+ All Categories
Home > Documents > CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT...

CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT...

Date post: 09-May-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
251
CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date: November 25, 2014 Instructor: Professor Justin Quillen
Transcript
Page 1: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CES 4743C Structural Design

FINAL PROJECT SUBMITTAL

Team Vandelay:

Jonathon Ambar

Paul Heagney

Dominick Tota

David Lutz

Due Date: November 25, 2014

Instructor: Professor Justin Quillen

Page 2: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TABLE OF CONTENTS Pg 1

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

TABLE OF CONTENTS:

TABLE OF CONTENTS…………………………………………………………………... 1

EXECUTIVE SUMMARY…………………….…..……………………………………… 3

SCHEDULE………………………………………………………………………………... 4

TABULATION OF SPECIFIED LOADS………………………………………………… 7

MWFRS CALCULATIONS……….……………………………………………………… 9

COMPONENTS & CLADDING CALCULATIONS………………………..……………. 12

ROOF DECK DESIGN………………...………………………………………………….. 17

ROOF JOIST DESIGN…………………………………………………………………......20

ROOF JOIST GIRDER DESIGN…………………………………………………………..23

ROOF PERIMETER BEAM DESIGN…………………………………………………..... 25

COMPOSITE FLOOR DECK DESIGN…………...……………………………………… 35

FLOOR BEAM DESIGN……………………………………………………………...…... 40

STEEL COLUMN DESIGN……………..…………………………………………………83

TWO-WAY SLAB DESIGN……….……………………………………………………… 95

CONCRETE CONTINUOUS L-BEAM DESIGN…………………………..……………. 143

CONCRETE COLUMN DESIGN……..………………………………………………….. 156

SIMPLE SHEAR CONNECTIONS…….………………………………………………......158

ROOF CONNECTIONS...…………………………………………………………………..160

DIAPHRAGM DESIGN…...……….……………………………………………………… .162

LATERAL STEEL ANALYSIS…………………….………………………..……………..164

APPROXIMATE SECOND ORDER ANALYSIS…………………………………………180

BRACED FRAME DESIGN……………………………………………………………......187

Page 3: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TABLE OF CONTENTS Pg 2

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

SHEAR WALL DESIGN……….…………………………………………………………..204

FOUNDATION DESIGN…………………………..………………………........................ 208

APPENDIX……………..……………………………………………………………...…... 214

AUTOCAD………………..……………..………………………………………………… 229

REFERENCES…………….……….……………………………………………………… 230

Page 4: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

EXECUTIVE SUMMARY Pg 3

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

EXECUTIVE SUMMARY

Vandelay Industries is pleased to present this final product for our Structural Design (CES

4743C) project. This paper is entirely stand-alone and includes all of the work completed for

this project throughout the 2014 Fall Semester.

The structural design of the building in this project is for a six-story reinforced concrete and

structural steel building located in Orlando, FL. The ground floor features a slab on grade and

was not included in this project’s scope. The second and third floors feature a thirteen (13) inch

two-way reinforced concrete slab and the green roof features a similar twelve (12) inch slab. The

fourth, fifth, and sixth floors feature a steel frame implementing various wide-flange steel

sections and a 3VLI19 composite steel deck with normal-weight concrete fill and a slab depth of

5.5 inches. The roof features a 1.5B22 steel deck with no composite fill and is supported by

30K11 joists and 50G10KN13.6K joist girders.

In addition, 2L6x6x1/2x3/8 braces were used in the steel frame’s main wind resisting force

system (MWRFS). Moment frames were not implemented in the design because moment frames

are expensive, difficult to construct and design, require more detailed inspections, and often

include costly complete or partial penetration joint welds. Bolted/Welded double angle simple

shear connections are used to connect all steel beams to columns and beams to beams. In order

for consistency, there are no bolted connections in any of the steel columns.

The two-way concrete slabs are supported by 24-inch x 24-inch reinforced concrete columns

with a reinforcement ratio of 0.01. The end of each slab is also supported by an L-shaped

reinforced concrete beam; there are no interior beams featured in the slab design. There are also

four twenty-five feet long reinforced concrete shear walls that are used to resist the main wind

forces. All columns are supported by square foundations of various sizes.

In general, this project was designed using mostly allowable strength design (ASD) where

applicable. ASD was used in order to maintain consistency with the steel deck and also to act as

a learning experience because the engineer’s involved had limited experience with ASD. ASD

also makes the design more conservative because it is based on a member’s yielding strength

instead of its ultimate strength.

The main codes used to design this building were the 2010 Florida Building Code, the American

Institute of Steel Construction’s Specification for Structural Steel Buildings June 22, 2010, the

14th

edition of the AISC Steel Construction Manual, the American Society of Civil Engineers’

Minimum Design Loads for Buildings and Other Structures (7-10), the 2012 International

Building Code, and the American Concrete Institute’s Structural Concrete Building Code (ACI

318-11) and Commentary.

Vandelay Industries would like to thank all parties involved with the execution this project.

Jonathon Ambar Paul Heagney November 25, 2014

David Lutz Dominick Tot

Page 5: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

SCHEDULE Pg 4

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

SCHEDULE:

Below is the project schedule as of November 25, 2014. This schedule shows the hours worked

by each group member by task and also shows dates of completion as well as target dates.

Page 6: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

SCHEDULE Pg 5

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Page 7: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

SCHEDULE Pg 6

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Page 8: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TABULATION OF SPECIFIED LOADS Pg 7

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

TABULATION OF SPECIFIED LOADS

The following specified loads were researched and tabulated using ASCE 7-10, the 2010 FBC,

and reliable Internet sources.

SUMPERIMPOSED DEAD LOADS

Note: Self weight must also be considered in addition to these loads

Item Load (psf)

2ND FLOOR

Mixed-use 30

Total: 30

GREEN ROOF

Growing Medium 25

Two layers 3/4" plywood 5

Water storage/filter 10

Single-ply waterproofing membrane 3

Vegetation 3

Miscellaneous 5

1" insulation (3rd floor exterior)

Total: 50.6

OFFICE

Carpet 2

Acousitcal dropped ceiling 1

Fire sprinklers 3

Mechanical Allowance 2

Miscellaneious (3rd interior and above) 2

Total: 9.5

ROOF

Acousical dropped ceiling 1

3.25 inch rigid insulation 5

Roof board and cover board (5/8" gypsum each) 5

Three-ply ready roofing with single-ply waterproofing membrance 12

Fire sprinklers 3

Mechanical Allowance 2

Page 9: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TABULATION OF SPECIFIED LOADS Pg 8

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Miscellaneious (top of building steel roof) 2

Total: 30

EXTERIOR WALLS

Steel stud framing with gypsum board each side 11

7/8" stucco 10

Miscellaneous 2

Total: 23

CONCRETE WALLS

Finishes 15

Total: 15

FIRST FLOOR SLAB ON GRADE

4" thick concrete weight 150

Total: 150

LIVE LOADS Note: These loads are not reduced

Item Load (psf)

MIXED-USE AREAS

*Assembly Loading (other) 100

Total: 100

GREEN ROOF

*Assembly (other) 100

Total: 100

OFFICE

*Office 50

*Partition 15

Total: 65

ROOF

*Minimum roof live load 20

Total: 20

FIRST FLOOR SLAB ON GRADE

*Assembly (lobbies) 100

Total: 100

*Denotes load found in 2010 FBC

Page 10: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

MWRFS CALCULATIONS Pg 9

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

MWRFS CALCULATIONS

The Main Wind Resisting Force System calculations were completed in Excel. The equations

used by this excel program are as follows:

𝑞𝑧 = 0.00256𝐾𝑧𝐾𝑧𝑡𝐾𝑑𝑉2

𝑝 = 𝑞𝐺𝐶𝑝 − 𝑞𝑖𝐺𝐶𝑝𝑖

Note: 𝐾𝑧 was found from the tables and not calculated

The Excel results are displayed below.

Building Conditions:

Enclosed

Topography factor

Kzt= 1

Rigid Structure

Exposure Factor B

Risk category 2

Assumed Enclosed

MWFRS Calcs

Design Wind speed based on ASCE 7-10 = 140 mph

Directionality Factor Kd= 0.85

Gust Effect Factor G= 0.85 Internal Pressure

Coefficient (GCpI)= 0.18 or -0.18

Windward wall Ext. Pressure Coefficient Cp (Use with qz )

Leeward Wall Ext. Pressure Coef Cp (Use

with qz)

Side Wall Cp (Use with qh)

0.8 -0.5 -0.7

Roof Cp (Use qh)

Distance From Edge Case A Case B

0 to h/2 -0.9 -0.18

h/2 to h -0.9 -0.18

h to 2h -0.5 -0.18

> 2h -0.3 -0.18

Page 11: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

MWRFS CALCULATIONS Pg 10

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Wind Pressure p = qGCp – qi(GCpi):

Height Windward p Leeward p Side p

15 5.2 11.4 -10.4 -4.2 -13.3 -7.1

30 7.1 13.2 -10.4 -4.2 -13.3 -7.1

40 7.9 14.1 -10.4 -4.2 -13.3 -7.1

48 8.6 14.8 -10.4 -4.2 -13.3 -7.1

60 9.2 15.4 -10.4 -4.2 -13.3 -7.1

70 9.8 16.0 -10.4 -4.2 -13.3 -7.1

90 10.8 17.0 -10.4 -4.2 -13.3 -7.1

98 11.3 17.4 -10.4 -4.2 -13.3 -7.1

Roof Wind Pressure p = qGCp – qi(GCpi):

Distance From Edge Case A Case B

0 to h/2 -16.2 -10.0 -

5.7 0.5

h/2 to h -16.2 -10.0 -

5.7 0.5

h to 2h -10.4 -4.2 -

5.7 0.5

> 2h -7.5 -1.3 -

5.7 0.5

Page 12: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

MWRFS CALCULATIONS Pg 11

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Page 13: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

C&C CALCULATIONS Pg 12

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

C&C CALCULATIONS:

These calculations were originally completed for Homework #3 and incorrectly used a wind

velocity of 150 mph. They have now been updated with the correct 140 mph and to reflect our

revised roof design. We have also updated the calculations to include values of 𝐾𝑧 at every floor

height.

For the roof, find:

a. The effective wind area of one joist.

b. The effective wind area of the roof deck. Hint: actual area is span*1 ft. Use the greater

of the actual area or the minimum effective wind area.

c. Using the effective wind area for the joist and deck from part 1a and 1b, find the GCP

value that is associated with each, for zones 1,2 and 3. Use figure 30.6-1. You should

have one set of values for the joist and one set of values for the deck.

SOLUTIONS:

1) From the AutoCAD drawings, the span of a joist is 50 feet and spacing is 5 feet. Because

the spacing is less than one third the span, use one-third the span to find the effective

area. Therefore,

𝐴𝑒𝑓𝑓,𝑗𝑜𝑖𝑠𝑡 = 50 𝑓𝑡 ∗50

3 𝑓𝑡 = 833.33 𝑓𝑡2

2) From the AutoCAD drawings, the span of the deck is 5 feet. Therefore the actual area is

5 square feet and the effective wind area is 5 feet multiplied by one-third the span (or 5/3

feet), which equals 8.33 square feet. Therefore, use 8.33 square feet.

3) From figure ASCE 7-10 30.6-1, the GCP values are as follows:

Zone GCP for Joist GCP for Deck

Zone 1 -0.9 -1.40

Zone 2 -1.60 -2.30

Zone 3 -2.30 -3.20

For the concrete walls on level 1 and 2, find:

a. The effective wind area of the wall. Hint: Keep in mind we design walls based on the

unit length of the wall, so the actual tributary area is wall height from support to

support*unit length.

b. Using that effective area, find the GCP value that is associated with the wall from 2a for

zones 4 and 5. Use figure 30.6-1.

SOLUTIONS:

Page 14: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

C&C CALCULATIONS Pg 13

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

1) From the AutoCAD file, the wall height on level 1 is 20 feet and level 2 is 18 feet.

Therefore the actual tributary area of the wall on level 1 is 20 square feet per foot and on

level 2 is 18 square feet per foot. The effective wind area is found by:

𝐿𝑒𝑣𝑒𝑙 1: 20 𝑓𝑡 ∗ 20 𝑓𝑡

3 = 133.33 𝑓𝑡2

𝐿𝑒𝑣𝑒𝑙 2: 18 𝑓𝑡 ∗18 𝑓𝑡

3= 108 𝑓𝑡2

2) Finding the values from the specified figure gives:

Wall GCp values Level Zone 4 Zone 5

Level 1 0.7 -0.79 0.7 -1.35

Level 2 0.75 -0.8 0.75 -1.4

Using equation (30.6-1), find the design wind pressures associated with the GCP values from

problems 1 and 2. Use your project information for values and information not given here (wind

speed, height, etc.) Calculate the positive 𝑞𝑧 at the max roof height (not the MRH = h).

SOLUTIONS:

1) From project specifications, use risk category 2.

2) From ASCE 7 figure 26.5-1A, 𝑉 = 140 𝑚𝑝ℎ

3) Determining directionality factor from section 26.6 gives: 𝐾𝑑 = 0.85

From project specifications, use exposure category B.

From project specifications, the topographic factor is 𝐾𝑧𝑡 = 1.0

From table 26.11-1, the internal pressure coefficient is (𝐺𝐶𝑝𝑖) = {0.18−0.18

4) From table 26.9-1, 𝛼 = 7.0 and 𝑧𝑔 = 1200 𝑓𝑡.

From table 30.3-1:

𝐾𝑧 = 2.01 (𝑧

𝑧𝑔)

2𝛼

= 2.01 (98 𝑓𝑡

1200 𝑓𝑡)

27.0= 0.98

Using Excel to calculate kz values for values of z at every floor height of the building

gives:

Page 15: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

C&C CALCULATIONS Pg 14

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

z (ft) Kz

98 0.98

83 0.94

68 0.89

53 0.82

38 0.75

20 0.62

5) The velocity pressure is found by:

𝑞𝑧 = 0.00256𝐾𝑧𝐾𝑧𝑡𝐾𝑑𝑉2 = 0.00256(0.98)(1)(. 85)(140 𝑚𝑝ℎ)2 = 41.91 𝑝𝑠𝑓

Using Excel to find the velocity pressure at each value of kz gives:

z (ft) Kz qz (psf)

98 0.98 41.91

83 0.94 39.96

68 0.89 37.75

53 0.82 35.16

38 0.75 31.97

20 0.62 26.61

6) Applying the equation 𝑞𝑧(𝐺𝐶𝑝) − 𝑞𝑧(𝐺𝐶𝑃𝑖) and taking the highest negative value:

For the joist, use the height of 98 ft:

Zone 1: 𝑝 = {41.91𝑝𝑠𝑓(−0.9) − 41.91𝑝𝑠𝑓(. 18) = −𝟒𝟓. 𝟑𝒑𝒔𝒇

41.91𝑝𝑠𝑓(−0.9) − 41.91𝑝𝑠𝑓(−.18) = −30.2𝑝𝑠𝑓

Using Excel to ease the calculations gives:

Zone Load with GCP+ (psf) Load with GCP- (psf) Design loads (psf)

1 -45.3 -30.2 -45.3 16

2 -74.6 -59.5 -74.6 16

3 -103.9 -88.8 -103.9 16

For the deck, use the height of 98 ft:

Zone Load with GCP+ (psf)

Load with GCP- (psf) Design loads (psf)

1 -66.2 -51.1 -66.2 16

2 -103.9 -88.8 -103.9 16

3 -141.6 -126.6 -141.6 16

For the concrete walls:

Level 1, use a height of 20 ft:

Page 16: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

C&C CALCULATIONS Pg 15

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Zone Load with GCP+ (psf)

Load with GCP- (psf) Design loads (psf)

Zone 4&5 13.8 23.4 N/A 23.4

Zone 4 -25.8 -16.2 -25.8 N/A

Zone 5 -40.7 -31.1 -40.7 N/A

Level 2, use a height of 38 ft:

Zone Load with GCP+ (psf)

Load with GCP- (psf) Design loads (psf)

Zone 4&5 18.2 29.7 N/A 29.7

Zone 4 -31.3 -19.8 -31.3 N/A

Zone 5 -50.5 -39.0 -50.5 N/A

Fill out the following tables for the tributary areas and zones shown. Show plus and minus

values. Keep these numbers for the semester. You will use them to design members exposed to

wind and will need to place these tables on your design drawings.

SOLUTIONS:

1) Using ASCE 7, the following information can be found:

Components and cladding: Roof GCp

Tributary area (sq. ft) Zone 1 Zone 2 Zone 3

10 -1.4 -2.3 -3.2

20 -1.22 -2.18 -3.05

50 -1.2 -2 -2.85

100 -1.1 -1.9 -2.68

Components and cladding: Wall GCp

Tributary area (sq. ft) Zone 4 Zone 5

10 0.9 -0.9 0.9 -1.8

20 0.9 -0.9 0.9 -1.8

50 0.8 -0.85 0.8 -1.57

100 0.75 -0.8 0.75 -1.4

200 0.7 -0.78 0.7 -1.21

500 0.6 -0.7 0.6 -1

Page 17: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

C&C CALCULATIONS Pg 16

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

2) Calculating the pressures in excel in the same manner as problem #3 gives the following

design pressures:

Components and cladding: Roof wind pressures (psf)

Tributary area (sq. ft) Zone 1 Zone 2 Zone 3

10 -66.2 16.0 -103.9 16.0 -141.6 16.0

20 -58.7 16.0 -98.9 16.0 -135.4 16.0

50 -57.8 16.0 -91.4 16.0 -127.0 16.0

100 -53.6 16.0 -87.2 16.0 -119.8 16.0

Components and cladding: Wall wind pressures (psf) at level 1

Tributary area (sq. ft) Zone 4 Zone 5

10 -28.7 28.7 -52.7 28.7

20 -28.7 28.7 -52.7 28.7

50 -27.4 26.1 -46.6 26.1

100 -26.1 24.7 -42.0 24.7

200 -25.5 23.4 -37.0 23.4

500 -23.4 20.8 -31.4 20.8

Components and cladding: Wall wind pressures (psf) at level 2

Tributary area (sq. ft) Zone 4 Zone 5

10 -34.5 34.5 -63.3 34.5

20 -34.5 34.5 -63.3 34.5

50 -32.9 31.3 -55.9 31.3

100 -31.3 29.7 -50.5 29.7

200 -30.7 28.1 -44.4 28.1

500 -28.1 24.9 -37.7 24.9

Page 18: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF DECK DESIGN Pg 17

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ROOF DECK DESIGN

Use a span of 5 feet and a two span condition. Do not use less than 22 gauge for safer/easier

construction. Use the highest value from all zones for the wind data for easier

design/construction and standardization (this is zone 3).

