+ All Categories
Home > Documents > Center for Metamaterials newsletter David FINAL...

Center for Metamaterials newsletter David FINAL...

Date post: 10-May-2018
Category:
Upload: lamnga
View: 213 times
Download: 0 times
Share this document with a friend
5
NSF Industry/University Cooperative Research Center for Metamaterials IN THIS NEWSLETTER: SBIRs and Other Successful Supplemental Funding HFSS Modeling Workshop CUNY 2020 Challenge Grant Program US Army Enhancement Grants UNCC Receives Enhancement Grants from Raytheon and AFRL Other UNCC News ABOUT THE CENTER FOR METAMATERIALS The CfM is an NSF Industry/University Cooperative Research Center. The consortium to date consists of four universities, seven companies and governmental agencies. The CfM performs industry relevant research, provides a broad range of resources, facilities, and equipment to member companies. Working with member companies the CfM identifies and performs research projects which have potential commercial applications. The CfM also provides access to student resources for the purposes of developing new research. Member companies interact with our highly qualified undergraduate and graduate students who often advance to become employees. If you are interested in metamaterials research please contact Polina Golovatch [email protected]. HFSS MODELING WORKSHOP AT CUNY Industry/University Cooperative Research Center for Metamaterials (CfM) hosted the annual HFSS Modeling Workshop on June 13th. Leading professionals from various industries attended the course where they used HFSS software to model advanced optical and microwave materials. It is well known that building advanced optical and microwave materials is very expensive. Kate Duncan, Antenna Technology & Analysis Branch U.S. Army, agrees and comments: “simulating such materials can be cost effective because stakeholders can see the performance of these materials before they are built.” Users were taught in a classroom setting and had access to workstations preloaded with HFSS modeling software. Engineers from Ansys (HFSS’ software developer), CfM researchers and staff worked interactively with workshop attendees and answered questions related to the software. A training manual was provided to all workshop attendees containing examples of metamaterial structures. This training workshop was focused on beginners and intermediatelevel users. If you are interested in attending our upcoming workshops please contact Polina Golovatch ([email protected]) for details.
Transcript
Page 1: Center for Metamaterials newsletter David FINAL v2centerformetamaterials.org/sites/default/files/CfM...NSF$Industry/University$Cooperative$Research$ Center&for&Metamaterials&! IN#THIS#NEWSLETTER:#!!

NSF  Industry/University  Cooperative  Research  Center  for  Metamaterials  

 

IN  THIS  NEWSLETTER:    

§ SBIRs  and  Other  Successful  Supplemental  Funding  § HFSS  Modeling  Workshop  § CUNY  2020  Challenge  Grant  Program  § US  Army  Enhancement  Grants  § UNCC  Receives  Enhancement  Grants  from  Raytheon  and  AFRL  § Other  UNCC  News  

 ABOUT  THE  CENTER  FOR  METAMATERIALS  The  CfM  is  an  NSF  Industry/University  Cooperative  Research  Center.    The  consortium  to  date  consists  of   four   universities,   seven   companies   and   governmental   agencies.   The   CfM   performs   industry  relevant   research,   provides   a   broad   range   of   resources,   facilities,   and   equipment   to   member  companies.   Working   with   member   companies   the   CfM   identifies   and   performs   research   projects  which  have  potential  commercial  applications.  The  CfM  also  provides  access  to  student  resources  for  the   purposes   of   developing   new   research.   Member   companies   interact   with   our   highly   qualified  undergraduate  and  graduate  students  who  often  advance  to  become  employees.      If  you  are  interested  in  metamaterials  research  please  contact  Polina  Golovatch    [email protected].    HFSS  MODELING  WORKSHOP  AT  CUNY  Industry/University   Cooperative   Research   Center   for  Metamaterials   (CfM)   hosted   the   annual   HFSS   Modeling  Workshop   on   June   13th.   Leading   professionals   from  various   industries   attended   the   course   where   they   used  HFSS  software  to  model  advanced  optical  and  microwave  materials.   It   is  well  known  that  building  advanced  optical  and  microwave  materials   is  very  expensive.  Kate  Duncan,  Antenna  Technology  &  Analysis  Branch  U.S.  Army,  agrees  and   comments:   “simulating   such   materials   can   be   cost  effective  because  stakeholders  can  see  the  performance  of  these  materials  before  they  are  built.”    Users  were  taught  in  a  classroom  setting  and  had  access  to  workstations   pre-­‐loaded   with   HFSS   modeling   software.  Engineers   from   Ansys   (HFSS’   software   developer),   CfM  researchers  and  staff  worked  interactively  with  workshop  attendees  and  answered  questions  related  to  the  software.  A  training  manual  was  provided  to  all  workshop  attendees  containing   examples   of   metamaterial   structures.   This  training   workshop   was   focused   on   beginners   and  intermediate-­‐level  users.  If  you  are  interested  in  attending  our  upcoming  workshops  please  contact  Polina  Golovatch  ([email protected])  for  details.    

