of Geophysics 2nd ed., Lowrie, 2007)

q: 熱流量

Cp: 定圧比熱

k: 熱伝導率

熱拡散係数 [length2/time]

(1)

熱伝導方程式

Page 3: 半無限冷却モデル half space cooling model - OFGSofgs.aori.u-tokyo.ac.jp/~okino/seps18/SEPS18-03appendix...t=x/u T"T 1 T 0 "T 1 =erfc( z 2#x/u 1" T"T 0 T 1 "T 0 =1"erf( z 2#x/u

!

"Q = kAT2#T

1

L"t

qz = #1

A

dQ

dt= #k

dT

dz

!

dQz

dzdz =

dqz

dzdz(dxdy)dt = k

d2T

dz2dVdt

!

"Q = cpm"T

!

cpm"T = cp#dVdT

!

cp"dVdT = kd2T

dz2dVdt

dT

dt=

k

cp"

d2T

dz2

# =k

cp"

$T

$t=#

$ 2T

$x 2+$ 2T

$y 2+$ 2T

$z2%

& '

(

) *

!

"T

"t=#

" 2T

"z2

!

T = T1at t = 0 z > 0

T = T0at z = 0 t > 0

T" T1as z"# t > 0

!

" =T #T

1

T0#T

1

$"

$t=%

$ 2"

$z2

" z,0( ) = 0

" 0,t( ) =1

" &,t( ) = 0

境界条件がきわめてシンプルになる

similarity variable ηの導入

!

" =z

2 #t

$%

$t=d%

d"

$"

$t=d%

d"&1

4

z

#t

1

t

'

( )

*

+ , =

d%

d"&1

2

"

t

'

( )

*

+ ,

$%

$z=d%

d"

$"

$z=d%

d"

1

2 #t

$ 2%

$z2=

1

2 #t

d2%

d"2$"

$z=1

4

1

#t

d2%

d"2

&"d%

d"=1

2

d2%

d"2

%(-) = 0

%(0) =1

!

" =d#

d$

%$" =1

2

d"

d$

%$d$ =1

2

d"

"

%$2 = ln" % lnc1

" = c1e%$ 2

=d#

d$

# = c1

e%$ ' 2

d$'+10

$

&

0 = c1

e%$ ' 2

d$'+10

'

&

e%$ ' 2

d$'=(

20

'

&

c1

= %2

(

# =1%2

(e%$ ' 2

d$'0

$

&

!

erf (") =2

#e$" ' 2

0

"

% d"'

erfc(") =1$ erf (")

T $T1

T0$T

1

= erfcz

2 &t

!

" =z

2 #t

$%

$t=d%

d"

$"

$t=d%

d"&1

4

z

#t

1

t

'

( )

*

+ , =

d%

d"&1

2

"

t

'

( )

*

+ ,

$%

$z=d%

d"

$"

$z=d%

d"

1

2 #t

$ 2%

$z2=

1

2 #t

d2%

d"2$"

$z=1

4

1

#t

d2%

d"2

&"d%

d"=1

2

d2%

d"2

%(-) = 0

%(0) =1

!

" =d#

d$

%$" =1

2

d"

d$

%$d$ =1

2

d"

"

%$2 = ln" % lnc1

" = c1e%$ 2

=d#

d$

# = c1

e%$ ' 2

d$'+10

$

&

0 = c1

e%$ ' 2

d$'+10

'

&

e%$ ' 2

d$'=(

20

'

&

c1

= %2

(

# =1%2

(e%$ ' 2

d$'0

$

&

!

erf (") =2

#e$" ' 2

0

"

% d"'

erfc(") =1$ erf (")

T $T1

T0$T

1

= erfcz

2 &t

無次元

(3)

同様に境界条件(2)式は (4)

(3)式の左辺は

(5) (6)

規格化:無次元量 θ の導入

式(1)をθで書き換えると

(3)式の右辺は

(3),(4)はθとηを使って

もっとシンプルになる

Page 4: 半無限冷却モデル half space cooling model - OFGSofgs.aori.u-tokyo.ac.jp/~okino/seps18/SEPS18-03appendix...t=x/u T"T 1 T 0 "T 1 =erfc( z 2#x/u 1" T"T 0 T 1 "T 0 =1"erf( z 2#x/u

!