KNOWN/GIVEN VALUES:

𝐿𝑟 = 20 𝑝𝑠𝑓

𝑊 = −141.6 𝑝𝑠𝑓, 16 𝑝𝑠𝑓

𝐴𝑇 = 5 𝑓𝑡 ∗ 50 𝑓𝑡 = 250 𝑓𝑡2

𝐷 = 30 𝑝𝑠𝑓 (𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

LIVE LOAD REDUCTIONS:

Use ASCE 7-10 Section 4.8

𝐿𝑟 = 𝐿0𝑅1𝑅2

12 ≤ 𝐿𝑟 = 20 𝑝𝑠𝑓 ≤ 20 𝑝𝑠𝑓 → 𝑂𝐾

𝑅1 = 1.2 − 0.001𝐴𝑇 = 1.2 − 0.001(250 𝑓𝑡2) = .95 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 200 𝑓𝑡2 < 𝐴𝑇 < 400 𝑓𝑡

2

𝐹 = .25 𝑖𝑛𝑐ℎ𝑒𝑠 𝑜𝑓 𝑟𝑖𝑠𝑒/𝑓𝑜𝑜𝑡 𝑅2 = 1

Therefore, 𝐿𝑟 = (20 𝑝𝑠𝑓)(. 95)(1) = 19 𝑝𝑠𝑓

DESIGN:

Assume a dead self-weight of 2.5 psf.

Therefore, 𝐷 = 30 𝑝𝑠𝑓 + 2.5 𝑝𝑠𝑓 = 32.5 𝑝𝑠𝑓

Finding ASD load combinations from an Excel File:

[LOAD COMBINATIONS FOUND ON NEXT PAGE]

Page 19: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF DECK DESIGN Pg 18

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Using Vulcraft manual, try a 1.5B22. This meets the max SDI Construction Span of 6’-11” and

the allowable load of 100 psf and deflection limit live load of 213 psf. Check using the actual

self-weight of 1.78 psf:

The deck’s capacity still meets the required load using the actual self-weight.

CHECK UPLIFT:

Page 20: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF DECK DESIGN Pg 19

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐹𝑏 = 0.6𝐹𝑦 = 0.6(33 𝑘𝑠𝑖) = 19.8 𝑘𝑠𝑖

𝑀 =𝑤𝑙2

8=65.89 𝑝𝑠𝑓 ∗ (5 𝑓𝑡)2

8= 2.47

𝑘𝑖𝑝 ∗ 𝑖𝑛

𝑓𝑡

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 =𝑀

𝐹𝑏=2.47

𝑘𝑖𝑝 ∗ 𝑖𝑛𝑓𝑡

19.8 𝑘𝑠𝑖= 0.125

𝑖𝑛3

𝑓𝑡

This meets the section modulus of a 1.5B22 (𝑆𝑛 = .192𝑖𝑛3

𝑓𝑡).

CHECK UPLIFT DEFLECTION:

∆𝑚𝑎𝑥=𝐿

240=5 𝑓𝑡 ∗ 12 𝑖𝑛

240= 0.25 𝑖𝑛

∆= 0.0052𝑤𝑙4

𝐸𝐼

𝐼𝑚𝑖𝑛 = 0.0052𝑤𝑙4

𝐸∆𝑚𝑎𝑥= 0.0052

65.89 𝑙𝑏𝑓𝑡2

∗1 𝑘𝑖𝑝1000 𝑙𝑏

∗ (𝑓𝑡12 𝑖𝑛)

2

(5 𝑓𝑡 ∗ 12 𝑖𝑛)4

29000 𝑘𝑠𝑖 ∗ .25 𝑖𝑛= 0.004

𝑖𝑛4

𝑓𝑡

This minimum I meets the I of the deck, which is 0.184 𝑖𝑛4

𝑓𝑡→ 𝑂𝐾

THEREFORE USE A 1.5B22 ROOF DECK.

Page 21: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF JOIST DESIGN Pg 20

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ROOF JOIST DESIGN

Use a span of 50 ft. and a spacing of 5 ft. Use ASD and do not design for uplift as this will be

completed by the joist engineer. Use zone 3 from the C&C calculations for standardization,

repetition, and easier construction.

KNOWN/GIVEN VALUES:

𝐿𝑟 = 20 𝑝𝑠𝑓 ∗ 5 𝑓𝑡 = 100 𝑙𝑏/𝑓𝑡

𝑊 = −103.9 𝑝𝑠𝑓 ∗ 5 𝑓𝑡 = −519.5𝑙𝑏

𝑓𝑡, 16 𝑝𝑠𝑓 ∗ 5 𝑓𝑡 = 80 𝑙𝑏/𝑓𝑡

𝐴𝑇 = 5 𝑓𝑡 ∗ 50 𝑓𝑡 = 250 𝑓𝑡2

𝐷 = 30 𝑝𝑠𝑓 + 1.78 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 𝑑𝑒𝑐𝑘 = 31.78 𝑝𝑠𝑓 ∗ 5𝑓𝑡= 158.9 𝑙𝑏/𝑓𝑡 (𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

LIVE LOAD REDUCTIONS:

Use ASCE 7-10 Section 4.8

𝐿𝑟 = 𝐿0𝑅1𝑅2

12 ≤ 𝐿𝑟 = 20 𝑝𝑠𝑓 ≤ 20 𝑝𝑠𝑓 → 𝑂𝐾

𝑅1 = 1.2 − 0.001𝐴𝑇 = 1.2 − 0.001(250 𝑓𝑡2) = .95 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 200 𝑓𝑡2 < 𝐴𝑇 < 400 𝑓𝑡

2

𝐹 = .25 𝑖𝑛𝑐ℎ𝑒𝑠 𝑜𝑓 𝑟𝑖𝑠𝑒/𝑓𝑜𝑜𝑡 𝑅2 = 1

Therefore, 𝐿𝑟 = (20 𝑝𝑠𝑓)(. 95)(1) = 19 𝑝𝑠𝑓 ∗ 5𝑓𝑡 = 95 𝑙𝑏/𝑓𝑡

DESIGN:

Assume the joist has a self-weight of 7.5 lb/ft.

Using an Excel file to find the ASD load combinations gives a dead weight of 158.9 lb/ft + 7.5

lb/ft =166.4 lb/ft.

[LOAD COMBINATIONS FOUND ON NEX PAGE]

Page 22: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF JOIST DESIGN Pg 21

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

From the Vulcraft manual, consider a 30K11 because it is the lightest joist that can handle these

loads.

Factoring in the actual self-weight of a 30K11 in ASD load combinations gives a new dead load

of 158.9 lb/ft + 16.4 lb/ft = 175.3 lb/ft and the following results:

[LOAD COMBINATIONS FOUND ON NEX PAGE]

Page 23: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF JOIST DESIGN Pg 22

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

The 30K11’s capacity of 333 lb/ft is greater than the 282.55 lb/ft from the load combinations.

Also, the deflection causing load maximum is 190 lb/ft which is greater than the 95 lb/ft.

BRIDGING REQUIREMENTS:

From page 16 in the Vulcraft manual, a 30K11 requires two rows of top chord diagonal bridging.

THEREFORE USE 30K11.

Page 24: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF JOIST GIRDER DESIGN Pg 23

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ROOF JOIST GIRDER DESIGN

Use a span of 50 ft. and a spacing of 50 ft. Use ASD and zone 3 C&C values for the joist for the

sake of standardization, repetition, and easier construction.

KNOWN/GIVEN VALUES:

𝐴𝑇 =(50 𝑓𝑡 + 50 𝑓𝑡)

2∗50

10= 250 𝑓𝑡2

𝐿𝑟 = 20 𝑝𝑠𝑓 ∗ 250 𝑓𝑡2 = 5 𝑘𝑖𝑝

𝑊 = −103.9 𝑝𝑠𝑓 ∗ 250 𝑓𝑡2 = −26 𝑘𝑖𝑝, 16 𝑝𝑠𝑓 ∗ 250 𝑓𝑡2 = 4 𝑘𝑖𝑝

𝐷 = 30 𝑝𝑠𝑓 + 1.78 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 𝑑𝑒𝑐𝑘

= ((31.78 𝑝𝑠𝑓 ∗ 50𝑓𝑡) + 16.4𝑙𝑏

𝑓𝑡 𝑗𝑜𝑖𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡) ∗ 5𝑓𝑡 = 8.03 𝑘𝑖𝑝

LIVE LOAD REDUCTIONS:

Use ASCE 7-10 Section 4.8

𝐿𝑟 = 𝐿0𝑅1𝑅2

12 ≤ 𝐿𝑟 = 20 𝑝𝑠𝑓 ≤ 20 𝑝𝑠𝑓 → 𝑂𝐾

𝑅1 = 1.2 − 0.001𝐴𝑇 = 1.2 − 0.001(250 𝑓𝑡2) = .95 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 200 𝑓𝑡2 < 𝐴𝑇 < 400 𝑓𝑡

2

𝐹 = .25 𝑖𝑛𝑐ℎ𝑒𝑠 𝑜𝑓 𝑟𝑖𝑠𝑒/𝑓𝑜𝑜𝑡 𝑅2 = 1

Therefore, 𝐿𝑟 = (20 𝑝𝑠𝑓)(. 95)(1) = 19 𝑝𝑠𝑓 ∗ 250𝑓𝑡2 = 4.75 𝑘𝑖𝑝

DESIGN:

Choose a depth of 50 inches because the span is 50 feet.

There are 10 spaces so use 10N.

Using an Excel file to find the ASD load combinations gives:

[LOAD COMBINATIONS FOUND ON NEX PAGE]

Page 25: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF JOIST GIRDER DESIGN Pg 24

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Do not design for uplift since this will be taken care of by the joist engineer. Therefore, the Joist

Girder designation is 50G10N13.6K.

Check the joist girder’s deflection:

𝐼 = 0.027𝑁𝑃𝐿𝑑 = 0.027(10)(13.6)(50)(50) = 9180 𝑖𝑛4

i c ki Ni PiNi

1 0.5 0.1 0.0370 0.5032

2 0.5 0.2 0.0710 0.9656

3 0.5 0.3 0.0990 1.3464

4 0.5 0.4 0.1180 1.6048

5 0.5 0.5 0.1250 1.7000

6 0.5 0.6 0.1180 1.6048

7 0.5 0.7 0.0990 1.3464

8 0.5 0.8 0.0710 0.9656

9 0.5 0.9 0.0375 0.5032

Σ(PiNi)= 10.54

𝐷 = 1.15∑(𝑃𝑖𝑁𝑖)𝑙

3

6𝐸𝐼= 1.15

10.54(50 𝑓𝑡 ∗ 12 𝑖𝑛)3

6(29000 𝑘𝑠𝑖)(9180 𝑖𝑛4)= 1.43 𝑖𝑛

𝐷𝑚𝑎𝑥 =𝐿

360=50 𝑓𝑡 ∗ 12 𝑖𝑛

360= 1.667 𝑖𝑛 > 1.43 𝑖𝑛 → 𝑂𝐾

THEREFORE USE 50G10N13.6K. THIS JOIST GIRDER HAS AN APPROXIMATE

SELF-WEIGHT OF 78 LB/FT.

Page 26: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF PERIMETER BEAM DESIGN Pg 25

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ROOF PERIMETER BEAM DESIGNS:

Use a wide flange that is braced in the top flange every 5 ft by the joists and is completely

unbraced in the bottom flange for the east to west beams. Use simply supported beams with a

length of 25 feet each.

Use a wide flange that is fully braced in the top flange by the roof deck and is completely

unbraced in the bottom flange for the north to south beams. Use simply supported beams with a

length of 25 feet each.

For both beam directions, use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

GIVEN/KNOWN VALUES:

For the east to west beams:

𝐴𝑇 =(50 𝑓𝑡)

2∗50

10= 125 𝑓𝑡2

𝐿𝑟 = 20 𝑝𝑠𝑓 ∗ 125𝑓𝑡2 = 2.5 𝑘𝑖𝑝

𝑊 = −103.9 𝑝𝑠𝑓 ∗ 125 𝑓𝑡2 = −13 𝑘𝑖𝑝, 16 𝑝𝑠𝑓 ∗ 125 𝑓𝑡2 = 2 𝑘𝑖𝑝

𝐷 = [(30 𝑝𝑠𝑓 + 1.78 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 𝑑𝑒𝑐𝑘) (50 𝑓𝑡

2) + (16.4

𝑙𝑏

𝑓𝑡 𝑓𝑟𝑜𝑚 𝑗𝑜𝑖𝑠𝑡𝑠)] (5 𝑓𝑡)

= 4.05 𝑘 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

For the north to south beams:

𝐴𝑇 =(5 𝑓𝑡)

2∗100

4= 62.5 𝑓𝑡2

𝐿𝑟 = 20 𝑝𝑠𝑓 ∗5

2𝑓𝑡 = .05 𝑘/𝑓𝑡

𝑊 = −103.9 𝑝𝑠𝑓 ∗ 2.5 𝑓𝑡 = −.26𝑘

𝑓𝑡, 16 𝑝𝑠𝑓 ∗ 2.5 𝑓𝑡2 = .04 𝑘/𝑓𝑡

𝐷 = [(30 𝑝𝑠𝑓 + 1.78 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 𝑑𝑒𝑐𝑘) (5 𝑓𝑡

2)] = 0.08

𝑘

𝑓𝑡(𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

LIVE LOAD REDUCTIONS:

Use ASCE 7-10 Section 4.8

𝐿𝑟 = 𝐿0𝑅1𝑅2

12 ≤ 𝐿𝑟 = 20 𝑝𝑠𝑓 ≤ 20 𝑝𝑠𝑓 → 𝑂𝐾

𝑅1 = 1 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝐴𝑇 < 200 𝑓𝑡2

Page 27: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF PERIMETER BEAM DESIGN Pg 26

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐹 = .25 𝑖𝑛𝑐ℎ𝑒𝑠 𝑜𝑓 𝑟𝑖𝑠𝑒/𝑓𝑜𝑜𝑡 𝑅2 = 1

Therefore, 𝐿𝑟 = (20 𝑝𝑠𝑓)(1)(1) = 20 𝑝𝑠𝑓 ∗ 2.5 𝑓𝑡2 = .05 𝑘/𝑓𝑡

DESIGN OF NORTH-SOUTH BEAMS:

Visual Analysis was used to analyze the north to south 25 ft. beams. The following load cases

were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live roof load:

Wind in the positive direction:

Wind in the negative direction (uplift):

ASD load combination 𝐷 + .75(𝐿 + .6𝑊 + 𝐿𝑟) gives the maximum positive moment:

Page 28: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF PERIMETER BEAM DESIGN Pg 27

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ASD load combination . 6𝐷 + .6𝑊 gives the largest negative moment:

Check uplift first because this seems to control the design, and try a W12x40 (increasing the size

from the previous W10x22). Checking LTB:

𝐹𝑐𝑟 =𝐶𝑏𝜋

2𝐸

(𝐿𝑏𝑟𝑡𝑠)2√1 + .078

𝐽𝑐

𝑆𝑥ℎ0(𝐿𝑏𝑟𝑡𝑠)2

=1.14𝜋2(29000)

(25 ∗ 122.21 )

2√1 + .078

. 906 ∗ 1

51.5 ∗ 11.4(25 ∗ 12

2.21)2

= 31.8 𝑘𝑠𝑖 𝑀𝑛Ω=𝐹𝑐𝑟𝑆𝑥Ω

=31.8 ∗ 51.5

1.67= 81.7 𝑘 ∗ 𝑓𝑡 > 3.75 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the max positive moment using its actual self-weight of 40 lb/ft and the controlling ASD

load combinations mentioned previously in visual analysis gives:

Page 29: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF PERIMETER BEAM DESIGN Pg 28

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗57𝑖𝑛3

1.67= 142.2 𝑘 ∗ 𝑓𝑡 > 13.7 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the max negative moment using its actual self-weight of 40 lb/ft and the controlling

ASD load combinations mentioned previously in visual analysis gives:

The beam’s Zone III capacity meets the demand:

𝑀𝑛Ω=𝐹𝑐𝑟𝑆𝑥Ω

=31.8 ∗ 51.5

1.67= 81.7 ∗ 𝑓𝑡 > 6.6 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Running visual analysis to find the maximum shear values gives:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-26 of 70.2k:

𝑉𝑛Ω= 70.2𝑘 > 2.2𝑘 → 𝑂𝐾

𝑉𝑛Ω= 70.2𝑘 > 1.05𝑘 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿𝑟 +𝑊:

Page 30: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF PERIMETER BEAM DESIGN Pg 29

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

These deflections meet the requirements:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > 0.09 𝑖𝑛 → 𝑂𝐾

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > 0.17 𝑖𝑛 → 𝑂𝐾

For 𝐿𝑟 +𝑊:

Page 31: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF PERIMETER BEAM DESIGN Pg 30

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

These deflections meet the requirements: 𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= 0.833 𝑖𝑛 > 0.21 𝑖𝑛 → 𝑂𝐾

𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= 0.833 𝑖𝑛 > 0.09 𝑖𝑛 → 𝑂𝐾

THEREFORE USE A W12X40 FOR THE NORTH TO SOUTH PERIMETER BEAMS.

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 2.2K.

DESIGN OF EAST-WEST BEAMS:

Visual Analysis was used to analyze the east to west 25 ft. beams. The following load cases

were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live roof load:

Wind in the positive direction:

Page 32: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF PERIMETER BEAM DESIGN Pg 31

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Wind in the negative direction (uplift):

ASD load combination 𝐷 + .75(𝐿 + .6𝑊 + 𝐿𝑟) gives the maximum positive moment:

ASD load combination . 6𝐷 + .6𝑊 gives the largest negative moment:

The top flange is braced at every 5 feet. Because a W10 is too small, try a W12x87.

Checking uplift:

𝐿𝑝 = 10.8 𝑓𝑡 < 𝐿𝑏 = 25 𝑓𝑡 < 𝐿𝑟 = 43.1 𝑓𝑡 → 𝑍𝑜𝑛𝑒 𝐼𝐼 Checking LTB:

32.9 𝑘𝑠𝑖 𝑀𝑛Ω= 𝐶𝑏 [

𝑀𝑝

Ω−𝐵𝐹

Ω(𝐿𝑏 − 𝐿𝑝)] = 1.0[329 − 3.81(25 − 10.8)] = 275 𝑘 ∗ 𝑓𝑡 > 76.1 𝑘 ∗ 𝑓𝑡

→ 𝑂𝐾

Finding the max positive moment using its actual self-weight of 87 lb/ft and the controlling ASD

load combinations mentioned previously in visual analysis gives:

Page 33: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF PERIMETER BEAM DESIGN Pg 32

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

The beam’s Zone I capacity:

𝑀𝑛

Ω=𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗132𝑖𝑛3

1.67= 329 𝑘 ∗ 𝑓𝑡 > 110 𝑘 ∗ 𝑓𝑡 → 𝐺𝑜𝑜𝑑

Finding the max negative moment using its actual self-weight of 78 lb/ft and the controlling

ASD load combinations mentioned previously in visual analysis gives:

The beam’s Zone II capacity meets the demand:

𝑀𝑛Ω= 𝐶𝑏 [

𝑀𝑝

Ω−𝐵𝐹

Ω(𝐿𝑏 − 𝐿𝑝)] = 1.0[329 − 3.81(25 − 10.8)] = 275 𝑘 ∗ 𝑓𝑡 > 76.1 𝑘 ∗ 𝑓𝑡

Checking Deflection:

For Lr+W:

Page 34: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF PERIMETER BEAM DESIGN Pg 33

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Check the selected beam for deflection:

𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .833 𝑖𝑛 > .832 𝑖𝑛 → 𝐺𝑜𝑜𝑑

𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .833 𝑖𝑛 > .36 𝑖𝑛 → 𝐺𝑜𝑜𝑑

For D+Lr+W:

Check the selected beam for deflection:

Page 35: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF PERIMETER BEAM DESIGN Pg 34

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > .48 𝑖𝑛 → 𝐺𝑜𝑜𝑑

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > .71 𝑖𝑛 → 𝐺𝑜𝑜𝑑

Check the selected beam for maximum shear:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-24 of 129k: 𝑉𝑛Ω= 129𝑘 > 21.6𝑘 → 𝑂𝐾

𝑉𝑛Ω= 129𝑘 > 15.5𝑘 → 𝑂𝐾

THEREFORE USE A W12X87 FOR THE EAST TO WEST PERIMETER BEAMS.