Page 2: Center for Metamaterials newsletter David FINAL v2centerformetamaterials.org/sites/default/files/CfM...NSF$Industry/University$Cooperative$Research$ Center&for&Metamaterials&! IN#THIS#NEWSLETTER:#!!

NSF  Industry/University  Cooperative  Research  Center  for  Metamaterials  

   

SBIRs  AWARDED  TO  CfM  MEMBER  COMPANIES  CfM   member   companies   and   CfM   staff   have   been   working   together   to   realize   large   supplemental  funding  opportunities.  Phoebus  (a  small  company  member)  teamed  up  with  large  companies,  Lockheed  Martin   and  Raytheon,   in   four   SBIR  proposals   to  Army   and  Navy.   SBIR   awards  were   received   for   the  following  projects:    Narrowband  Perfect  Absorber  Using  Metamaterials  This   project   involves   fundamental   research   on   metamaterial  perfect   absorbers   and   their   use   in   pixilated   microbolometer  imaging   systems.   This   project   will   be   applied   to   the   large  military   and   commercial   markets   for   thermal   imaging.   The  project   team   includes   Phoebus   Optoelectronics,   the   National  Science   Foundation’s   Center   for   Metamaterials   at   the   City  University  of  New  York,  and  Lockheed  Martin.      Metasurface  Enhanced  Solar  Blind  Ultraviolet  Photodetector  This   project   will   develop   plasmonic   films   that   perform   the   dual  functions  of  optical   filtering  and  electrical   conduction   for  solar  blind  ultraviolet   radiation   (UV)   detectors.   The   benefits   of   a   single   layer  structure   that   performs   both   optical   filtering   and   electrical  conduction   are   that   it   allows   for   lower   cost,   more   robust,   lighter  weight   solar   blind   UV   detectors   that   can   be   designed   to   address  numerous   UV   sensing   markets   and   applications,   including   the  detection   of  missile   plumes,   the   large   commercial  markets   of   water  and   food   purification   systems,   and   flame   sensors.   The   project   team  includes  Phoebus  Optoelectronics,   the  National  Science  Foundation’s  Center  for  Metamaterials  at  the  City  University  of  New  York,  and  Raytheon.    Non-­‐Mechanically  Moving  Solar  Directing  System  for  Photovoltaic  Modules  This  project  will   develop  a   two-­‐layer   anti-­‐reflective   coating   (ARC)   that  will  have   omni-­‐directional   properties.   This   approach   offers   cost   and   weight  advantages   over   not   only   current   mechanical   solar   directing   systems,   but  also   other   similar   graded   ARCs   based   on   silicon   oxide.     The   project   team  includes  Phoebus  Optoelectronics,  the  National  Science  Foundation’s  Center  for  Metamaterials  at  the  City  University  of  New  York,  and  Lockheed  Martin.      Electro-­‐Optically  Guided  Radar  Imaging  This  project  will  develop  a  meta-­‐surface  consisting  of  a  periodic  array  of  metal-­‐like  patches   that  will  allow   real-­‐time   actively   tunable   focusing   and   steering   a   radiation   beam   in   the  millimeter   frequency  range.  The  proposed  structures  will  allow  for  miniaturization  to  reduce  the  form  factor  to  a  hand-­‐held  device,  and  will  eliminate  detuning  effects  due  to  temperature  fluctuations  in  the  device.    The  project  team  includes  Phoebus  Optoelectronics,  the  National  Science  Foundation’s  Center  for  Metamaterials  at  the  City  University  of  New  York,  and  Lockheed  Martin.    Please  contact  Polina  Golovatch  ([email protected])  for  more  details  on  SBIR/STTR  proposal  programs.          