" =z

2 #t

$%

$t=d%

d"

$"

$t=d%

d"&1

4

z

#t

1

t

'

( )

*

+ , =

d%

d"&1

2

"

t

'

( )

*

+ ,

$%

$z=d%

d"

$"

$z=d%

d"

1

2 #t

$ 2%

$z2=

1

2 #t

d2%

d"2$"

$z=1

4

1

#t

d2%

d"2

&"d%

d"=1

2

d2%

d"2

%(-) = 0

%(0) =1

!

" =d#

d$

%$" =1

2

d"

d$

%$d$ =1

2

d"

"

%$2 = ln" % lnc1

" = c1e%$ 2

=d#

d$

# = c1

e%$ ' 2

d$'+10

$

&

0 = c1

e%$ ' 2

d$'+10

'

&

e%$ ' 2

d$'=(

20

'

&

c1

= %2

(

# =1%2

(e%$ ' 2

d$'0

$

&

!

erf (") =2

#e$" ' 2

0

"

% d"'

erfc(") =1$ erf (")

T $T1

T0$T

1

= erfcz

2 &t

積分定数c1を(6)から決める

!

" =z

2 #t

$%

$t=d%

d"

$"

$t=d%

d"&1

4

z

#t

1

t

'

( )

*

+ , =

d%

d"&1

2

"

t

'

( )

*

+ ,

$%

$z=d%

d"

$"

$z=d%

d"

1

2 #t

$ 2%

$z2=

1

2 #t

d2%

d"2$"

$z=1

4

1

#t

d2%

d"2

&"d%

d"=1

2

d2%

d"2

%(-) = 0

%(0) =1

!

" =d#

d$

%$" =1

2

d"

d$

%$d$ =1

2

d"

"

%$2 = ln" % lnc1

" = c1e%$ 2

=d#

d$

# = c1

e%$ ' 2

d$'+10

$

&

0 = c1

e%$ ' 2

d$'+10

'

&

e%$ ' 2

d$'=(

20

'

&

c1

= %2

(

# =1%2

(e%$ ' 2

d$'0

$

&

!

erf (") =2

#e$" ' 2

0

"

% d"'

erfc(") =1$ erf (")

T $T1

T0$T

1

= erfcz

2 &t

周知の定積分を用いて

(7)

(8)

(9)

(5)式は

積分を実行すると

!

" =z

2 #t

$%

$t=d%

d"

$"

$t=d%

d"&1

4

z

#t

1

t

'

( )

*

+ , =

d%

d"&1

2

"

t

'

( )

*

+ ,

$%

$z=d%

d"

$"

$z=d%

d"

1

2 #t

$ 2%

$z2=

1

2 #t

d2%

d"2$"

$z=1

4

1

#t

d2%

d"2

&"d%

d"=1

2

d2%

d"2

%(-) = 0

%(0) =1

!

" =d#

d$

%$" =1

2

d"

d$

%$d$ =1

2

d"

"

%$2 = ln" % lnc1

" = c1e%$ 2

=d#

d$

# = c1

e%$ ' 2

d$'+10

$

&

0 = c1

e%$ ' 2

d$'+10

'

&

e%$ ' 2

d$'=(

20

'

&

c1

= %2

(

# =1%2

(e%$ ' 2

d$'0

$

&

!

erf (") =2

#e$" ' 2

0

"

% d"'

erfc(") =1$ erf (")

T $T1

T0$T

1

= erfcz

2 &t

(9)を(8)式に代入すると

相補誤差関数を使うと

熱構造(温度分布)が時間tと深さzの関数で求まる

(10)

(11)