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 21.6 K

Page 36: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

COMPOSITE FLOOR DECK DESIGN Pg 35

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

COMPOSITE FLOOR DECK DESIGN

Note: All designs for the floor are the same for the 4th

, 5th

, and 6th

floors.

FOR THE AREAS WITHOUT THE HOLES FOR THE STAIR WELLS/ELEVATORS:

Design a composite deck with normal weight concrete with a span of 12.5 ft and a two span

condition.

GIVEN/KNOWN VALUES:

𝐷 = 9.5 𝑝𝑠𝑓 (𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 − 𝑤𝑒𝑖𝑔ℎ𝑡) 𝐿 = 65 𝑝𝑠𝑓

𝐴𝑇 = 12.5 𝑓𝑡 ∗ 25 𝑓𝑡 = 312.5 𝑓𝑡2

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 1

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 312.5𝑓𝑡2 ∗ 1 < 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

DESIGN:

Factoring the loads using ASD and finding the superimposed load:

From page 54 in the Vulcraft Manual, choose a total slab depth of 5.5 inch and deck type

3VLI19. This deck satisfies the following checks:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: 74.50 𝑝𝑠𝑓 < 90 𝑝𝑠𝑓 → 𝑂𝐾

𝑀𝑎𝑥 𝑆𝐷𝐼 𝑆𝑝𝑎𝑛: 12.5 𝑓𝑡 < 13 𝑓𝑡 8 𝑖𝑛 → 𝑂𝐾

Page 37: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

COMPOSITE FLOOR DECK DESIGN Pg 36

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

For future reference, this deck’s self weight is 2.5 psf from the steel and 51 psf from the

concrete, which totals to 53.5 psf.

THEREFORE US A 3VLI19 WITH A SELF WEIGHT OF 53.5 PSF AND TOTAL SLAB

DEPTH OF 5.50 INCHES.

FOR SOME OF THE AREA AFFECTED BY THE ELEVATOR:

Design a composite deck with normal weight concrete with a span of 7.75 ft and a one span

condition.

GIVEN/KNOWN VALUES:

𝐷 = 9.5 𝑝𝑠𝑓 (𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 − 𝑤𝑒𝑖𝑔ℎ𝑡) 𝐿 = 65 𝑝𝑠𝑓

𝐴𝑇 = 7.75 𝑓𝑡 ∗ 25𝑓𝑡 = 193.75 𝑓𝑡2

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 1

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 193.75 𝑓𝑡2 ∗ 1 < 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

DESIGN:

Factoring the loads using ASD and finding the superimposed load:

From page 54 in the Vulcraft Manual, check to see if the previously chosen deck works. If this

deck works, although overdesigned, construction will be simplified for the contractor. Also,

Page 38: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

COMPOSITE FLOOR DECK DESIGN Pg 37

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

money should not be much of an issue because there are not many areas which will be

overdesigned like this and labor will not be escalated for the installation of different sized decks.

Therefore, for a 3VLI19 with a span of 7.75 ft and by interpolation:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 270 − (270 − 244)7.75 − 7.5

8 − 7.5= 257 𝑝𝑠𝑓

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: 74.50 𝑝𝑠𝑓 < 257 𝑝𝑠𝑓 → 𝑂𝐾

𝑀𝑎𝑥 𝑆𝐷𝐼 𝑆𝑝𝑎𝑛: 5 𝑓𝑡 < 11 𝑓𝑡 4 𝑖𝑛 → 𝑂𝐾 For future reference, this deck’s self-weight is 2.5 psf from the steel and 51 psf from the

concrete, which totals to 53.5 psf.

THEREFORE US A 3VLI19 WITH A SELF WEIGHT OF 53.5 PSF AND TOTAL SLAB

DEPTH OF 5.50 INCHES.

FOR THE REST OF THE AREA AFFECTED BY THE ELEVATOR:

Design a composite deck with normal weight concrete with a span of 4.75 ft and a two span

condition.

GIVEN/KNOWN VALUES:

𝐷 = 9.5 𝑝𝑠𝑓 (𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 − 𝑤𝑒𝑖𝑔ℎ𝑡) 𝐿 = 65 𝑝𝑠𝑓

𝐴𝑇 = 4.75 𝑓𝑡 ∗ 16𝑓𝑡 = 76 𝑓𝑡2

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 1

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 76 𝑓𝑡2 ∗ 1 < 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

DESIGN:

Factoring the loads using ASD and finding the superimposed load:

[LOAD COMBINATIONS FOUND ON NEX PAGE]

Page 39: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

COMPOSITE FLOOR DECK DESIGN Pg 38

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

From page 54 in the Vulcraft Manual, check to see if the previously chosen deck works. If this

deck works, although overdesigned, construction will be simplified for the contractor. Also,

money should not be much of an issue because there are not many areas that will be

overdesigned like this and labor will not be escalated for the installation of different sized decks.

Therefore, for a 3VLI19 with a span of 4.75 ft and by extrapolation:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 302 − (302 − 0)7 − 4.75

7 − 0= 204.9 𝑝𝑠𝑓

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: 74.50 𝑝𝑠𝑓 < 204.9 𝑝𝑠𝑓 → 𝑂𝐾

𝑀𝑎𝑥 𝑆𝐷𝐼 𝑆𝑝𝑎𝑛: 5 𝑓𝑡 < 13 𝑓𝑡 8 𝑖𝑛 → 𝑂𝐾 For future reference, this deck’s self weight is 2.5 psf from the steel and 51 psf from the

concrete, which totals to 53.5 psf.

THEREFORE US A 3VLI19 WITH A SELF WEIGHT OF 53.5 PSF AND TOTAL SLAB

DEPTH OF 5.50 INCHES.

FOR AREA AFFECTED BY THE STAIRWELL:

Design a composite deck with normal weight concrete with a span of 8.85 ft and a one span

condition.

GIVEN/KNOWN VALUES:

𝐷 = 9.5 𝑝𝑠𝑓 (𝑛𝑜𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 − 𝑤𝑒𝑖𝑔ℎ𝑡) 𝐿 = 65 𝑝𝑠𝑓

𝐴𝑇 = 8.85 𝑓𝑡 ∗ 25𝑓𝑡 = 221.25 𝑓𝑡2

Page 40: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

COMPOSITE FLOOR DECK DESIGN Pg 39

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 1

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 221.15 𝑓𝑡2 ∗ 1 < 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

DESIGN:

Factoring the loads using ASD and finding the superimposed load:

From page 54 in the Vulcraft Manual, check to see if the previously chosen deck works. If this

deck works, although overdesigned, construction will be simplified for the contractor. Also,

money should not be much of an issue because there are not many areas that will be

overdesigned like this and labor will not be escalated for the installation of different sized decks.

Therefore, for a 3VLI19 with a span of 8.85 ft and by interpolation:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 222 − (222 − 203)8.85 − 8.5

9 − 8.5= 208.7 𝑝𝑠𝑓

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: 74.50 𝑝𝑠𝑓 < 208.7 𝑝𝑠𝑓 → 𝑂𝐾

𝑀𝑎𝑥 𝑆𝐷𝐼 𝑆𝑝𝑎𝑛: 5 𝑓𝑡 < 11 𝑓𝑡 4 𝑖𝑛 → 𝑂𝐾 For future reference, this deck’s self weight is 2.5 psf from the steel and 51 psf from the

concrete, which totals to 53.5 psf.

THEREFORE US A 3VLI19 WITH A SELF WEIGHT OF 53.5 PSF AND TOTAL SLAB

DEPTH OF 5.50 INCHES.

Page 41: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 40

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FLOOR BEAM DESIGN

FOR THE OUTSIDE STAIRWELL FLOOR BEAM:

Use a wide flange that is fully braced in the top flange by the floor deck and is completely

unbraced in the bottom flange. Use a simply supported beam with a length of 25 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

GIVEN/KNOWN VALUES:

𝐴𝑇 =(8.85 𝑓𝑡)

2∗ 25 𝑓𝑡 = 110.625 𝑓𝑡2

𝐿 = 65 𝑝𝑠𝑓 ∗8.85 𝑓𝑡

2= .287625 𝑘/𝑓𝑡

𝐷 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘 + 8 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑤𝑎𝑙𝑙 )]8.85 𝑓𝑡

2= .314175 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 2

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 110.625 𝑓𝑡2 ∗ 2 = 221.25 < 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

DESIGN OF BEAM:

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live load:

Page 42: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 41

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

The top flange is fully braced, so use the plastic moment to find the required section modulus:

𝑍𝑟𝑒𝑞 =𝑀𝑢Ω

𝐹𝑦=(54.828 𝑘 ∗ 𝑓𝑡)(1.67) ∗ 12𝑖𝑛

50 𝑘𝑠𝑖= 21.98 𝑖𝑛3

From the AISC manual, table 3-2, try a W12X19.

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗24.7𝑖𝑛3

1.67= 61.63 𝑘 ∗ 𝑓𝑡 > 54.9 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Test the beam using its self-weight of 19lb/ft instead of the assumed weight as before. The max

moment found in visual analysis is:

The beam’s Zone I capacity meets the demand:

𝑀𝑛Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖 ∗ 24.7𝑖𝑛3

1.67= 61.63 𝑘 ∗ 𝑓𝑡 > 48.5 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Running visual analysis to find the maximum shear values gives:

Page 43: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 42

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

These values meet the beam’s shear capacity found in the AISC manual pg. 3-26 of 57.3k: 𝑉𝑛Ω= 57.3𝑘 > 7.76𝑘 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

These deflections do not meet the requirements:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 < 1.4472 𝑖𝑛 → 𝑁𝑜𝑡 𝑔𝑜𝑜𝑑

Retry with a W14X26.

Finding the max positive moment using its actual self-weight of 26 lb/ft and the controlling ASD

load combinations mentioned previously in visual analysis gives:

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗40.2𝑖𝑛3

1.67= 100.3 𝑘 ∗ 𝑓𝑡 > 49.06 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Running visual analysis to find the maximum shear values gives:

Page 44: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 43

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

These values meet the beam’s shear capacity found in the AISC manual pg. 3-26 of 70.9k: 𝑉𝑛Ω= 70.9𝑘 > 7.85𝑘 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

These deflections meet the requirements:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > 0.777 𝑖𝑛 → 𝑂𝐾

For 𝐿:

These deflections meet the requirements:

𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .883 𝑖𝑛 > 0.356 𝑖𝑛 → 𝑂𝐾

THEREFORE USE A W14X26 FOR THE OUTSIDE STAIRWELL BEAM.

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 7.85K.

Page 45: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 44

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FOR THE INSIDE STAIRWELL BEAM:

Use a wide flange that is fully braced in the top flange by the floor deck and is completely

unbraced in the bottom flange. Use a simply supported beam with a length of 25 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

GIVEN/KNOWN VALUES:

𝐴𝑇 =(8.85 + 12.5𝑓𝑡)

2∗ 25 𝑓𝑡 = 266.875 𝑓𝑡2

𝐿 = 65 𝑝𝑠𝑓 ∗(8.85 𝑓𝑡 + 12.5 𝑓𝑡)

2= .694 𝑘/𝑓𝑡

𝐷 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](8.85 𝑓𝑡 + 12.5𝑓𝑡)

2= .673 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 2

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 266.875 𝑓𝑡2 ∗ 2 = 533.75 > 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

𝐿 = 𝐿0 (0.25 +15

√𝐾𝐿𝐿𝐴𝑇)

𝐿 = .694 (0.25 +15

√2 ∗ 266.875) = .624

𝑘

𝑓𝑡

. 624𝑘

𝑓𝑡> .5 ∗ .694 = .347 → 𝑂𝐾

DESIGN OF BEAM:

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live load:

Page 46: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 45

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

The top flange is fully braced, so use the plastic moment to find the required section modulus:

𝑍𝑟𝑒𝑞 =𝑀𝑢Ω

𝐹𝑦=(109.14 𝑘 ∗ 𝑓𝑡)(1.67) ∗ 12𝑖𝑛

50 𝑘𝑠𝑖= 43.74 𝑖𝑛3

From the AISC manual, table 3-2, try a W14X30.

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗47.3𝑖𝑛3

1.67= 118.01 𝑘 ∗ 𝑓𝑡 > 109.14 𝑘 ∗ 𝑓𝑡 →

𝑂𝐾 Test the beam using its self-weight of 30lb/ft instead of the assumed weight as before. The max

moment found in visual analysis is:

The beam’s Zone I capacity meets the demand:

𝑀𝑛Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖 ∗ 47.3𝑖𝑛3

1.67= 118.01 𝑘 ∗ 𝑓𝑡 > 103.68 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

Page 47: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 46

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

These deflections do not meet the requirements:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 < 1.3822 𝑖𝑛 → 𝑁𝑜𝑡 𝑔𝑜𝑜𝑑

Retry with a W16X31.

Finding the max positive moment using its actual self-weight of 31 lb/ft and the controlling ASD

load combinations mentioned previously in visual analysis gives:

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗54 𝑖𝑛3

1.67= 134.7 𝑘 ∗ 𝑓𝑡 > 103.8 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Running visual analysis to find the maximum shear values gives:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-26 of 87.5k: 𝑉𝑛Ω= 87.5𝑘 > 16.6𝑘 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

Page 48: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 47

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

These deflections meet the requirements:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > 1.07 𝑖𝑛 → 𝑂𝐾

For 𝐿:

These deflections meet the requirements:

𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .883 𝑖𝑛 > 0.504 𝑖𝑛 → 𝑂𝐾

THEREFORE USE A W16X31 FOR THE INSIDE STAIRWELL BEAM.

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 16.6K.

FOR THE INSIDE MOST ELEVATOR BEAM:

Use a wide flange that is fully braced in the top flange by the floor deck and is completely

unbraced in the bottom flange. Use a simply supported beam with a length of 16 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

GIVEN/KNOWN VALUES:

𝐴𝑇 =(4.75 + 4.75𝑓𝑡)

2∗ 16 𝑓𝑡 = 76 𝑓𝑡2

Page 49: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 48

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐿 = 65 𝑝𝑠𝑓 ∗(4.75 𝑓𝑡 + 4.75 𝑓𝑡)

2= .30875 𝑘/𝑓𝑡

𝐷 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](4.75 𝑓𝑡 + 4.75 𝑓𝑡)

2= .29925 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 2

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 76 𝑓𝑡2 ∗ 2 = 152 𝑓𝑡2 < 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

DESIGN OF BEAM:

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live load:

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

The top flange is fully braced, so use the plastic moment to find the required section modulus:

𝑍𝑟𝑒𝑞 =𝑀𝑢Ω

𝐹𝑦=(22.656 𝑘 ∗ 𝑓𝑡)(1.67) ∗ 12𝑖𝑛

50 𝑘𝑠𝑖= 8.92 𝑖𝑛3

From the AISC manual, table 3-2, try a W12X16.

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗20.1𝑖𝑛3

1.67= 50.15 𝑘 ∗ 𝑓𝑡 > 22.66 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Test the beam using its self-weight of 16 lb/ft instead of the assumed weight as before. The max

moment found in visual analysis is:

Page 50: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 49

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

The beam’s Zone I capacity meets the demand:

𝑀𝑛Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖 ∗ 20.1𝑖𝑛3

1.67= 50.15 𝑘 ∗ 𝑓𝑡 > 19.97 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

This deflections meets the requirement:

𝐿

240=16 𝑓𝑡 ∗ 12 𝑖𝑛

240= .8 𝑖𝑛 > .308 𝑖𝑛 → 𝑂𝐾

For L:

This deflections meets the requirement:

𝐿

360=16 𝑓𝑡 ∗ 12 𝑖𝑛

360= .533 𝑖𝑛 > .152 𝑖𝑛 → 𝑂𝐾

Running visual analysis to find the maximum shear values gives:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-2 of 52.8k:

𝑉𝑛Ω= 52.8𝑘 > 4.99𝑘 → 𝑂𝐾

THEREFORE USE A W12X16 FOR THE MOST INSIDE ELEVATOR BEAM.

Page 51: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 50

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 4.99K.

FOR THE SMALL GIRDER BY THE ELEVATOR:

Use a wide flange that is fully braced in the top flange by the steel deck. Use a simply supported

beam with a length of 9.5 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

KNOWN/GIVEN VALUES:

𝐿 = 65 𝑝𝑠𝑓 ∗ 8 𝑓𝑡 = .52 𝑘/𝑓𝑡

𝐴𝑇 =(16 𝑓𝑡)

2∗ 9.5 𝑓𝑡 = 76 𝑓𝑡2

𝐷 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](8 𝑓𝑡) = .504 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

𝑃𝐷 = ((9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓) ∗ 8 𝑓𝑡 ∗ 4.75 𝑓𝑡) + 16𝑙𝑏

𝑓𝑡∗ 8𝑓𝑡 = 2.52 𝑘𝑖𝑝

𝑃𝐿 = 65 𝑝𝑠𝑓 ∗ 8 𝑓𝑡 ∗ 4.75 𝑓𝑡 = 2.47 𝑘𝑖𝑝

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 2

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 76𝑓𝑡2 ∗ 2 = 152 𝑓𝑡2 < 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

DESIGN OF BEAM:

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100 lb/ft.:

Live load:

Page 52: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 51

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

The top flange is fully braced, so use the plastic moment to find the required section modulus:

𝑍𝑟𝑒𝑞 =𝑀𝑢Ω

𝐹𝑦=(24.5 𝑘 ∗ 𝑓𝑡)(1.67) ∗ 12𝑖𝑛

50 𝑘𝑠𝑖= 9.82 𝑖𝑛3

From the AISC manual, table 3-2, try a W18X55. Using the actual self-weight gives:

The beam’s Zone I capacity of 𝑀𝑛

Ω=𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗112 𝑖𝑛3

1.67= 279.4 𝑘 ∗ 𝑓𝑡 > 24 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

Page 53: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 52

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

This deflection meets the requirements:

𝐿

240=9.5 𝑓𝑡 ∗ 12 𝑖𝑛

240= .475 𝑖𝑛 > .01 𝑖𝑛 → 𝑂𝐾

For 𝐿:

This deflection meets the requirement: 𝐿

360=9.5 𝑓𝑡 ∗ 12 𝑖𝑛

360= .32 𝑖𝑛 > .007 𝑖𝑛 → 𝐺𝑜𝑜𝑑

Running visual analysis to find the maximum shear values gives:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-25 of 141k: 𝑉𝑛Ω= 141𝑘 > 7.62𝑘 → 𝑂𝐾

Page 54: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 53

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

THEREFORE USE A W18X55 FOR THE SMALL ELEVATOR GIRDER. FOR THE

CONNECTION FORCE, USE GRAVITY SHEAR AT 7.62K.