Silicon Nitride

Graded index polymer

Page 3: Center for Metamaterials newsletter David FINAL v2centerformetamaterials.org/sites/default/files/CfM...NSF$Industry/University$Cooperative$Research$ Center&for&Metamaterials&! IN#THIS#NEWSLETTER:#!!

NSF  Industry/University  Cooperative  Research  Center  for  Metamaterials  

   

CUNY  2020  CHALLENGE  GRANT  PROGRAM  CUNY  plans  to  award  eight  grants  within  the  university  ranging  from  $5  to  $10  million  dollars,  funds  to  be  distributed   in  2014.  The  CfM  will  be  using   this  program  to  create   state-­‐of-­‐the-­‐art   facilities   in   close  collaboration  with  CfM  member  companies.  The  goal  is  for  this  new  facility  to  be  viewed  by  CfM  member  companies  as  an  integral  component  of  their  internal  R&D  capabilities  and  infrastructure.    Currently   the   CfM   is   pursuing   this   grant   opportunity   to   acquire   better   facilities   and   equipment   for  research,  to  improve  training  of  graduate  students,  and  to  hire  senior  research  personnel  that  will  foster  and  maintain   CfM’s   research   activities.   These   funds  will   be   beneficial   for   the   Center   and   its  member  companies   because   they   would   fund   the   advance   of   research   projects   of   mutual   interest   among  members   and   result   in   new   and   marketable   technologies.   The   Center   is   working   with   CfM   member  companies   in  deciding  what  modeling,   fabrication  and   testing  equipment   to   acquire   that   can   improve  our  ability  to  perform  advanced  research  of  direct  relevance  the  CfM  member  companies.    We  are  also  enhancing   other   materials   and   device   research   by   hiring   senior   research   personnel   specialized   in  antenna,  sensors,  solar  cells,  composites,  and  nanoparticles.    

We  would  like  to  invite  you  to  work  with  us  on  the  planning  of  this  new  facility.  To  read  more  about  the  program,  follow  this  link:    http://www.cuny.edu/about/administration/offices/fpcm/2020challenge.html    US  ARMY  AWARDS  CfM  WITH  TWO  ENHANCEMENT  GRANTS    US  Army  CERDEC  Space  and  Terrestrial  Communications  Directorate  awarded  CUNY  researchers  with  two  enhancement   grants.   The   funds   will   support   two   projects   within   the   Center   for   Metamaterials.   These  projects  will  improve  our  knowledge  of  metamaterials  structures  for  antennas.    

Gain  Enhancement  to  Vivaldi  Antenna  Using  Metamaterials  This   project   involves   fundamental   research   on   periodic   metamaterial   structures   that   will   be  incorporated  into  Vivaldi  antenna’s  aperture  to  mitigate  reductions  in  gain.  The  Army  has  a  requirement  to   develop   a   conformal   directive   antenna   that   meets   a   very   stringent   height   requirement,   which  necessitates  trade-­‐offs  in  gain  and  bandwidth.    

Conformal  Artificial  Magnetic  Conductor  Backed  Antenna  Structures    This   project   will   develop   split   ring   resonator   (SRR)  metamaterials   structures   to   be   used   as   artificial  magnetic   conductors.   By   taking   advantage   of   the   strong   resonance   induced   by   these   structures,   the  permittivity  and  permeability  shall  be  independently  adjusted,  enabling  reduction  of  the  size  and  weight  of  communications  antennas  for  Army  platforms.  The  development  of  novel  composite  materials  for  use  in  antenna  systems,  which  can  be  integrated  within  the  platform’s  structure,  will  enable  the  mitigation  of  communication  system  issues  while  reducing  visual  signature  and  relieving  platform  crowing.    

UNCC  RECEIVES  ENHANCEMENT  GRANTS  FROM  RAYTHEON  AND  AFRL  UNCC  was  the  recipient  of  enhancement  grants  from  CfM  members,  AFRL  and  Raytheon.    AFRL  funding  was   divided   equally   between   Dr.   Glenn   Boreman’s   group   on   high-­‐resolution   E-­‐field   mapping   for   IR  metamaterials   and   Mike   Fiddy’s   group   on   the   modeling   and   design   of   optical   metamaterials.    Raytheon’s  grant  will  support  Dr.  Ryan  Adam’s  research  into  the  use  of  non-­‐Foster  elements  to  expand  the  bandwidth  of  conformal  antennas  and  metamaterials.                