と置くと微分方程式を解く

Page 5: 半無限冷却モデル half space cooling model - OFGSofgs.aori.u-tokyo.ac.jp/~okino/seps18/SEPS18-03appendix...t=x/u T"T 1 T 0 "T 1 =erfc( z 2#x/u 1" T"T 0 T 1 "T 0 =1"erf( z 2#x/u

誤差関数 error function

平均0,標準偏差1とした正規分布の確立密度関数と同じ形で、正の部分のみを考える

x erf(x) x erf(x)

0.05 0.05637 0.6 0.60386

0.8 0.11246 0.7 0.6778

1.4 0.168 0.8 0.7421

0.2 0.2227 0.9 0.79691

0.25 0.,7633 1 0.8427

0.3 0.32863 1.2 0.91031

0.35 0.37938 1.4 0.95229

0.4 0.42839 1.6 0.97635

0.45 0.47548 1.8 0.98909

0.5 0.5205 2 0.99532

!

" =z

2 #t

$%

$t=d%

d"

$"

$t=d%

d"&1

4

z

#t

1

t

'

( )

*

+ , =

d%

d"&1

2

"

t

'

( )

*

+ ,

$%

$z=d%

d"

$"

$z=d%

d"

1

2 #t

$ 2%

$z2=

1

2 #t

d2%

d"2$"

$z=1

4

1

#t

d2%

d"2

&"d%

d"=1

2

d2%

d"2

%(-) = 0

%(0) =1

!

" =d#

d$

%$" =1

2

d"

d$

%$d$ =1

2

d"

"

%$2 = ln" % lnc1

" = c1e%$ 2

=d#

d$

# = c1

e%$ ' 2

d$'+10

$

&

0 = c1

e%$ ' 2

d$'+10

'

&

e%$ ' 2

d$'=(

20

'

&

c1

= %2

(

# =1%2

(e%$ ' 2

d$'0

$

&

!

erf (") =2

#e$" ' 2

0

"

% d"'

erfc(") =1$ erf (")

T $T1

T0$T

1

= erfcz

2 &t

誤差関数

相補誤差関数

(Fundamentals of Geophysics 2nd ed., Lowrie, 2007)

Page 6: 半無限冷却モデル half space cooling model - OFGSofgs.aori.u-tokyo.ac.jp/~okino/seps18/SEPS18-03appendix...t=x/u T"T 1 T 0 "T 1 =erfc( z 2#x/u 1" T"T 0 T 1 "T 0 =1"erf( z 2#x/u

!

t = x /u

T "T1

T0"T

1

= erfc(z

2 #x /u)

1"T "T

0

T1"T

0

=1" erf (z

2 #x /u)

T "T0

T1"T

0

= erf (z

2 #x /u)

!

q0

= "k#T

#z

$

% &

'

( ) z= 0

= "k(T1"T

0)#

#zerf

z

2 *x /u

$

% &

'

( )

$

% &

'

( ) z= 0

= k(T0"T

1)

2 *x /u

d

d+(erf (+))+= 0

=k(T

0"T

1)

2 *x /u

2

,e"+ 2$

% &

'

( ) += 0

= k(T0"T

1)

u

,*x

!

"dz + w"w0

zL#

"m (w + zL ) = "dz + w"w0

zL#" $ "m = "m%(T1 $T)

w("m $ "w ) = "m%(T1 $T0) & erfcz

2

u

'x

(

) *

+

, -

0

.

# dz

w =2"m%(T1 $T0)

("m $ "w )

'x

uerfc(/)d/

0

.

#

=2"m%(T1 $T0)

("m $ "w )

'x

0u

時間の代わりに片側海底拡大速度 u を使うと

(11)式は (12)

(14)

(13)

深海では海底面付近での温度は概ね 0°C, T0=0, T1=Tm (対流するマントルの温度)とすると

熱境界層の下限をT1の90%に達する等温線とすると T=0.9Tm erf(x)=~ 0.9 at x=1.16 (誤差関数表から読み取る)

x,zの関数としても書ける


Recommended