FOR THE MIDDLE ELEVATOR BEAMS:

Use a wide flange that is fully braced in the top flange by the floor deck and is completely

unbraced in the bottom flange. Use a simply supported beam with a length of 25 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

GIVEN/KNOWN VALUES:

𝐴𝑇 =(4.75 + 7.75𝑓𝑡)

2∗ 25 𝑓𝑡 = 156.25 𝑓𝑡2

𝐿 = 65 𝑝𝑠𝑓 ∗(4.75 𝑓𝑡 + 7.75 𝑓𝑡)

2= .41 𝑘/𝑓𝑡

𝐷 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](4.75 𝑓𝑡 + 7.75 𝑓𝑡)

2= .40 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

𝑃𝐷 = 3.92 𝑘 𝑓𝑟𝑜𝑚 𝑔𝑖𝑟𝑑𝑒𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑃𝐿 = 3.71 𝑘 𝑓𝑟𝑜𝑚 𝑔𝑖𝑟𝑑𝑒𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 2

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 156.25 𝑓𝑡2 ∗ 2 = 312.5 𝑓𝑡2 < 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

DESIGN OF BEAM:

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live load:

Page 55: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 54

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

The top flange is fully braced, so use the plastic moment to find the required section modulus:

𝑍𝑟𝑒𝑞 =𝑀𝑢Ω

𝐹𝑦=(109.6 𝑘 ∗ 𝑓𝑡)(1.67) ∗ 12𝑖𝑛

50 𝑘𝑠𝑖= 43.9 𝑖𝑛3

From the AISC manual, table 3-2, try a W16X31.

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗54𝑖𝑛3

1.67= 134.7 𝑘 ∗ 𝑓𝑡 > 109.6 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Test the beam using its self-weight of 31 lb/ft instead of the assumed weight as before. The max

moment found in visual analysis is:

The beam’s Zone I capacity meets the demand:

𝑀𝑛Ω=𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖 ∗ 54𝑖𝑛3

1.67= 134.7 𝑘 ∗ 𝑓𝑡 > 104.5 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

Page 56: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 55

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

For 𝐷 + 𝐿:

This deflection meets the requirement:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > 1.03 𝑖𝑛 → 𝑂𝐾

For L:

This deflection meets the requirement:

𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .833 𝑖𝑛 > .503 𝑖𝑛 → 𝑂𝐾

Running visual analysis to find the maximum shear values gives:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-26 of 87.5k:

𝑉𝑛Ω= 87.5𝑘 > 15.4𝑘 → 𝑂𝐾

THEREFORE USE A W16X31 FOR THE MIDDLE ELEVATOR BEAMS.

Page 57: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 56

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 15.4K.

FOR THE OUTSIDE ELEVATOR BEAMS:

Use a wide flange that is fully braced in the top flange by the floor deck and is completely

unbraced in the bottom flange. Use a simply supported beam with a length of 25 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

GIVEN/KNOWN VALUES:

𝐴𝑇 =(7.75 + 12.5𝑓𝑡)

2∗ 25 𝑓𝑡 = 253.125 𝑓𝑡2

𝐿 = 65 𝑝𝑠𝑓 ∗(7.75 𝑓𝑡 + 12.5 𝑓𝑡)

2= .658125 𝑘/𝑓𝑡

𝐷 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](7.75 𝑓𝑡 + 12.5 𝑓𝑡)

2= .637875 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 2

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 253.125 𝑓𝑡2 ∗ 2 = 506.25 𝑓𝑡2 > 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

𝐿 = 𝐿0 (0.25 +15

√𝐾𝐿𝐿𝐴𝑇)

𝐿 = .658125 (0.25 +15

√2 ∗ 253.125) = .6034

𝑘

𝑓𝑡

. 6034𝑘

𝑓𝑡> .5 ∗ .658125 = .329 → 𝑂𝐾

DESIGN OF BEAM:

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Page 58: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 57

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Live load:

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

The top flange is fully braced, so use the plastic moment to find the required section modulus:

𝑍𝑟𝑒𝑞 =𝑀𝑢Ω

𝐹𝑦=(104.79 𝑘 ∗ 𝑓𝑡)(1.67) ∗ 12𝑖𝑛

50 𝑘𝑠𝑖= 42 𝑖𝑛3

From the AISC manual, table 3-2, try a W14X30.

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗47.3𝑖𝑛3

1.67= 118 𝑘 ∗ 𝑓𝑡 > 104.79 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Test the beam using its self-weight of 30 lb/ft instead of the assumed weight as before. The max

moment found in visual analysis is:

The beam’s Zone I capacity meets the demand:

𝑀𝑛Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖 ∗ 47.3𝑖𝑛3

1.67= 118 𝑘 ∗ 𝑓𝑡 > 99.3 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

This deflection does not meet the requirement:

Page 59: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 58

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 < 1.3242 𝑖𝑛 → 𝑁𝑜𝑡 𝑔𝑜𝑜𝑑

Retry with a W16X31. Visual Analysis gives the following maximum moment considering a

self-weight of 31 lb/ft:

The beam’s Zone I capacity meets the demand:

𝑀𝑛Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖 ∗ 54𝑖𝑛3

1.67= 134.7 𝑘 ∗ 𝑓𝑡 > 99.41 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For D+L:

This deflection meets the requirement:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > 1.03 𝑖𝑛 → 𝑂𝐾

For L:

This deflection meets the requirement:

𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .833 𝑖𝑛 > .488 𝑖𝑛 → 𝑂𝐾

Running visual analysis to find the maximum shear values gives:

Page 60: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 59

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

These values meet the beam’s shear capacity found in the AISC manual pg. 3-26 of 87.5k:

𝑉𝑛Ω= 87.5𝑘 > 15.91𝑘 → 𝑂𝐾

THEREFORE USE A W16X31 FOR THE OUTSIDE ELEVATOR BEAMS.

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 15.91K.

FOR THE GIRDERS NORTH OF THE ELEVATOR:

Use a wide flange that is continuously braced in the top flange by the floor deck. Use a simply

supported beam with a length of 25 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

KNOWN/GIVEN VALUES:

𝐴𝑇 = (12.5𝑓𝑡)(25 𝑓𝑡) + (12.5𝑓𝑡)(7.75𝑓𝑡) = 409.3𝑓𝑡2

𝐿1 = 65 𝑝𝑠𝑓(25 𝑓𝑡) = 1.63 𝑘/𝑓𝑡 𝐿2 = 65 𝑝𝑠𝑓(12.5 𝑓𝑡) = .81 𝑘/𝑓𝑡

𝐷1 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](25 𝑓𝑡)= 1.58 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

𝐷2 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](12.5 𝑓𝑡)= .79 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

𝑃𝐷 = 7.9 𝑘 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑑𝑒𝑠𝑖𝑔𝑛

𝑃𝐿 = 7.5 𝑘 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑑𝑒𝑠𝑖𝑔𝑛

𝑃𝐷2 = (9.5 + 53.5)(10.125 ∗ 25) + 35(12.5) + 31(12.5) = 16.8 𝑘

𝑃𝐿2 = 65(10.125 ∗ 25) = 16.5 𝑘

LIVE LOAD REDUCTIONS:

Do not consider live load reductions because of the change in areas/loading.

DESIGN OF BEAM:

Page 61: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 60

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live load:

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

From the AISC manual, table 3-2, try a W18X97.

Checking the maximum moment using the actual self-weight of 97 lb/ft:

Page 62: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 61

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

The beam’s Zone I capacity of 𝑀𝑛

Ω=𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗211 𝑖𝑛3

1.67= 526 𝑘 ∗ 𝑓𝑡 > 494 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

This deflection meets the requirements:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > 1.01 𝑖𝑛 → 𝑂𝐾

For 𝐿:

Page 63: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 62

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

This deflection meets the requirement: 𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .833 𝑖𝑛 > .50 𝑖𝑛 → 𝐺𝑜𝑜𝑑

Running visual analysis to find the maximum shear values gives:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-24 of 199k: 𝑉𝑛Ω= 199𝑘 > 63.5𝑘 → 𝑂𝐾

THEREFORE USE A W18X97 FOR THE GIRDERS NORTH OF THE ELEVATOR.

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 63.5K.

FOR THE GIRDERS SOUTH OF THE ELEVATOR:

Use a wide flange that is continuously braced in the top flange by the floor deck. Use a simply

supported beam with a length of 25 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

KNOWN/GIVEN VALUES:

𝐴𝑇 = (25 𝑓𝑡)(25 𝑓𝑡) = 625 𝑓𝑡2

𝐿 = 65 𝑝𝑠𝑓(25 𝑓𝑡) = 1.63 𝑘/𝑓𝑡 𝐷 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](25 𝑓𝑡) = 1.58 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡) 𝑃𝐷 = 6.8 𝑘 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑑𝑒𝑠𝑖𝑔𝑛

𝑃𝐿 = 6.5 𝑘 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑑𝑒𝑠𝑖𝑔𝑛

𝑃𝐷2 = (9.5 + 53.5)(10.125 ∗ 25) + 35(12.5) + 31(12.5) = 16.8 𝑘

𝑃𝐿2 = 65(10.125 ∗ 25) = 16.5 𝑘

LIVE LOAD REDUCTIONS:

Page 64: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 63

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Do not consider live load reductions because of the point loads – they may complicate the

design.

DESIGN OF BEAM:

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live load:

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

From the AISC manual, table 3-2, try a W18X97.

Checking the maximum moment using the actual self-weight of 97 lb/ft:

Page 65: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 64

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

The beam’s Zone I capacity of 𝑀𝑛

Ω=𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗211 𝑖𝑛3

1.67= 526 𝑘 ∗ 𝑓𝑡 > 499 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

This deflection meets the requirements:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > 1.02 𝑖𝑛 → 𝑂𝐾

For 𝐿:

This deflection meets the requirement: 𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .833 𝑖𝑛 > .50 𝑖𝑛 → 𝐺𝑜𝑜𝑑

Page 66: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 65

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Running visual analysis to find the maximum shear values gives:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-24 of 199k: 𝑉𝑛Ω= 199𝑘 > 68.8𝑘 → 𝑂𝐾

THEREFORE USE A W18X97 FOR THE GIRDERS SOUTH OF THE ELEVATOR.

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 68.8K.

FOR THE GIRDERS NOT AFFECTED BY THE STAIRS/ELEVATOR:

Use a wide flange that is fully braced in the top flange by the steel deck. Use simply supported

beams with a length of 25 feet each spaced accordingly.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

GIVEN/KNOWN VALUES:

𝐴𝑇 = 25𝑓𝑡 ∗ 25𝑓𝑡 = 625𝑓𝑡2

𝐿 = 65 𝑝𝑠𝑓 ∗ 25𝑓𝑡2 = 1.625 𝑘/𝑓𝑡 𝐷 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](25 𝑓𝑡)

= 1.575 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

𝑃𝐷 = (12.5 𝑓𝑡 ∗ (9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓) + 35𝑙𝑏

𝑓𝑡) 25 𝑓𝑡 = 20.6 𝑘

𝑃𝐿 = (12.5 𝑓𝑡)(25 𝑓𝑡)(65 𝑝𝑠𝑓) = 20.3 𝑘

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 2

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 625 𝑓𝑡2 ∗ 2 = 1250 𝑓𝑡2 > 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

𝐿 = 𝐿0 (0.25 +15

√𝐾𝐿𝐿𝐴𝑇)

Page 67: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 66

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐿 = 1.625 (0.25 +15

√2 ∗ 625) = 1.1

𝑘

𝑓𝑡

1.1 > .5 ∗ 1.625 = .8125 → 𝑂𝐾

Visual Analysis was used to design the 25 ft. beams. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live load:

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

The top flange is fully braced, so use the plastic moment to find the required section modulus:

𝑍𝑟𝑒𝑞 =𝑀𝑢Ω

𝐹𝑦=(472.42 𝑘 ∗ 𝑓𝑡)(1.67) ∗ 12𝑖𝑛

50 𝑘𝑠𝑖= 189 𝑖𝑛3

From the AISC manual, table 3-2, try a W18X97.

Finding the max positive moment using its actual self-weight of 97 lb/ft and the controlling ASD

load combinations mentioned previously in visual analysis gives:

Page 68: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 67

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗211 𝑖𝑛3

1.67= 526 𝑘 ∗ 𝑓𝑡 > 472 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Running visual analysis to find the maximum shear values gives:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-24 of 199k: 𝑉𝑛Ω= 199𝑘 > 55.1𝑘 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

Page 69: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 68

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

These deflections meet the requirements:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > .93 𝑖𝑛 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐿:

These deflections meet the requirements: 𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .883 𝑖𝑛 > 0.42 𝑖𝑛 → 𝑂𝐾

THEREFORE USE SECTION W18X97 FOR ANY INTERNAL SECTION SPACED 25ft CENTER TO CENTER. FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT

55.1 K.

FOR THE BEAMS NOT AFFECTED BY THE STAIRS/ELEVATOR:

Use a wide flange that is fully braced on the top flange and is completely unbraced in the bottom

flange for the interior beams. Use simply supported beams with a length of 25 feet each spaced

accordingly.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

Page 70: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 69

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

GIVEN/KNOWN VALUES:

𝐴𝑇 = 25𝑓𝑡 ∗ 12.5𝑓𝑡 = 312.5 𝑓𝑡2

𝐿 = 65 𝑝𝑠𝑓 ∗ 12.5𝑓𝑡2 = .8125 𝑘/𝑓𝑡 𝐷 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](12.5 𝑓𝑡)

= .7875 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 2

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 312.5 𝑓𝑡2 ∗ 2 = 625 𝑓𝑡2 > 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

𝐿 = 𝐿0 (0.25 +15

√𝐾𝐿𝐿𝐴𝑇)

𝐿 = .8125 (0.25 +15

√2 ∗ 312.5) = .6907

𝑘

𝑓𝑡

. 6907 > .5 ∗ .8125 = .406 → 𝑂𝐾

Visual Analysis was used to design the 25 ft. beams. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live load:

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

The top flange is fully braced, so use the plastic moment to find the required section modulus:

Page 71: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 70

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑍𝑟𝑒𝑞 =𝑀𝑢Ω

𝐹𝑦=(123.3 𝑘 ∗ 𝑓𝑡)(1.67) ∗ 12𝑖𝑛

50 𝑘𝑠𝑖= 49.42 𝑖𝑛3

From the AISC manual, table 3-2, try a W18X35.

Finding the max positive moment using its actual self-weight of 35 lb/ft and the controlling ASD

load combinations mentioned previously in visual analysis gives:

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗66.5𝑖𝑛3

1.67= 166𝑘 ∗ 𝑓𝑡 > 118.3 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Running visual analysis to find the maximum shear values gives:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-25 of 81.1k: 𝑉𝑛Ω= 81.1𝑘 > 18.92𝑘 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

These deflections meet the requirements:

Page 72: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 71

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > .8995 𝑖𝑛 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐿:

These deflections meet the requirements: 𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .883 𝑖𝑛 > 0.4106 𝑖𝑛 → 𝑂𝐾

THEREFORE USE SECTION W18X35 FOR ANY INTERNAL SECTION SPACED 12.5ft CENTER TO CENTER. FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT

18.92 K.

FOR THE GIRDERS NEXT TO THE STAIRWELLS:

Use a wide flange that is fully braced in the top flange by the steel deck. Use a simply supported

beam with a length of 25 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

KNOWN/GIVEN VALUES:

𝐴1 = (25 𝑓𝑡 ∗ 12.5 𝑓𝑡) = 312.5 𝑓𝑡2

𝐴2 = (12.5 𝑓𝑡 ∗ 8.85 𝑓𝑡) = 110.625 𝑓𝑡2

𝐿1 = 65 𝑝𝑠𝑓(12.5 𝑓𝑡) = .8125 𝑘/𝑓𝑡 𝐿2 = .8125 ∗ 2 = 1.625 𝑘/𝑓𝑡 𝐷1 = (9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓)(12.5 𝑓𝑡) = .7875 𝑘/𝑓𝑡 𝐷2 = 2(. 7875) = 1.575 𝑘/𝑓𝑡

LIVE LOAD REDUCTIONS:

Page 73: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 72

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

None of the tributary areas are greater than 400 sq. ft., therefore reductions are not permitted.

DESIGN OF BEAM:

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live load:

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

From the AISC manual, table 3-2, try a W18X55.

Checking the maximum moment using the actual self-weight of 55 lb/ft:

Page 74: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 73

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗112 𝑖𝑛3

1.67= 279.4 𝑘 ∗ 𝑓𝑡 > 161.3 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

This deflection meets the requirements:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > .70 𝑖𝑛 → 𝑂𝐾

For 𝐿:

Page 75: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 74

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

This deflection meets the requirement: 𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .833 𝑖𝑛 > .28 𝑖𝑛 → 𝐺𝑜𝑜𝑑

Running visual analysis to find the maximum shear values gives:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-25 of 141k: 𝑉𝑛Ω= 141𝑘 > 28.07𝑘 → 𝑂𝐾

THEREFORE USE A W18X55 FOR THE GIRDERS NEAR THE STAIRWELL. FOR

THE CONNECTION FORCE, USE GRAVITY SHEAR AT 28.07K.

FLOOR PERIMETER BEAM DESIGNS:

FOR THE NORTH TO SOUTH DIRECTION:

Use a wide flange that is fully braced in the top flange by the floor deck and is completely braced

in the bottom flange by the exterior wall. Use a simply supported beam with a length of 25 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

GIVEN/KNOWN VALUES:

𝐴𝑇 =(12.5𝑓𝑡)

2∗ 25 𝑓𝑡 = 156.25 𝑓𝑡2

𝐿 = 65 𝑝𝑠𝑓 ∗(12.5 𝑓𝑡)

2= .40625 𝑘/𝑓𝑡

𝐷 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](12.5 𝑓𝑡)

2+ (23 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑤𝑎𝑙𝑙)(15 𝑓𝑡)

= .73875 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

Page 76: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 75

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 2

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 156.25 𝑓𝑡2 ∗ 2 = 312.5 𝑓𝑡2 < 400 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

DESIGN OF BEAM:

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live load:

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

The top flange is fully braced, so use the plastic moment to find the required section modulus:

𝑍𝑟𝑒𝑞 =𝑀𝑢Ω

𝐹𝑦=(97.266 𝑘 ∗ 𝑓𝑡)(1.67) ∗ 12𝑖𝑛

50 𝑘𝑠𝑖= 38.98 𝑖𝑛3

From the AISC manual, table 3-2, try a W14X26.