Page 4: Center for Metamaterials newsletter David FINAL v2centerformetamaterials.org/sites/default/files/CfM...NSF$Industry/University$Cooperative$Research$ Center&for&Metamaterials&! IN#THIS#NEWSLETTER:#!!

NSF  Industry/University  Cooperative  Research  Center  for  Metamaterials  

   

 OTHER  UNCC  NEWS  Vasily   Astratov,   currently   funded   by   the   IAB   for   Super-­‐Resolution   Imaging   for   Metamaterials  Inspection,   has   been   an   active   member   of   the   CLEO   Program   Subcommittee   for   Micro-­‐   and  Nanophotonic  Devices.     He  was   also   session   chair   at   CLEO   (Optomechanics   II)   and   ICTON   (Photonic  Atoms   and  Molecules)   this   year.   At   ICTON,   June   2013   in   Spain,   he   had   an   invited   talk,     “Tuning   the  optical   forces   on-­‐   and   off-­‐resonance   in  microspherical   photonics”.     He   recently   filed   the   provisional  patent:  Methods  of  Super-­‐Resolution  Imaging  by  High-­‐Index  Microspheres  with  A.  Darafsheh,  US  patent  application  61/656710.      

Mike   Fiddy   was   co-­‐chair   of   the   recently   held   Advances   in   Optoelectronics   and   Micro/Nano   Optics    (AOM   III)   held   in  Hong  Kong.   This  Optical   Society   of   America   (OSA)   Topical  Meeting  was   co-­‐located  with  another,  the  7th  International  Conference  on  Nanophotonics  (ICNP  VII).    He  was  invited  to  give  a  plenary  tutorial  entitled  “Challenges  in  subwavelength–scale  3D  imaging  using  metamaterials”.  He  also  presented  a   shorter   talk  on   imaging  with  practical  negative   index  metamaterials  at   the   recent   (June)  OSA  Topical  Meeting   on   Computational   Optical   Sensing   and   Imaging  meeting   in   Arlington   VA.    Mike  Fiddy  was   also   recently   appointed  Deputy   Editor   of   the   new  OSA-­‐   SIOM   journal   Photonics   Research  whose  first  issue  was  published  online  this  month  (June  2013)  and  was  appointed  Chair-­‐elect  of  OSA’s  Meetings  Council.        RECENT  CfM  GRADUATES  We  congratulate  two  recent  graduates  who  had  been  funded  by  CfM:  MyCia  Cox  (Ph.D):  Design  and  fabrication  of  low  loss  and  low  index  optical  metamaterials.  Ritchie  Dudley  (MS):  Metamaterials:  an  overview  from  theory  to  practice.    PATENT  APPLICATIONS  Provisional   patent   applications   are   being   filed   on   the   results   from   recently   funded   CfM   projects:   i)  “Low-­‐loss   low-­‐index   (0   <   n   <   1)   optical   metamaterials”   using   closely   spaced   transparent   oxide  nanoparticles  and  ii)  “Highly  efficient  plasmonic  solar  cells”  based  on  the  LCR  optimization  of  Au-­‐ZnTe  nanorod  arrays  for  maximum  spectral  extinction.  The  low  loss,  low  index  optical  metamaterials  work  is  accepted   for   oral   presentation   at   the   SPIE   Optics   +   Photonics   Nanoscience   conference   on  Metamaterials:   Fundamentals   and   Applications.   “Low-­‐index   metamaterials   comprised   of   plasmonic  dimers  of  aluminum-­‐doped  Zinc  oxide”,  Hossein  Alisafaee,  P.  MyCia  Cox,  and  M.A.  Fiddy      The  significance  of  this  research  is  that  it  describes  a  means   to   produce   low   loss   low   index   optical  materials   as   a   function   of   nanoparticle   size,   spacing  and  permittivity.    Materials  with   an   index  0   <   n   <   1  will  be  used  for  surface  coatings,  very  low  dispersion  optical   waveguides   and   low   observable/cloaking  structures.     Full-­‐wave   numerical   simulations   have  been  shown  to  be  consistent  with  the  predictions  of  a  much  simpler  LCR  model  describing  the  bulk  spectral  properties   of   such   metamaterials.   The   work   has  demonstrated   how  AZO   nanospheres  with   radii   less  than   100nm   that   are   distributed   with   an   average  spacing   less   than   their   diameter   results   in   an  effective   medium   with   a   refractive   index   less   than  unity.   Experimental   results   proved   consistent   with  these  predictions.  