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗40.2𝑖𝑛3

1.67= 100.3 𝑘 ∗ 𝑓𝑡 > 97.27 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Test the beam using its self-weight of 26 lb/ft instead of the assumed weight as before. The max

moment found in visual analysis is:

Page 77: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 76

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

The beam’s Zone I capacity meets the demand:

𝑀𝑛Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖 ∗ 40.2𝑖𝑛3

1.67= 100.3 𝑘 ∗ 𝑓𝑡 > 91.5 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

This deflection does not meet the requirement:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 < 1.45 𝑖𝑛 → 𝑁𝑜𝑡 𝑔𝑜𝑜𝑑

Retry with a W14X30. Visual Analysis gives the following maximum moment considering a

self-weight of 30 lb/ft:

The beam’s Zone I capacity meets the demand:

𝑀𝑛Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖 ∗ 47.3𝑖𝑛3

1.67= 118 𝑘 ∗ 𝑓𝑡 > 91.8 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For D+L:

This deflection meets the requirement:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > 1.23 𝑖𝑛 → 𝑂𝐾

For L:

Page 78: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 77

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

This deflection meets the requirement:

𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .833 𝑖𝑛 > .423 𝑖𝑛 → 𝑂𝐾

Running visual analysis to find the maximum shear values gives:

These values meet the beam’s shear capacity found in the AISC manual pg. 3-26 of 74.5k:

𝑉𝑛Ω= 74.5𝑘 > 14.7𝑘 → 𝑂𝐾

THEREFORE USE A W14X30 FOR THE NORTH TO SOUTH PERIMETER BEAMS.

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 14.7K.

FOR THE EAST TO WEST DIRECTION:

Use a wide flange that is fully braced in the top flange by the floor deck. Use a simply supported

beam with a length of 25 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

GIVEN/KNOWN VALUES:

𝐴𝑇 = 12.5 𝑓𝑡 ∗ 25 𝑓𝑡 = 300 𝑓𝑡2

𝐿 = 65 𝑝𝑠𝑓 ∗ 12.5 𝑓𝑡 = .813 𝑘/𝑓𝑡 𝐷 = [(9.5 𝑝𝑠𝑓 + 53.5 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟 𝑑𝑒𝑐𝑘)](12.5 𝑓𝑡)

= .788 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

LIVE LOAD REDUCTIONS:

From ASCE 7-10 Table 4-2, 𝐾𝐿𝐿 = 2

Page 79: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 78

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Therefore, 𝐴𝑇𝐾𝐿𝐿 = 156.25 𝑓𝑡2 ∗ 2 = 300 𝑓𝑡2 > 600 𝑓𝑡2 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑒𝑑

𝐿 = 𝐿0 (0.25 +15

√𝐾𝐿𝐿𝐴𝑇)

𝐿 = .813 (0.25 +15

√2 ∗ 300) = .7

𝑘

𝑓𝑡

. 7 > .5 ∗ .813 = .41 → 𝑂𝐾

DESIGN OF BEAM:

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Live load:

ASD load combination 𝐷 + 𝐿 gives the maximum positive moment:

Page 80: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 79

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

From the AISC manual, table 3-10, try a W21X55.

Test the beam using its self-weight of 55 lb/ft instead of the assumed weight as before. The max

moment found in visual analysis is:

The beam’s Zone I capacity meets the demand:

𝑀𝑛Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖 ∗ 112𝑖𝑛3

1.67= 279 𝑘 ∗ 𝑓𝑡 > 120 𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷 + 𝐿:

This deflection meets the requirement:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > .53 𝑖𝑛 → 𝑂𝐾

For L only:

This deflection does meet the requirement:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= .833 𝑖𝑛 > .24 𝑖𝑛 → 𝐺𝑜𝑜𝑑

Running visual analysis to find the maximum shear values gives:

Page 81: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 80

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

These values meet the beam’s shear capacity found in the AISC manual pg. 3-25 of 141k: 𝑉𝑛Ω= 141𝑘 > 19.2𝑘 → 𝑂𝐾

THEREFORE USE A W18X55 FOR THE NORTH TO SOUTH PERIMETER BEAMS.

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 19.2k.

FOR THE NORTH TO SOUTH DIRECTION NOT AFFECTED BY STAIRWELL:

Use a wide flange that is fully braced in the top flange by the floor deck and is completely braced

in the bottom flange by the exterior wall. Use a simply supported beam with a length of 25 feet.

Use the following maximum deflections:

𝐷𝑒𝑎𝑑 + 𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 =𝐿

240

𝐿𝑖𝑣𝑒 +𝑊𝑖𝑛𝑑 𝑜𝑛𝑙𝑦 =𝐿

360𝑜𝑟 1.5"

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

GIVEN/KNOWN VALUES:

𝐴𝑇 =(16.15𝑓𝑡)

2∗ 25 𝑓𝑡 = 201.872 𝑓𝑡2

𝐷 = (23 𝑝𝑠𝑓 𝑓𝑟𝑜𝑚 𝑤𝑎𝑙𝑙)(15 𝑓𝑡) = .345 𝑘/𝑓𝑡 (𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑒𝑙𝑓 𝑤𝑒𝑖𝑔ℎ𝑡)

DESIGN OF BEAM:

Visual Analysis was used to analyze the beam. The following load cases were used:

Dead load with an assumed self-weight of 100lb/ft.:

Page 82: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 81

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ASD load combination 𝐷 gives the maximum positive moment:

The top flange is fully braced, so use the plastic moment to find the required section modulus:

𝑍𝑟𝑒𝑞 =𝑀𝑢Ω

𝐹𝑦=(34.77 𝑘 ∗ 𝑓𝑡)(1.67) ∗ 12𝑖𝑛

50 𝑘𝑠𝑖= 13.9𝑖𝑛3

From the AISC manual, table 3-6, try a W12X16.

The beam’s Zone I capacity of 𝑀𝑛

Ω==

𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖∗20.1𝑖𝑛3

1.67= 50.15𝑘 ∗ 𝑓𝑡 > 34.77𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Test the beam using its self-weight of 16lb/ft instead of the assumed weight as before. The max

moment found in visual analysis is:

The beam’s Zone I capacity meets the demand:

𝑀𝑛Ω=𝐹𝑦𝑍𝑥

Ω=50 𝑘𝑠𝑖 ∗ 20.1𝑖𝑛3

1.67= 50.15 𝑘 ∗ 𝑓𝑡 > 28.21𝑘 ∗ 𝑓𝑡 → 𝑂𝐾

Finding the deflections from Visual Analysis:

For 𝐷:

This deflection does not meet the requirement:

𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛 > 1.062 𝑖𝑛 → 𝐺𝑜𝑜𝑑

Running visual analysis to find the maximum shear values gives:

Page 83: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FLOOR BEAM DESIGN Pg 82

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

These values meet the beam’s shear capacity found in the AISC manual pg. 3-26 of 52.8k:

𝑉𝑛Ω= 52.8𝑘 > 4.513𝑘 → 𝑂𝐾

THEREFORE USE A W14X30 FOR THE NORTH TO SOUTH PERIMETER BEAMS.

FOR THE CONNECTION FORCE, USE GRAVITY SHEAR AT 4.513K.

Page 84: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 83

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

STEEL COLUMN DESIGN:

FINDING THE LOADS FOR EACH OF THE COLUMNS FROM THE ROOF:

For the columns on the corners of the building:

𝐿𝑟 = 20 𝑝𝑠𝑓(12.5 )(12.5) = 3.1 𝑘

𝐷 = (30 + 1.78 𝑝𝑠𝑓)(12.5 𝑓𝑡)(12.5 𝑓𝑡) + 40𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡) + 87

𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡)

+ 16.4𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡)(2) = 7.0 𝑘

𝑊 = {−103.9 𝑝𝑠𝑓(12.5 𝑓𝑡)(12.5 𝑓𝑡) = −16.2 𝑘

16 𝑝𝑠𝑓(12.5 𝑓𝑡)(12.5 𝑓𝑡) = 2.5 𝑘

For the columns in the east to west direction on the perimeter:

𝐿𝑟 = 20 𝑝𝑠𝑓(25 𝑓𝑡)(25 𝑓𝑡) = 12.5 𝑘

𝐷 = (30 + 1.78 𝑝𝑠𝑓)(25 𝑓𝑡)(25 𝑓𝑡) + 87𝑙𝑏

𝑓𝑡(25 𝑓𝑡) + 16.4

𝑙𝑏

𝑓𝑡(25 𝑓𝑡)(5) = 24.1 𝑘

𝑊 = {−103.9(25 𝑓𝑡)(25 𝑓𝑡) = −64.9 𝑘

16(25 𝑓𝑡)(25 𝑓𝑡) = 10 𝑘

For the columns supporting the joist girder:

𝐿𝑟 = 20 𝑝𝑠𝑓(50 𝑓𝑡)(50 𝑓𝑡) = 50 𝑘

𝐷 = (30 + 1.78 𝑝𝑠𝑓)(50 𝑓𝑡)(50 𝑓𝑡) + 16.4𝑙𝑏

𝑓𝑡(50 𝑓𝑡)(11) + 78

𝑙𝑏

𝑓𝑡(50 𝑓𝑡) = 92.4 𝑘

𝑊 = {−103.9 𝑝𝑠𝑓(50 𝑓𝑡)(50 𝑓𝑡) = −259.8 𝑘

16 𝑝𝑠𝑓(50 𝑓𝑡)(50 𝑓𝑡) = 40 𝑘

For the columns in the north to south direction on the perimeter:

𝐿𝑟 = 20 𝑝𝑠𝑓(25 𝑓𝑡)(25 𝑓𝑡) = 12.5 𝑘

𝐷 = (30 + 1.78 𝑝𝑠𝑓)(25 𝑓𝑡)(25 𝑓𝑡) + 16.4𝑙𝑏

𝑓𝑡(25 𝑓𝑡)(5) + 78

𝑙𝑏

𝑓𝑡(25 𝑓𝑡) = 23.9 𝑘

𝑊 = {−103.9 𝑝𝑠𝑓(25 𝑓𝑡)(25 𝑓𝑡) = −64.9 𝑘

16 𝑝𝑠𝑓(25 𝑓𝑡)(25 𝑓𝑡) = 10 𝑘

FINDING THE LOADS FOR EACH OF THE COLUMNS FROM THE FLOOR:

For columns E3 and A9:

𝐿 = 65 𝑝𝑠𝑓(12.5 𝑓𝑡)(12.5 𝑓𝑡) = 10.2 𝑘

𝐷 = (9.5 + 53.5 𝑝𝑠𝑓)(12.5 𝑓𝑡)(12.5 𝑓𝑡) + 30𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡) + 55

𝑙𝑏

𝑓𝑡 (12.5 𝑓𝑡)

+ 35𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡) + 23 𝑝𝑠𝑓(15 𝑓𝑡)(25 𝑓𝑡) = 20𝑘

Page 85: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 84

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

For the columns E4 to E7 and A5 to A8:

𝐿 = 65 𝑝𝑠𝑓(25 𝑓𝑡)(12.5 𝑓𝑡) = 20.3 𝑘

𝐷 = (9.5 + 53.5 𝑝𝑠𝑓)(12.5 𝑓𝑡)(25 𝑓𝑡) + 55𝑙𝑏

𝑓𝑡(25 𝑓𝑡) + 35

𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡)(3)

+ 23 𝑝𝑠𝑓(15 𝑓𝑡)(25 𝑓𝑡) = 31 𝑘

For the columns E9 and A3:

𝐷 =30𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡) + 55

𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡) + 23 𝑝𝑠𝑓(15 𝑓𝑡)(25 𝑓𝑡) = 9.69 𝑘

For the columns A4 and E8:

𝐿 = 65 𝑝𝑠𝑓(12.5 𝑓𝑡)(12.5 + 8.85 𝑓𝑡) = 17.35 𝑘

𝐷 = (9.5 + 53.5 𝑝𝑠𝑓)(12.5 + 8.85 𝑓𝑡) (12.5 𝑓𝑡) +31𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡) +

26𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡)

+55𝑙𝑏

𝑓𝑡(25 𝑓𝑡) +

35𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡) + 23 𝑝𝑠𝑓(15 𝑓𝑡)(25 𝑓𝑡) = 30 𝑘

For the columns D4 to D7, C4, C5, C7, C8, B5, B7, and B8:

𝐿 = 65 𝑝𝑠𝑓(25 𝑓𝑡)(25 𝑓𝑡) = 40.6 𝑘

𝐷 = (9.5 + 53.5 𝑝𝑠𝑓)(25 𝑓𝑡)(25 𝑓𝑡) + 35𝑙𝑏

𝑓𝑡(3)(25 𝑓𝑡) + 97

𝑙𝑏

𝑓𝑡(25 𝑓𝑡) = 44.4 𝑘

For the column B6:

𝐿 = 65 𝑝𝑠𝑓(25 𝑓𝑡)(25 𝑓𝑡) = 40.6 𝑘

𝐷 = (9.5 + 53.5 𝑝𝑠𝑓)(25 𝑓𝑡)(25 𝑓𝑡) + 35𝑙𝑏

𝑓𝑡(3)(12.5 𝑓𝑡) + 31

𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡)(4)

+ 16𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡) + 97

𝑙𝑏

𝑓𝑡(25 𝑓𝑡) = 44.9𝑘

For the column C6:

𝐿 = 65 𝑝𝑠𝑓[(25 𝑓𝑡)(25 𝑓𝑡) − (9.5 𝑓𝑡)(9 𝑓𝑡)] = 35.1 𝑘

𝐷 = (9.5 + 53.5 𝑝𝑠𝑓)[(25 𝑓𝑡)(25 𝑓𝑡) − (9.5 𝑓𝑡)(9 𝑓𝑡)] + 35𝑙𝑏

𝑓𝑡(3)(12.5 𝑓𝑡)

+ 31𝑙𝑏

𝑓𝑡 (12.5 𝑓𝑡)(4) + 16

𝑙𝑏

𝑓𝑡(12.5 − 8 𝑓𝑡) + 55

𝑙𝑏

𝑓𝑡(9.5 𝑓𝑡) + 97

𝑙𝑏

𝑓𝑡(25 𝑓𝑡)

= 39.9𝑘

For the columns B3 and D9:

𝐿 = 65 𝑝𝑠𝑓(12.5 𝑓𝑡)(12.5 𝑓𝑡) = 10.2 𝑘

𝐷 = (9.5 + 53.5 𝑝𝑠𝑓)(12.5 𝑓𝑡)(12.5 𝑓𝑡) + 30𝑙𝑏

𝑓𝑡(25 𝑓𝑡) + 35

𝑙𝑏

𝑓𝑡 (12.5 𝑓𝑡) + 97

𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡)

+ 23 𝑝𝑠𝑓(15 𝑓𝑡)(25 𝑓𝑡) = 20.9𝑘

Page 86: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 85

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

For the columns D3, C3, C9 and B9:

𝐿 = 65 𝑝𝑠𝑓(12.5 𝑓𝑡)(25 𝑓𝑡) = 20.3 𝑘

𝐷 = (9.5 + 53.5 𝑝𝑠𝑓)(12.5 𝑓𝑡)(25 𝑓𝑡) + 30𝑙𝑏

𝑓𝑡(25 𝑓𝑡) + 35

𝑙𝑏

𝑓𝑡 25 + 97

𝑙𝑏

𝑓𝑡(12.5 𝑓𝑡)

+ 23 𝑝𝑠𝑓(15 𝑓𝑡)(25 𝑓𝑡) = 31.2𝑘

INTERNAL COLUMN DESIGN

Use a wide flange that is braced each floor deck. Model the column as a 15 foot span with

summed axial loading on the top connection. Use a pin-pin connection.

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

GIVEN/KNOWN VALUES:

Use the following maximum loading for internal beams per floor:

𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 = 44𝑘

𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 = 92.4𝑘

𝐿𝑖𝑣𝑒 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 = 41𝑘

𝐿𝑖𝑣𝑒 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 = 50𝑘

𝑊𝑖𝑛𝑑 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 = 40𝑘 DESIGN OF COLUMN:

For pin-pin connection k=1.0

kL=(1.0)(15)= 15ft

Each internal column reaching the roof will have the loading from the roof and the three floors

that it spans. Therefore multiply 44k and 41k by 3 to have the total loading to factor. Negative

wind loading is neglected because this will cause tension and not add to the compression.

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑎𝑑 = 𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 + 𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 ∗ 3 = 224.4 𝑘

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑣𝑒 = 𝐿𝑖𝑣𝑒 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 ∗ 3 = 123 𝑘

ASD Load combinations are found on the next page.

Page 87: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 86

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Using Table 4.1 in the AISC manual and finding a value over 447k for a KL=15ft, choose a

W14x61 for the internal columns reaching the roof: 𝑃𝑛Ω= 361𝑘 > 347𝑘 → 𝑂𝐾

THEREFORE USE A W14X61 FOR THE INTERNAL COLUMNS. THESE COLUMNS

ARE SPECIFIED ON THE FLOOR LAYOUT AS D4 TO D8, C4 TO C8, AND B4 TO B8.

*FROM THE FUTURE SECOND ORDER ANALYSIS, USE A W14X109 INSTEAD.*

CORNER COLUMNS BY THE STAIRWELL DESIGN:

Use a wide flange that is braced each floor deck. Model the column as a 15 foot span with

summed axial loading on the top connection. Use a pin-pin support.

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

Page 88: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 87

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

GIVEN/KNOWN VALUES:

Use the following maximum loading for corner beams per floor:

𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 = 7𝑘

𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 = 9.7𝑘

𝐿𝑖𝑣𝑒 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 = 0𝑘

𝐿𝑖𝑣𝑒 𝑟𝑜𝑜𝑓 = 3.1𝑘

𝑊𝑖𝑛𝑑 = 2.5𝑘 DESIGN OF COLUMN:

For pin-pin connection k=1.0

kL=(1.0)(15)= 15ft

Each column reaching the roof will have the loading from the roof and the three floors that it

spans. Therefore multiply 9.7k and 0k by 3 to have the total loading to factor. Negative wind

loading is neglected because this will cause tension and not compression.

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑎𝑑 = 𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 + 𝐷𝑒𝑎𝑑𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 ∗ 3 = 36.1𝑘 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑣𝑒 = 𝐿𝑖𝑣𝑒 ∗ 3 = 0𝑘

ASD load combinations are as follows:

[LOAD COMBINATIONS FOUND ON NEX PAGE]

Page 89: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 88

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

From Table 4.1 in AISC manual, choose W14X48. This meets the factored loads:

𝑃𝑛Ω= 221𝑘 > 36.1𝑘 → 𝑂𝐾

THEREFORE USE A W14X48 FOR THE CORNER COLUMNS NEAR THE

STAIRWELLS. THESE COLUMNS ARE SPECIFIED ON THE FLOOR LAYOUT AS

E9 AND A3.

*FROM THE FUTURE SECOND ORDER ANALYSIS, USE A W14X109 INSTEAD.*

PERIMETER COLUMN DESIGN:

Use a wide flange that is braced each floor deck. Model the column as a 15 foot span with

summed axial loading on the top connection. Use a pin-pin support.

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

Page 90: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 89

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

GIVEN/KNOWN VALUES:

Use the following maximum loading:

𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 = 24.1𝑘

𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 = 31.2𝑘 𝐿𝑖𝑣𝑒 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 = 20.3𝑘

𝐿𝑖𝑣𝑒 𝑟𝑜𝑜𝑓 = 12.5𝑘

𝑊𝑖𝑛𝑑 = 10𝑘 DESIGN OF COLUMN:

For pin-pin connection k=1.0

kL=(1.0)(15)= 15ft

Each perimeter column reaching the roof will have the loading from the roof and the three floors

that it spans. Therefore multiply 31.2k and 20.3k by 3 to have the total loading to factor.

Negative wind loading is neglected.

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑎𝑑 = 𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 + 𝐷𝑒𝑎𝑑𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 ∗ 3 = 117.7𝑘 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑣𝑒 = 𝐿𝑖𝑣𝑒 ∗ 3 = 60.9𝑘

The ASD load combinations are found on the following page:

[LOAD COMBINATIONS FOUND ON NEX PAGE]

Page 91: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 90

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Checking Table 4.1 in the AISC manual for 178.6k choose a W14X48 for perimeter columns

reaching the roof: 𝑃𝑛Ω= 221𝑘 > 178.6𝑘 → 𝑂𝐾

THEREFORE USE A W14X48 FOR ALL PERIMETER COLUMNS. THESE

COLUMNS ARE SPECIFIED ON THE FLOOR LAYOUT AS D3, C3, B3, D9, C9, B9, E4

TO E8 AND A4 TO A9.

*FROM THE FUTURE SECOND ORDER ANALYSIS, USE A W14X109 INSTEAD.*

ELEVATOR COLUMN DESIGN:

Use a wide flange that is braced each floor deck. Model the column as a 15 foot span with

summed axial loading on the top connection. Use a pin-pin support.

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

Page 92: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 91

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

GIVEN/KNOWN VALUES:

Use the following maximum loading:

𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 = 0𝑘

𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 = 44.9𝑘 𝐿𝑖𝑣𝑒 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 = 40.6𝑘

𝐿𝑖𝑣𝑒 𝑟𝑜𝑜𝑓 = 0𝑘

𝑊𝑖𝑛𝑑 = 0𝑘 DESIGN OF BEAM:

For a pin-pin connection k=1.0

kL=(1.0)(15)= 15ft

Each perimeter column reaching the roof will have the loading from the roof and the three floors

that it spans. Therefore multiply 44.9k and 40.6k by 3 to have the total loading to factor.

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑎𝑑 = 𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 + 𝐷𝑒𝑎𝑑𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 ∗ 3 = 134.7𝑘 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑣𝑒 = 𝐿𝑖𝑣𝑒 ∗ 3 = 121.8 𝑘

ASD load combinations in Excel are as follows:

[LOAD COMBINATIONS FOUND ON NEX PAGE]

Page 93: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 92

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Checking Table 4.1 in the AISC manual for 256.6k choose a W14X61 for elevator columns: 𝑃𝑛Ω= 361𝑘 > 256.6𝑘 → 𝑂𝐾

THEREFORE USE A W14X61 FOR THE ELEVATOR COLUMNS. THESE COLUMNS

ARE SPECIFIED ON THE FLOOR LAYOUT AS C6 AND B6.

*FROM THE FUTURE SECOND ORDER ANALYSIS, USE A W14X109 INSTEAD.*

STAIRWELL COLUMN DESIGN

Use a wide flange that is braced each floor deck. Model the column as a 15 foot span with

summed axial loading on the top connection. Use a pin-pin support.

Also, use AISC Manual Table 2-4 ASTM A992 for material properties:

𝐹𝑦 = 50 𝑘𝑠𝑖, 𝐹𝑢 = 65 𝑘𝑠𝑖

Page 94: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 93

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

GIVEN/KNOWN VALUES:

Use the following maximum loading for beams per floor:

𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 = 24.1𝑘

𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 = 30𝑘 𝐿𝑖𝑣𝑒 𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 = 17.4𝑘

𝐿𝑖𝑣𝑒 𝑟𝑜𝑜𝑓 = 12.5𝑘

𝑊𝑖𝑛𝑑 = 10𝑘 DESIGN OF COLUMN:

For a pin-pin connection k=1.0

kL=(1.0)(15)= 15ft

Each column reaching the roof will have the loading from the roof and the three floors that it

spans. Therefore multiply 30k and 17.4k by 3 to have the total loading to factor.

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑎𝑑 = 𝐷𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑓 + 𝐷𝑒𝑎𝑑𝑓𝑟𝑜𝑚 𝑓𝑙𝑜𝑜𝑟𝑠 ∗ 3 = 114.1𝑘 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑣𝑒 = 𝐿𝑖𝑣𝑒 ∗ 3 = 52.2𝑘

ASD load combinations from Excel are shown on the next page:

[LOAD COMBINATIONS FOUND ON NEX PAGE]

Page 95: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

STEEL COLUMN DESIGNS Pg 94

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Checking Table 4.1 in the AISC manual and finding a value under 166.3k for a KL=15 ft, choose

a W14x48 for the stairwell columns:

𝑃𝑛Ω= 221𝑘 > 166.3𝑘 → 𝑂𝐾

THEREFORE USE A W14X48 FOR THE STAIRWELL COLUMNS. THESE

COLUMNS ARE SPECIFIED ON THE FLOOR LAYOUT AS A3, A4, B3, E8, E9, AND

D9.

*FROM THE FUTURE SECOND ORDER ANALYSIS, USE A W14X109 INSTEAD.*

Page 96: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 95

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

TWO-WAY SLAB DESIGN:

3rd

Floor Two-Way Slab- Green Roof:

Initial slab thickness: h=12in per ACI Table 9.5c

Superimposed dead load: DLsup= 50.6psf

Concrete density: γ=150pcf Initial deal load: DL= h* γ=12in*150pcf=150psf

Load Combinations:

[COMBINATIONS PROVIDED ON NEXT PAGE]

Page 97: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 96

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

LRFD LOAD COMBINATIONS

Loads: Combinations:

Dead (D) 200.60 psf 1) 1.4D

Live (L) 0.00 psf 2) 1.2D + 1.6L + .5(Lr or S or R)

Live Roof (Lr) 100.00 psf 3) 1.2D + 1.6(Lr or S or R) + (.5L or .5W)

Snow (S) 0.00 psf 4) 1.2D + W+.5L+.5(Lr or S or R)

Rain ( R) 0.00 psf 5) 1.2D + E + .5L + .2S

Positive Wind (W) 23.60 psf 6) 0.9D + W

Negative Wind (W) -34.10 psf 7) 0.9D + 1E

Seismic (E) 0.00 psf

Results:

Positive: Negative: DESIGN VALUES (psf):

1) 280.84 psf - psf Positive: 412.52

2) 290.72 psf - psf Negative: 146.44

3) 412.52 psf 400.72

psf

4) 314.32 psf - psf

5) 240.72 psf psf

6) 204.14 psf 146.44 psf

7) 180.54 psf - psf

LRFD Max Positive Moment: Mmax positive= 412.52 psf

LRFD Max Negative Moment: Mmax negative= 146.44 psf

Column cross section dimensions (square): Column Dimensions (CD) = 24in x 24in

L1=L2= 25ft

Ln= L1-CD=22.917ft

hmin=Ln/33=(22.917*12)/33=8.333in Check: h > hmin 12in > 8.33in OK!

qu=Mmax positive=412.52psf

Mo =𝑞𝑢 ∗ 𝐿1 ∗ 𝐿𝑛2

8=412.52 ∗ 25 ∗ 22.9172

8= 451.36𝑘𝑖𝑝 ∗ 𝑓𝑡

Page 98: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 97

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Green Roof Slab design Tables Location along Span Coefficient Moment

Interior Span M- 0.65 443.2656

Interior Span M- 0.35 238.6815

End span interior M- 0.7 477.363

End span M+ 0.5 340.9736

End Span Exterior M- 0.3 204.5841

Location along Span Coefficient Moment

Interior Span M- 0.65 239.3634

Interior Span M- 0.35 128.888

End span interior M- 0.7 257.776

End span M+ 0.5 184.1257

End Span Exterior M- 0.3 110.4754

Area C Area C

1 10045.44 1 19005.44

2 4861.44 2 1538.19

Sum 14906.88 Sum 20543.63

Variable Value

Ib 23930.1818

Is 23328

Alpha F1=Ib/Is 1.025813692

Bt 0.440321288

Interior Slab Panel Factored Moments k-ft

Location Column Strip Middle Strip

End Span Exterior M- 196.400772 8.1833655

End Span M+ 204.5841375 136.389425

End Span Interior 358.0222406 119.3407469

Interior Span M- 332.4492234 110.8164078

Interior Span M+ 179.0111203 59.67037344

Page 99: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 98

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Exterior Slab Panel Factored Moments k-ft

Location Column Strip Middle Strip

End Span Exterior M- 106.0564169 4.41901737

End Span M+ 138.0942928 46.03143094

End Span Interior 193.3320099 64.44400331

Interior Span M- 179.5225807 32.22200166

Interior Span M+ 96.66600497 32.22200166

Exterior slab panel column strip beam and slab factored moments k-ft

Location Beam Moments from slab

Slab moment

End Span Exterior M- 76.22804963 34.24738462

End Span M+ 127.0467494 57.07897436

End Span Interior 177.8654491 79.91056411

Interior Span M- 165.1607742 74.20266667

Interior Span M+ 88.93272457 39.95528205

Exterior Slab Panel Column Strip Beam moments k-ft

Location From Slab From Perimeter wall and beam stem weight

Total beam design moment

End Span Exterior M- 76.22804963 44.24363636 120.471686

End Span M+ 127.0467494 9.618181818 136.6649312

End Span Interior M- 177.8654491 48.668 226.5334491

Interior Span M- 165.1607742 44.24363636 209.4044106

Interior Span M+ 88.93272457 30.4175 119.3502246

Interior slab panel column strip beam and slab factored

moments k-ft

Location Beam Moments from slab

Slab moment

End Span Exterior M- 141.1630549 63.42108263

End Span M+ 235.2717581 105.7018044

End Span Interior 329.3804614 147.9825261

Interior Span M- 305.8532856 137.4123457

Interior Span M+ 164.6902307 73.99126306

Page 100: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 99

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Interior Slab Panel Column Strip Beam moments k-ft

Location From Slab From Perimeter wall and beam stem weight

Total beam design moment

End Span Exterior M- 141.1630549 44.24363636 185.4066912

End Span M+ 235.2717581 44.24363636 279.5153945

End Span Interior 329.3804614 10.58 339.9604614

Interior Span M- 305.8532856 44.24363636 350.0969219

Interior Span M+ 164.6902307 30.4175 195.1077307

Finding the centroid:

B=12in

HIb=24in

hw= HIb-h=24in-12in=12in

Centroid (from the top) =

𝐻𝑙𝑏2 ∗ 𝐵 ∗ 𝐻𝑙𝑏 +

ℎ2 ∗ 𝑥 ∗ ℎ

𝐵 ∗ 𝐻𝑙𝑏 + 𝑥 ∗ ℎ=

242 ∗ 12 ∗ 24 +

122 ∗ 12 ∗ 12

12 ∗ 24 + 12 ∗ 12= 10𝑖𝑛

𝐼𝑏 =1

3[(𝐵 + 𝑥)(𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑2) + (𝐵(𝐻𝑙𝑏 − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑)

3) + (𝑥(𝐻𝑙𝑏 − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑)3)] = 19008𝑖𝑛4

Check: Centroid < h 10in < 12 in Good!

𝐼𝑠 =1

12[(𝐶𝐷

2+𝐿12) ℎ3 =

1

12[(24

2+25

2) 123 = 23328𝑖𝑛4

𝛼𝐹1 = (𝐼𝑏𝐼𝑠) =

19008

23328= 0.815

Check: αF1 > 0.80 0.815 > 0.80 Good! We may now use direct design method!

Reinforcement:

Exterior Column Panel Negative Steel Reinforcement:

Φ1=0.90

db1 = diameter of steel reinforcement = 0.875in

fc’= 5.5ksi

fy=60ksi

ECSW= CSW/2 +CD/2 = 87in

Critical Section: 𝑑1 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝐼𝑏 = 12 − .75 − 0.5(0.875) = 10.8125𝑖𝑛

𝑀𝑛1 =𝐸𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Exterior Column Panel Width ∗ 𝑑 21

=199.33𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 87𝑖𝑛 ∗ 10.8125𝑖𝑛 2

= 261.30𝑝𝑠𝑖

Page 101: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 100

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ρ1 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .2613ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 4.48(10−3)

As = ρ1 ∗ Exterior Column Panel Width ∗ d1 = 4.48(10−3)(87in)(10.8125in) = 4.218in2

Top Steel: Number of bars 8 #7 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 8 (

𝜋

4) (. 875𝑏1

2 ) = 4.81 > 4.218 → 𝐺𝑜𝑜𝑑!

Check: As= 8(.60in2) = 4.8in

2 > 4.218 in

2 Good!

Exterior Column Panel Positive Steel Reinforcement:

Φ1=0.90

db2= 0.75in

fc’= 5.50ksi

fy=60ksi

ECSW= 87in

Critical Section: 𝑑2 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝑏2 = 12 − 0.75 − 0.50(0.75𝑖𝑛) = 10.875𝑖𝑛

𝑀𝑛2 =𝐸𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑃𝑜𝑖𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Exterior Column Panel Width ∗ 𝑑 22

=204.60 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 87𝑖𝑛 ∗ 10.875𝑖𝑛 2

= 265.135 𝑝𝑠𝑖

ρ2 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .265135ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 4.56(10−3)

As = ρ2 ∗ Exterior Column Panel Width ∗ d2 = 4.56(10−3)(87in)(10.875in) = 4.32in2

Bottom Steel: Number of bars 10 #6 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 10 (

𝜋

4) (. 75𝑏1

2 ) = 4.42𝑖𝑛2 > 4.32𝑖𝑛2 → 𝐺𝑜𝑜𝑑!

Check: As= 10(.44in2) = 4.4in

2 > 4.32 in

2 Good!

Interior Column Panel Negative Steel Reinforcement:

Page 102: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 101

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Φ1=0.90

db1= 0.875in

fc’= 5ksi

fy=60ksi

ICSW= 2*min (.25*L1, .25*L2) = 150in

Critical Section: 𝑑1 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝐼𝑏 = 12 − .75 − 0.5(0.875) = 10.8125𝑖𝑛

𝑀𝑛1 =𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Interior Column Strip Width ∗ 𝑑 21

=358.02 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 10.8125𝑖𝑛 2

= 272.21𝑝𝑠𝑖

ρ1 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .27221ksi

. 85 ∗ 5𝑘𝑠𝑖) 12))

= 4.69(10−3)

As = ρ1 ∗ Interior Column Panel Width ∗ d1 = 4.69(10−3)(150in)(10.8125in) = 7.61in2

Top Steel: Number of bars 13 #7 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 13 (

𝜋

4) (. 875𝑏1

2 ) = 7.813 > 7.61 → 𝐺𝑜𝑜𝑑!

Check: As= 13(0.60in2) = 7.80 in

2 > 7.61 in

2 Good!

Interior Column Panel Positive Steel Reinforcement:

Φ1=0.90

db2= 0.75in

fc’= 5ksi

fy=60ksi

CSW= 150in

Critical Section: 𝑑2 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝑏2 = 12 − 0.75 − 0.50(0.75𝑖𝑛) = 10.875𝑖𝑛

𝑀𝑛2 =𝐼𝑛𝑛𝑒𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑃𝑜𝑖𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Interior Column Panel Width ∗ 𝑑 22

=143.20 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 10.875𝑖𝑛 2

= 107.63𝑝𝑠𝑖

ρ2 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .10763ksi

. 85 ∗ 5𝑘𝑠𝑖) 12))

= 1.823(10−3)

Page 103: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 102

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

As = ρ2 ∗ Interior Column Panel Width ∗ d2 = 1.823(10−3)(150in)(10.875in) = 2.964in2

Bottom Steel: Number of bars 7 #6 bar

Check: 𝑛𝜋

4> 𝐴𝑠 → 7 (

𝜋

4) (. 75𝑏1

2 ) = 3.09𝑖𝑛2 > 2.964𝑖𝑛2 → 𝐺𝑜𝑜𝑑!

Check: As= 7(0.44in2) = 3.08in

2 > 2.964in

2 Good!

Middle Column Panel Negative Steel Reinforcement:

Φ1=0.90

db1= 0.75in

fc’= 5ksi

fy=60ksi

MSW= L2-CSW = (25ft)(12in) -150in = 150in

Critical Section: 𝑑1 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝐼𝑏 = 12 − .75 − 0.5(0.75) = 10.875 𝑖𝑛

𝑀𝑛1 =𝑀𝑖𝑑𝑑𝑙𝑒 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Middle Column Panel Width ∗ 𝑑 21

=119.30 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 10.875𝑖𝑛 2

= 89.67𝑝𝑠𝑖

ρ1 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .08967ksi

. 85 ∗ 5𝑘𝑠𝑖) 12))

= 1.51(10−3) As = ρ1 ∗ Middle Column Panel Width ∗ d1 = 1.51(10−3)(150in)(10.875in) = 2.464in2

Top Steel: Number of bars 6 #6 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 6 (

𝜋

4) (. 75𝑏1

2 ) = 2.65 > 2.464 → 𝐺𝑜𝑜𝑑!

Check: As= 6(0.44in2) = 2.64 in

2 > 2.464 in

2 Good!

Middle Column Panel Positive Steel Reinforcement:

Φ1=0.90

db2= 0.875in

fc’= 5ksi

fy=60ksi

MSW= 150 in

Critical Section: 𝑑2 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝑏2 = 12 − 0.75 − 0.50(0.875𝑖𝑛) = 10.8125 𝑖𝑛

Page 104: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 103

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑀𝑛2 =𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑃𝑜𝑖𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥

Φ1 ∗ Middle Column Panel Width ∗ 𝑑 22=136.40 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 10.8125𝑖𝑛 2= 103.71𝑝𝑠𝑖

ρ2 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .10371ksi

. 85 ∗ 5𝑘𝑠𝑖) 12))

= 1.75(10−3)

As = ρ2 ∗ Middle Column Panel Width ∗ d2 = 1.75(10−3)(150in)(10.8125in) = 2.84in2

Bottom Steel: Number of bars 5 #7 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 5 (

𝜋

4) (. 875𝑏1

2 ) = 3.01𝑖𝑛2 > 2.85𝑖𝑛2 → 𝐺𝑜𝑜𝑑!