Page 5: Center for Metamaterials newsletter David FINAL v2centerformetamaterials.org/sites/default/files/CfM...NSF$Industry/University$Cooperative$Research$ Center&for&Metamaterials&! IN#THIS#NEWSLETTER:#!!

NSF  Industry/University  Cooperative  Research  Center  for  Metamaterials  

     

 ZnTe   is   an   interesting   II-­‐VI   semiconductor  material   and   ZnTe/ZnO   configured   as   a   type   II  heterojunction  could  be  used  to  achieve  an  ideal  effective   bandgap   for   solar   cells.   Coupled  plasmonic   nanoparticles   of   Au   and   nanorods   of  ZnTe   were   modeled   and   fabricated.   Full-­‐wave  simulations   and   LCR   modeling   were   performed  to  obtain  an  optimum  design  of  Au-­‐ZnTe  nanorod  dimensions   and   spacings   for   maximum   light  absorption.  An  example  of  the  spectral  extinction  of   Au-­‐ZnTe   nanorods   for   solar   harvesting,   as   a  function   of   rod   spacing   is   shown   here.     Rod  dimensions   determine   the   center   frequency   and  bandwidth.    Note  on  the  right,  the  distribution  of  power  dissipation  in  these  rods.        

CfM  PUBLICATIONS  1. Y.   Li,   O.   V.   Svitelskiy,   A.   V.  Maslov,   D.   Carnegie,   E.   Rafailov,   V.   N.   Astratov.   Giant   resonant   light  

forces  in  microspherical  photonics.  Light:  Science  &  Applications  2,  e64    (2013).  2. A.V.   Maslov,   V.N.   Astratov,   M.I.   Bakunov.   Resonant   propulsion   of   a   microparticle   by   a   surface  

wave.  Phys.Rev  A87,  053848  (2013).  3. W.  Yang,  M.  A.  Fiddy.  On  the  negative  index  perfect  lens  with  loss.  J.  Basic  and  Applied  Physics  2(2)  

(2013).  4. Y-­‐Chen  Chuang,  R.  Dudley,  M.  A.  Fiddy.  A  new  approach   to  a  practical   subwavelength   resolving  

microscope.  Applied  Physics  A  DOI  10.1007/s00339-­‐013-­‐7741-­‐0  (2013).  5. Y.  Zhang,  M.  A.  Fiddy.  Covered  image  of  superlens.  PIERS  136:225-­‐238  (2013).  6. J.  S.  D.  Roberts,  H.  Alisafaee,  M.  A.  Fiddy.  Selective  field  localization  in  random  structured  media.  

Applied  Optics  52:742  (2013).  7. R.  Tsu,  M.  A.  Fiddy.  Generalization  of  the  effects  of  high  Q  for  metamaterials.  Photonics  Research  

1(2)  (2013).  8. M.  A.  Fiddy,  U.  Shahid.  Legacies  of  the  Gerchberg-­‐Saxton  algorithm.  Ultramicroscopy  133  (2013). 9. A.  Enemuo,  M.  Nolan,   Y.  U.   Jung,  A.  B.  Golovin,  D.  T.   Crouse.   Extraordinary   light   circulation   and  

concentration  of  s-­‐  and  p-­‐  polarized  phase  resonances.  J  Appl  Phys  113,  014907  (2013).  10. I.  M.  Mandel,  A.  B.  Golovin,  D.  T.  Crouse.  Analytical  description  of  the  dispersion  relation  for  phase  

resonances  in  compound  transmission  gratings.  Phys  Rev  A  87,  053833  (2013).  11. I.  Mandel,  E.  Lansey,  J.  Gollub,  D.  Crouse.  An  effective  cavity  resonance  model  for  enhanced  optical  

transmission  through  arrays  of  subwavelength  apertures  in  metal  films.  JOSA  B  (Under  review).  12. I.  Mandel,  A.  Golovin,  D.  Crouse.  Fano  phase  resonances  in  multilayer  metal-­‐dielectric  compound  

gratings.  Phys  Rev  A  87,  053847  (2013).        

 


Recommended