Check: As= 5(0.60in2) = 3 in

2 > 2.85in

2 Good!

Green Roof Slab Shear:

Case A Edge

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 412.52 psf

Slab

thickness 12 inch

db 1.128 inch

qdu 200.6 lbs

qlu 100 lbs

One way Shear Check

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 10.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 265.2375 𝑓𝑡

2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 109.4158k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 356.6𝑘

Bw=l2

Page 105: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 104

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case A Edge

d 10.686 in

At 265.2375 ft^2

Vu 109.4158 kip

(F)Vc 356.6 kip OK

Two-way Slab Shear

𝐴𝑡 = (𝑙12+𝑐

2) ∗ 𝑙2 − 𝑏1 ∗ 𝑏2 = 330.4𝑓𝑡^2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 136.3𝑘 b=1 , as=30

𝑏1 = 𝑐 +𝑑

2= 29.41𝑖𝑛 , 𝑏2 = 𝑐 + 𝑑 = 34.686

𝑏0 = 2 ∗ 𝑏1 + 𝑏2 = 93.372

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=222k

Case A Edge

At 330.3909 ft^2

Vu 136.2929 kip

b 1

as 30

b1 29.40625 in

b2 34.686

b0 93.372

(F)Vc 222 kip OK

Munb=full slab moment (col+mid) for and edge column=End span exterior M- = 199.3k-ft

𝛾𝐹 =1

1 +23 ∗√𝑏1𝑏2

= .62

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 123.54𝑘 ∗ 𝑓𝑡 Effective Width = 3h+c = 5ft

𝐴𝑐 = (2𝑏1 + 𝑏2) ∗ 𝑑 = 1054.9𝑖𝑛^2

𝐽

𝑐= 𝑏1 ∗ 𝑑(𝑏1 + 6𝑏2) + 𝑑

3

6= 12613𝑖𝑛^3

𝛾𝑣 = 1 − 𝛾𝐹 = .38

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 201.3𝑘/𝑖𝑛2

(𝜙)𝑉𝑐 = .75 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Page 106: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 105

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case A Edge

Munb 199.3 k-ft

YF 0.620071

Effective

Width 5 ft

Min Munb 46.2875 k-ft

Ac 1054.9 in^2

J/c 12613 in^3

Yv 0.379929

Vmax 201.3 Kips/in^2

(F)Vc 222.486 kips OK

Case B:

Case B Interior

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 412.52 psf

Slab thickness 12 inch

db 1.128 inch

qdu 200.6 lbs

qlu 100 lbs One way Shear Check

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 10.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 265.2375 𝑓𝑡

2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 109.4158k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 356.6𝑘

Bw=l2

Case B Interior d 10.8125 in

At 265.24 ft^2 Vu 109.4158 kip (F)Vc 356.62 kip OK

Two-way Slab Shear

Page 107: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 106

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐴𝑡 = (𝑙1) ∗ 𝑙2 − 𝑏1 ∗ 𝑏2 = 616.645𝑓𝑡2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 254.384𝑘

b=1 , as=40

𝑏1 = 𝑐 + 𝑑 = 34.8125𝑖𝑛 , 𝑏2 = 𝑐 + 𝑑 = 34.686𝑖𝑛

𝑏0 = 𝑏1 + 𝑏2 = 138.744𝑖𝑛

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=329.862

Case B Interior At 616.645 ft^2

Vu 254.3784 kip b 1 as 40 b1 34.686 in b2 34.686 in b0 138.744 in (F)Vc 329.862 kip OK

Munb=25.571 k-ft

𝛾𝐹 =1

1 +23 ∗√𝑏1𝑏2

= .6

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 15.3426𝑘 ∗ 𝑓𝑡 Effective Width = 3h+c = 5ft

𝐴𝑐 = 2(𝑏1 + 𝑏2) ∗ 𝑑 = 1482.618𝑖𝑛^2

𝐽

𝑐= 𝑏1 ∗ 𝑑(𝑏1 + 3𝑏2) + 𝑑

3

3= 17548.8𝑖𝑛^3

𝛾𝑣 = 1 − 𝛾𝐹 = .4

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 184.2𝑘/𝑖𝑛2

(𝜙)𝑉𝑐 = .75 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Case B Interior

Munb 25.571 k-ft

Yf 0.6

Yf*Munb check 15.3426

Effective Width 5 ft

Min Munb 46.2875 k-ft

Ac 1482.618 in^2

J/c 17548.78 in^3

Yv 0.4

Vmax 184.2345 Kips/in^2

(F)Vu 222.486 kips

Page 108: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 107

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case C:

Case C Edge

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 412.52 psf

Slab thickness 12 inch

db 1.128 inch

qdu 200.6 lbs

qlu 100 lbs

One way Shear Check

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 10.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 265.2375 𝑓𝑡

2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 109.4158k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 356.6𝑘

Bw=l2

Case C Edge d 10.686 in

At 265.2375 ft^2 Vu 109.4158 kip

(F)Vc 356.6227 kip OK

Two-way Slab Shear

𝐴𝑡 = (𝑙12+𝑐

2) ∗ 𝑙2 − 𝑏1 ∗ 𝑏2 = 330.4𝑓𝑡^2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 136.3𝑘 b=1 , as=30

𝑏1 = 𝑐 +𝑑

2= 29.41𝑖𝑛 , 𝑏2 = 𝑐 + 𝑑 = 34.78125

𝑏0 = 2 ∗ 𝑏1 + 𝑏2 = 93.372

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=222k

Page 109: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 108

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case C Edge At 330.432 ft^2

Vu 136.3098 kip b 1

as 30 b1 29.343 in b2 34.686 in b0 93.372 in (F)Vc 221.9905 kip OK

𝛾𝐹 =1

1 +23 ∗√𝑏1𝑏2

= .62

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 123.54𝑘 ∗ 𝑓𝑡 Effective Width = 3h+c = 5ft

𝐴𝑐 = (𝑏1 + 2𝑏2) ∗ 𝑑 = 997.77𝑖𝑛^2

𝑗

𝑐=2 ∗ 𝑏1

2 ∗ 𝑑(𝑏1 ∗ 2𝑏2) + 𝑑3(2𝑏1 + 𝑏2)

6𝑏1= 10964.82𝑖𝑛^3

𝛾𝑣 = 1 − 𝛾𝐹 = .38

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 219.5𝑘/𝑖𝑛2

(𝜙)𝑉𝑐 = .75 ∗ $ ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Case C Edge Munb 199.3 k-ft

Yf 0.619896 Yf*Munb check 123.5452 Effective Width 5 ft Min Munb 46.2875 k-ft Ac 997.7732 in^2 J/c 10964.82 in^3 Yv 0.380104 Vmax 219.5207 Kips/in^2 (F)Vu 222.486 kips OK

Page 110: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 109

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case D:

Case D Corner

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 412.52 psf

Slab thickness 12 inch

db 1.128 inch

qdu 200.6 lbs

qlu 100 lbs

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 10.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 265.2375 𝑓𝑡

2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 109.4158k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 356.6𝑘

Bw=l2

Case D Corner d 10.686 in

At 265.2375 ft^2 Vu 109.4158 kip (F)Vc 356.6227 kip OK

Two-way Slab Shear

𝐴𝑡 = (𝑙12) ∗𝑙22− (𝑐 +

𝑑

2)2

= 150.27𝑓𝑡^2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 62𝑘 b=1 , as=30

𝑏1 = 𝑐 +𝑑

2= 29.41𝑖𝑛 , 𝑏2 = 𝑐 +

𝑑

2= 29.41𝑖𝑛

𝑏0 = 𝑏1 + 𝑏2 = 58.69𝑖𝑛

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=139.53k

Page 111: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 110

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case D Corner At 150.2708 ft^2

Vu 61.98969 kip b 1 as 20 b1 29.343 in b2 29.343 in b0 58.686 in (F)Vc 139.5251 kip OK

Munb = 199.3k-ft

𝛾𝐹 =1

1 +23 ∗√𝑏1𝑏2

= .6

Effective Width = 3h+c = 5ft

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 119.58𝑘 ∗ 𝑓𝑡 𝐴𝑐 = (𝑏1 + 𝑏2) ∗ 𝑑 = 627.12𝑖𝑛

2

𝐽

𝑐= 𝑏12 ∗ 𝑑(𝑏1 + 4𝑏2) + 𝑑

3(𝑏1 + 𝑏2)

6𝑏1= 21664.01𝑖𝑛3

𝛾𝑣 = 1 − 𝛾𝐹 = .4

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 143𝑘/𝑖𝑛2

(𝜙)𝑉𝑐 = .75 ∗ $ ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Case D Corner Munb 199.3 k-ft

Yf 0.6 Yf*Munb check 119.58 Effective Width 5 ft Min Munb 46.2875 k-ft Ac 627.1186 in^2 J/c 21664.01 in^3 Yv 0.4 Vmax 143.0065 Kips/in^2 (F)Vu 222.486 kips OK

3rd

Floor Two-Way Slab:

Initial slab thickness: h=13in

Per ACI Table 9.5c

Page 112: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 111

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Superimposed dead load: DLsup=9.50psf

Concrete density: γ=150pcf Initial deal load: DL= h* γ=13in*150pcf=162.5psf

Load Combinations:

LRFD LOAD COMBINATIONS

Loads: Combinations:

Dead (D) 172.00 psf 1) 1.4D

Live (L) 65.00 psf 2) 1.2D + 1.6L + .5(Lr or S or R)

Live Roof (Lr) 0.00 psf 3) 1.2D + 1.6(Lr or S or R) + (.5L or .5W)

Snow (S) 0.00 psf 4) 1.2D + W+.5L+.5(Lr or S or R)

Rain ( R) 0.00 psf 5) 1.2D + E + .5L + .2S

Positive Wind (W) 0.00 psf 6) 0.9D + W

Negative Wind (W) 0.00 psf 7) 0.9D + 1E

Seismic (E) 0.00 psf

Results:

Positive: Negative: DESIGN VALUES (psf):

1) 240.80 psf - psf Positive: 310.40

2) 310.40 psf - psf Negative: 154.80 3) 238.90 psf 238.90 psf

4) 238.90 psf -

psf

5) 238.90 psf psf

6) 154.80 psf 154.80 psf

7) 154.80 psf - psf

LRFD Max Positive Moment: Mmax positive= 310.40 psf

LRFD Max Negative Moment: Mmax negative= 154.80 psf

Column cross section dimensions (square): Column Dimensions (CD)= 24in x 24in

L1=L2= 25ft

Ln= L1-CD=22.917ft

hmin=Ln/33=(22.917*12)/33=8.333in Check: h > hmin 13in > 8.33in OK!

qu=Mmax positive=310.40psf

Mo =𝑞𝑢 ∗ 𝐿1 ∗ 𝐿𝑛2

8=310.40𝑝𝑠𝑓 ∗ 25𝑓𝑡 ∗ 22.917𝑓𝑡2

8= 509.43𝑘𝑖𝑝 ∗ 𝑓𝑡

Page 113: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 112

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

3rd Floor Slab design tables Location along Span Coefficient Moment

Interior Span M- 0.65 333.5345

Interior Span M- 0.35 179.5955

End span interior M- 0.7 359.191

End span M+ 0.5 256.565

End Span Exterior M- 0.3 153.939

Location along Span Coefficient Moment

Interior Span M- 0.65 180.1086

Interior Span M- 0.35 96.98157

End span interior M- 0.7 193.9631

End span M+ 0.5 138.5451

End Span Exterior M- 0.3 83.12706

Area C Area C

1 19005.44 1 12310.52

2 1781.19 2 4024.057

Sum 20786.63 Sum 16334.58

Variable Value

Ib 18647.85

Is 17968.5

Alpha F1=Ib/Is 1.03780783

Bt 0.578418621

Page 114: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 113

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Interior Slab Panel Factored Moments k-ft

Location Column Strip Middle Strip

End Span Exterior M- 145.010538 8.928462

End Span M+ 153.939 102.626

End Span Interior M- 269.39325 89.79775

Interior Span M- 250.150875 83.383625

Interior Span M+ 107.7573 71.8382

Exterior Slab Panel Factored Moments k-ft

Location Column Strip Middle Strip

End Span Exterior M- 78.30569052 4.82136948

End Span M+ 103.908825 34.636275

End Span Interior M- 145.472355 48.490785

Interior Span M- 135.0814725 24.2453925

Interior Span M+ 72.7361775 24.2453925

Exterior slab panel column strip beam and slab factored moments k-ft

Location Beam Moments from slab

Slab moment

End Span Exterior M- 57.3576714 25.7693886

End Span M+ 95.596119 42.948981

End Span Interior 133.8345666 60.1285734

Interior Span M- 124.2749547 55.8336753

Interior Span M+ 66.9172833 30.0642867

Page 115: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 114

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Exterior Slab Panel Column Strip Beam moments k-ft

Location From Slab

From Perimeter wall and beam stem weight

Total beam design moment

End Span Exterior M-

57.3576714 44.24363636 101.6013078

End Span M+ 95.596119 44.24363636 139.8397554

End Span Interior 133.8345666 48.668 182.5025666

Interior Span M- 124.2749547 44.24363636 168.5185911

Interior Span M+ 66.9172833 30.4175 97.3347833

Interior slab panel column strip beam and slab factored moments k-ft

Location Beam Moments from slab

Slab moment

End Span Exterior M- 106.21791 47.72109

End Span M+ 177.02985 79.53515 End Span Interior 247.84179 111.34921 Interior Span M- 230.138805 103.395695 Interior Span M+ 123.920895 55.674605

Interior Slab Panel Column Strip Beam moments k-ft

Location From Slab

From Perimeter wall and beam stem weight

Total beam design moment

End Span Exterior M- 106.21791

44.24363636 150.4615464

End Span M+ 177.02985 44.24363636 221.2734864

End Span Interior 247.84179 48.668 296.50979

Interior Span M- 230.138805 44.24363636 274.3824414

Interior Span M+ 123.920895 30.4175 154.338395

Page 116: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 115

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Finding the centroid:

B=12in

HIb=24in

hw= HIb-h=24in-13in=11in

Centroid (from the top) =

𝐻𝑙𝑏2 ∗ 𝐵 ∗ 𝐻𝑙𝑏 +

ℎ2 ∗ 𝑥 ∗ ℎ

𝐵 ∗ 𝐻𝑙𝑏 + 𝑥 ∗ ℎ=

242 ∗ 12 ∗ 24 +

112 ∗ 11 ∗ 11

12 ∗ 24 + 11 ∗ 11= 10.18𝑖𝑛

𝐼𝑏 =1

3[(𝐵 + 𝑥)(𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑2) + (𝐵(𝐻𝑙𝑏 − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑)

3) + (𝑥(𝐻𝑙𝑏 − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑)3)]

= 18647.85𝑖𝑛4 Check: Centroid < h 10.18in < 12 in Good!

𝐼𝑠 =1

12[(𝐶𝐷

2+𝐿12) ℎ3 =

1

12[(24

2+25

2) 123 = 17968.5𝑖𝑛4

𝛼𝐹1 = (𝐼𝑏𝐼𝑠) =

18647.85

17968.5= 1.038

Check: αF1 > 0.80 1.038 > 0.80 Good!

Reinforcement:

Exterior Column Panel Negative Steel Reinforcement:

Φ1=0.90

db1 = diameter of steel reinforcement = 0.875in

fc’= 5.5ksi

fy=60ksi

ECSW= CSW/2 +CD/2 = 87in

Critical Section: 𝑑1 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝐼𝑏 = 13 − .75 − 0.5(0.875) = 11.8125𝑖𝑛

𝑀𝑛1 =𝐸𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Exterior Column Panel Width ∗ 𝑑 21

=147.94𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 87𝑖𝑛 ∗ 11.8125𝑖𝑛 2

= 162.49𝑝𝑠𝑖

ρ1 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .16249ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 2.76(10−3)

As = ρ1 ∗ Exterior Column Panel Width ∗ d1 = 2.76(10−3)(87in)(11.8125in) = 2.83in2

Top Steel: Number of bars 5 #7 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 5 (

𝜋

4) (. 875𝑏1

2 ) = 3.01𝑖𝑛2 > 2.83𝑖𝑛2 → 𝐺𝑜𝑜𝑑!

Check: As= 6(0.60in2) = 3.0in

2 > 2.83in

2 Good!

Page 117: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 116

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Exterior Column Panel Positive Steel Reinforcement:

Φ1=0.90

db2= 0.75in

fc’= 5.5ksi

fy=60ksi

ECSW= 87in

Critical Section: 𝑑2 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝑏2 = 13 − 0.75 − 0.50(0.75𝑖𝑛) = 11.875𝑖𝑛

𝑀𝑛2 =𝐸𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Exterior Column Panel Width ∗ 𝑑 22

= 153.94 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 87𝑖𝑛 ∗ 11.875𝑖𝑛 2

= 167.303 𝑝𝑠𝑖

ρ2 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .1673ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 2.84(10−3) As = ρ2 ∗ Exterior Column Panel Width ∗ d2 = 2.861(10−3)(87in)(11.875in) = 2.93in2

Bottom Steel: Number of bars 7 #6 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 7 (

𝜋

4) (. 75𝑏1

2 ) = 3.09𝑖𝑛2 > 2.93𝑖𝑛2 → 𝐺𝑜𝑜𝑑!

Check: As= 7(0.44in2) = 3.08in

2 > 2.93 in

2 Good!

Interior Column Panel Negative Steel Reinforcement:

Φ1=0.90

db1= 0.875in

fc’= 5.5ksi

fy=60ksi

ICSW= 2*min (.25*L1, .25*L2) = 150in

Critical Section: 𝑑1 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝐼𝑏 = 13 − .75 − 0.5(0.75) = 11.8125𝑖𝑛

𝑀𝑛1 =𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Interior Column Strip Width ∗ 𝑑 21

=269.39 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 11.8125𝑖𝑛 2

= 171.61𝑝𝑠𝑖

ρ1 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

4𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .17161ksi

. 85 ∗ 4𝑘𝑠𝑖) 12))

= 2.91(10−3)

Page 118: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 117

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

As = ρ1 ∗ Interior Column Panel Width ∗ d1 = 2.91(10−3)(150in)(11.8125in) = 5.16in2

Top Steel: Number of bars 9 #7 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 9 (

𝜋

4) (. 875𝑏1

2 ) = 5.41 > 5.16 → 𝐺𝑜𝑜𝑑!

Check: As= 9(0.6in2) = 5.40 in

2 > 5.16 in

2 Good!

Interior Column Panel Positive Steel Reinforcement:

Φ1=0.90

db2= 0.75in

fc’= 5.5ksi

fy=60ksi

CSW= 150in

Critical Section: 𝑑2 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝑏2 = 13 − 0.75 − 0.50(0.675𝑖𝑛) = 11.875𝑖𝑛

𝑀𝑛2 =𝐼𝑛𝑛𝑒𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑃𝑜𝑖𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Interior Column Panel Width ∗ 𝑑 22

=107.76 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 11.875𝑖𝑛 2

= 67.93𝑝𝑠𝑖

ρ2 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .06793ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 1.14(10−3)

As = ρ2 ∗ Interior Column Panel Width ∗ d2 = 1.14(10−3)(150in)(11.875in) = 2.03in2

Bottom Steel: Number of bars 5#6 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 3 (

𝜋

4) (. 75𝑏1

2 ) = 2.21𝑖𝑛2 > 2.03𝑖𝑛2 → 𝐺𝑜𝑜𝑑!

Check: As= 5(0.44in2) = 2.20in

2 > 2.03in

2 Good!

Middle Column Panel Negative Steel Reinforcement:

Φ1=0.90

db1= 0.75in

fc’= 5.5ksi

fy=60ksi

MSW= L2-CSW = (25ft)(12in) -150in = 150in

Page 119: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 118

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Critical Section: 𝑑1 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝐼𝑏 = 13 − .75 − 0.5(0.5) = 11.875 𝑖𝑛

𝑀𝑛1 =𝑀𝑖𝑑𝑑𝑙𝑒 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Middle Column Panel Width ∗ 𝑑 21

=89.8 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 11.875𝑖𝑛 2

= 56.61𝑝𝑠𝑖

ρ1 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .8967ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 0.95(10−3) As = ρ1 ∗ Middle Column Panel Width ∗ d1 = 0.95(10−3)(150in)(11.875in) = 1.69in2

Top Steel: Number of bars 4 #6 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 4 (

𝜋

4) (. 75𝑏1

2 ) = 1.77 𝑖𝑛2 > 1.69in2 → 𝐺𝑜𝑜𝑑!

Check: As= 4(0.44in2) = 1.76 in

2 > 1.69 in

2 Good!

Middle Column Panel Positive Steel Reinforcement:

Φ1=0.90

db2= 0.875in

fc’= 5.5ksi

fy=60ksi

MSW= 150 in

Critical Section: 𝑑2 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝑏2 = 13 − 0.75 − 0.50(0.875𝑖𝑛) = 11.8125 𝑖𝑛

𝑀𝑛2 =𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑃𝑜𝑖𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥

Φ1 ∗ Middle Column Panel Width ∗ 𝑑 22=102.63 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 11.8125𝑖𝑛 2= 65.38𝑝𝑠𝑖

ρ2 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .06538ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 1.10(10−3)

As = ρ2 ∗ Middle Column Panel Width ∗ d2 = 1.10(10−3)(150in)(11.8125in) = 1.94in2

Bottom Steel: Number of bars 4 #7 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) < 𝐴𝑠 → 4 (

𝜋

4) (. 875𝑏1

2 ) = 2.41𝑖𝑛2 > 1.94𝑖𝑛2 → 𝐺𝑜𝑜𝑑!

Check: As= 4(0.6in2) = 2.40 in

2 > 1.94 in

2 Good!

Page 120: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 119

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

3rd

floor Slab Shear:

Case A Edge

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 310.4 psf

Slab thickness 13 inch

db 1.128 inch

qdu 172 lbs

qlu 65 lbs

One way Shear Check

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 11.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 263.2 𝑓𝑡

2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 81.7k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 390𝑘

bw=l2

Case A Edge One Way Shear d 11.686 in

At 263.1542 ft^2 Vu 81.68305 kip (F)Vc 389.9956 kip OK

Two-way Slab Shear

𝐴𝑡 = (𝑙12+𝑐

2) ∗ 𝑙2 − 𝑏1 ∗ 𝑏2 = 330.1𝑓𝑡^2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 102.46𝑘 b=1 , as=30

𝑏1 = 𝑐 +𝑑

2= 29.91𝑖𝑛 , 𝑏2 = 𝑐 + 𝑑 = 35.686𝑖𝑛

𝑏0 = 2 ∗ 𝑏1 + 𝑏2 = 95.372𝑖𝑛

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=247.96k

Page 121: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 120

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case A Edge Two Way Shear At 330.1043 ft^2

Vu 102.4644 kip b 1 as 30 b1 29.843 in b2 35.686 in b0 95.372 in (F)Vc 247.9644 kip OK

Munb= 147.94k-ft

𝛾𝐹 =1

1 +23 ∗√𝑏1𝑏2

= .62

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 91.9𝑘 ∗ 𝑓𝑡 Effective Width = 3h+c = 5.25ft

𝐴𝑐 = (2𝑏1 + 𝑏2) ∗ 𝑑 = 1182.8𝑖𝑛^2

𝐽

𝑐= 𝑏1 ∗ 𝑑(𝑏1 + 6𝑏2) + 𝑑

3

6= 14445.92𝑖𝑛^3

𝛾𝑣 = 1 − 𝛾𝐹 = .38

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 133.17𝑘/𝑖𝑛2

(𝜙)𝑉𝑐 = .75 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Case A Edge Munb 147.94 k-ft

Yf 0.621253 Yf*Munb 91.90814 Effective Width 5.25 ft Min Munb 30.08688 k-ft Ac 1182.798 in^2 J/c 14445.9 in^3 Yv 0.378747 Vmax 133.1736 Kips/in^2 (F)Vu 222.486 kips OK

Page 122: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 121

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case B Interior

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 310.4 psf

Slab thickness 13 inch

db 1.128 inch

qdu 172 lbs

qlu 65 lbs

One way Shear Check

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 11.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 263.2 𝑓𝑡

2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 81.7k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 390𝑘

bw=l2

Case B Interior One Way Shear d 11.686 in

At 263.1542 ft^2 Vu 81.68305 kip (F)Vc 389.9956 kip OK

Two-way Slab Shear

𝐴𝑡 = (𝑙1) ∗ 𝑙2 − 𝑏1 ∗ 𝑏2 = 616.15𝑓𝑡2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 191.25𝑘

b=1 , as=40

𝑏1 = 𝑐 + 𝑑 = 35.686𝑖𝑛 , 𝑏2 = 𝑐 + 𝑑 = 35.686𝑖𝑛

𝑏0 = 𝑏1 + 𝑏2 = 142.744𝑖𝑛

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=371.13k

Page 123: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 122

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case B Interior Two Way Shear At 616.1563 ft^2

Vu 191.2549 kip b 1 as 40 b1 35.686 in b2 35.686 in b0 142.744 in (F)Vc 371.1302 kip OK

Munb=19.24 k-ft

𝛾𝐹 =1

1+2

3∗√𝑏1𝑏2

= .6

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 91.9𝑘 ∗ 𝑓𝑡 Effective Width = 3h+c = 5.25ft

𝐴𝑐 = 2(𝑏1 + 𝑏2) ∗ 𝑑 = 1668.101𝑖𝑛^2

𝐽

𝑐= 𝑏1 ∗ 𝑑(𝑏1 + 3𝑏2) + 𝑑

3

3= 20374.35𝑖𝑛^3

𝛾𝑣 = 1 − 𝛾𝐹 = .4

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 121.74𝑘/𝑖𝑛2

(𝜙)𝑉𝑐 = .75 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Case B Interior Munb 19.24 k-ft

Yf 0.6 Yf*Munb 11.544 Effective

Width 5.25 ft Min Munb 30.08688 k-ft Ac 1668.106 in^2 J/c 20374.64 in^3 Yv 0.4 Vmax 121.742 Kips/in^2 (F)Vu 222.486 kips OK

Page 124: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 123

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case C:

Case C Edge

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 310.4 psf

Slab thickness 13 inch

db 1.128 inch

qdu 172 lbs

qlu 65 lbs

One way Shear Check

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 11.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 263.2 𝑓𝑡

2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 81.7k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 390𝑘

bw=l2

Case C Edge d 11.686 in

At 263.1542 ft^2 Vu 81.68305 kip (F)Vc 389.9956 kip OK

Two-way Slab Shear

𝐴𝑡 = (𝑙12+𝑐

2) ∗ 𝑙2 − 𝑏1 ∗ 𝑏2 = 330.06𝑓𝑡^2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 102.46𝑘 b=1 , as=30

𝑏1 = 𝑐 +𝑑

2= 29.84𝑖𝑛 , 𝑏2 = 𝑐 + 𝑑 = 35.686𝑖𝑛

𝑏0 = 2 ∗ 𝑏1 + 𝑏2 = 95.372𝑖𝑛

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=247.96k

Page 125: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 124

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case C Edge Two Way Shear At 330.1043 ft^2

Vu 102.4644 kip b 1 as 30 b1 29.843 in b2 35.686 in b0 95.372 in (F)Vc 247.9644 kip OK

Munb = 147.4k-ft

𝛾𝐹 =1

1 +23 ∗√𝑏1𝑏2

= .62

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 91.9𝑘 ∗ 𝑓𝑡 Effective Width = 3h+c = 5.25ft

𝐴𝑐 = (𝑏1 + 2𝑏2) ∗ 𝑑 = 1114.52𝑖𝑛^2

𝑗

𝑐=2 ∗ 𝑏1

2 ∗ 𝑑(𝑏1 ∗ 2𝑏2) + 𝑑3(2𝑏1 + 𝑏2)

6𝑏1= 12616.1𝑖𝑛^3

𝛾𝑣 = 1 − 𝛾𝐹 = .38

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 145.1𝑘/𝑖𝑛2

(𝜙)𝑉𝑐 = .75 ∗ $ ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Case C Edge Munb 147.94 k-ft

Yf 0.621253 Yf*Munb 91.90814 Effective Width 5.25 ft Min Munb 30.08688 k-ft Ac 1114.517 in^2 J/c 12616.1 in^3 Yv 0.378747 Vmax 145.2317 Kips/in^2 (F)Vu 222.486 kips OK

Page 126: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 125

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case D:

Case D Corner

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 310.4 psf

Slab thickness 13 inch

db 1.128 inch

qdu 172 lbs

qlu 65 lbs

One way Shear Check

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 11.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 263.2 𝑓𝑡

2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 81.7k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 390𝑘

bw=l2

Case D Corner One Way Shear d 11.686 in

At 263.1542 ft^2 Vu 81.68305 kip (F)Vc 389.9956 kip OK

Two-way Slab Shear

𝐴𝑡 = (𝑙12) ∗𝑙22− (𝑐 +

𝑑

2)2

= 150.06𝑓𝑡^2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 46.58𝑘 b=1 , as=20

𝑏1 = 𝑐 +𝑑

2= 29.843𝑖𝑛 , 𝑏2 = 𝑐 +

𝑑

2= 29.843𝑖𝑛

𝑏0 = 𝑏1 + 𝑏2 = 59.686𝑖𝑛

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=155.2k

Page 127: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 126

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case D Corner Two Way Shear At 150.0652 ft^2

Vu 46.58025 kip b 1 as 20 b1 29.843 in b2 29.843 in b0 59.686 in (F)Vc 155.1819 kip OK

Munb = 147.94k-ft

𝛾𝐹 =1

1 +23 ∗√𝑏1𝑏2

= .6

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 88.76𝑘 ∗ 𝑓𝑡 Effective Width = 3h+c = 5.25ft

𝐴𝑐 = (𝑏1 + 𝑏2) ∗ 𝑑 = 697.5𝑖𝑛2

𝐽

𝑐= 𝑏12 ∗ 𝑑(𝑏1 + 4𝑏2) + 𝑑

3(𝑏1 + 𝑏2)

6𝑏1= 22946.5𝑖𝑛3

𝛾𝑣 = 1 − 𝛾𝐹 = .4

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 97.73𝑘/𝑖𝑛2

(𝜙)𝑉𝑐 = .75 ∗ $ ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Case D Corner Munb 147.94 k-ft

Yf 0.6 Yf*Munb 88.764 Effective

Width 5.25 ft Min Munb 30.08688 k-ft Ac 697.4906 in^2 J/c 22946.53 in^3 Yv 0.4 Vmax 97.729 Kips/in^2 (F)Vu 222.486 kips OK

Page 128: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 127

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

2nd

Floor Two-Way Slab:

Initial slab thickness: h=13in

Per ACI Table 9.5c

Superimposed dead load: DLsup=30psf

Concrete density: γ=150pcf Initial deal load: DL= h* γ=13in*150pcf=162.5psf

Load Combinations:

LRFD LOAD COMBINATIONS

Loads: Combinations:

Dead (D) 192.50 psf 1) 1.4D

Live (L) 100.00 psf 2) 1.2D + 1.6L + .5(Lr or S or R)

Live Roof (Lr) 0.00 psf 3) 1.2D + 1.6(Lr or S or R) + (.5L or .5W)

Snow (S) 0.00 psf 4) 1.2D + W+.5L+.5(Lr or S or R)

Rain ( R) 0.00 psf 5) 1.2D + E + .5L + .2S

Positive Wind (W) 0.00 psf 6) 0.9D + W

Negative Wind (W) 0.00 psf 7) 0.9D + 1E

Seismic (E) 0.00 psf

Results:

Positive: Negative: DESIGN VALUES (psf):

1) 269.50 psf - psf Positive: 391.00

2) 391.00 psf - psf Negative: 173.25 3) 281.00 psf 281.00 psf

4) 281.00 psf -

psf

5) 281.00 psf psf

6) 173.25 psf 173.25 psf

7) 173.25 psf - psf

LRFD Max Positive Moment: Mmax positive= 391.0 psf

LRFD Max Negative Moment: Mmax negative= 173.25 psf

Column cross section dimensions (square): Column Dimensions (CD)= 24in x 24in

L1=L2= 25ft

Ln= L1-CD=22.917ft

Page 129: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 128

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

hmin=Ln/33=(22.917*12)/33=8.333in Check: h > hmin 13in > 8.33in OK!

qu=Mmax positive=391.40psf

Mo =𝑞𝑢 ∗ 𝐿1 ∗ 𝐿𝑛2

8=391.40𝑝𝑠𝑓 ∗ 25𝑓𝑡 ∗ 22.917𝑓𝑡2

8= 642.37𝑘𝑖𝑝 ∗ 𝑓𝑡

2nd Floor Slab Design tables Location along Span Coefficient Moment

Interior Span M- 0.65 420.1417

Interior Span M- 0.35 226.2302

End span interior M- 0.7 452.4603

End span M+ 0.5 323.1859

End Span Exterior M- 0.3 193.9116

Location along Span Coefficient Moment

Interior Span M- 0.65 226.8765

Interior Span M- 0.35 122.1643

End span interior M- 0.7 244.3286

End span M+ 0.5 174.5204

End Span Exterior M- 0.3 104.7122

Area C Area C

1 19005.44 1 12310.52

2 1781.19 2 4024.057

Sum 20786.63 Sum 16334.58

Variable Value

Ib 18647.85

Is 17968.5

Alpha F1=Ib/Is 1.03780783

Bt 0.578418621

Page 130: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 129

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Interior Slab Panel Factored Moments k-ft

Location Column Strip Middle Strip

End Span Exterior M- 182.6646919 11.24687063

End Span M+ 193.9115625 129.274375

End Span Interior M- 339.3452344 113.1150781

Interior Span M- 315.1062891 105.0354297

Interior Span M+ 135.7380938 90.4920625

Exterior Slab Panel Factored Moments k-ft

Location Column Strip Middle Strip

End Span Exterior M- 98.63893361 6.073310138

End Span M+ 130.8903047 43.63010156

End Span Interior 183.2464266 61.08214219

Interior Span M- 170.1573961 30.54107109

Interior Span M+ 91.62321328 30.54107109

Exterior slab panel column strip beam and slab factored

moments k-ft

Location Beam Moments from slab

Slab moment

End Span Exterior M- 72.25144819 32.46079556

End Span M+ 120.4190803 54.10132594

End Span Interior 168.5867124 75.74185631

Interior Span M- 156.5448044 70.33172372

Interior Span M+ 84.29335622 37.87092816

Exterior Slab Panel Column Strip Beam moments k-ft

Location From Slab From Perimeter wall and beam stem weight

Total beam design moment

End Span Exterior M- 72.25144819 44.24363636 116.4950846

End Span M+ 120.4190803 44.24363636 164.6627167

End Span Interior 168.5867124 48.668 217.2547124

Interior Span M- 156.5448044 44.24363636 200.7884408

Interior Span M+ 84.29335622 30.4175 114.7108562

Interior slab panel column strip beam and slab factored

Page 131: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 130

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

moments k-ft

Location Beam Moments from slab

Slab moment

End Span Exterior M- 133.7989781 60.11258438

End Span M+ 222.9982969 100.1876406

End Span Interior 312.1976156 140.2626969

Interior Span M- 289.8977859 130.2439328

Interior Span M+ 156.0988078 70.13134844

Interior Slab Panel Column Strip Beam moments k-ft

Location From Slab From Perimeter wall and beam stem weight

Total beam design moment

End Span Exterior M- 133.7989781 44.24363636 178.0426145

End Span M+ 222.9982969 44.24363636 267.2419332

End Span Interior 312.1976156 48.668 360.8656156

Interior Span M- 289.8977859 44.24363636 334.1414223

Interior Span M+ 156.0988078 30.4175 186.5163078

Finding the centroid:

B=12in

HIb=24in

hw= HIb-h=24in-13in=11in

Centroid (from the top) =

𝐻𝑙𝑏2 ∗ 𝐵 ∗ 𝐻𝑙𝑏 +

ℎ2 ∗ 𝑥 ∗ ℎ

𝐵 ∗ 𝐻𝑙𝑏 + 𝑥 ∗ ℎ=

242 ∗ 12 ∗ 24 +

112 ∗ 11 ∗ 11

12 ∗ 24 + 11 ∗ 11= 10.18𝑖𝑛

𝐼𝑏 =1

3[(𝐵 + 𝑥)(𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑2) + (𝐵(𝐻𝑙𝑏 − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑)

3) + (𝑥(𝐻𝑙𝑏 − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑)3)]

= 18647.85𝑖𝑛4 Check: Centroid < h 10.18in < 12 in Good!

𝐼𝑠 =1

12[(𝐶𝐷

2+𝐿12) ℎ3 =

1

12[(24

2+25

2) 123 = 17968.5𝑖𝑛4

𝛼𝐹1 = (𝐼𝑏𝐼𝑠) =

18647.85

17968.5= 1.038

Check: αF1 > 0.80 1.038 > 0.80 Good!

Reinforcement:

Exterior Column Panel Negative Steel Reinforcement:

Φ1=0.90

Page 132: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 131

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

db1 = diameter of steel reinforcement = 0.875in

fc’= 5.5ksi

fy=60ksi

ECSW= CSW/2 +CD/2 = 87in

Critical Section: 𝑑1 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝐼𝑏 = 13 − .75 − 0.5(0.875) = 11.8125𝑖𝑛

𝑀𝑛1 =𝐸𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Exterior Column Panel Width ∗ 𝑑 21

=186.35𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 87𝑖𝑛 ∗ 11.8125𝑖𝑛 2

= 204.675𝑝𝑠𝑖

ρ1 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .204675ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 3.50(10−3)

As = ρ1 ∗ Exterior Column Panel Width ∗ d1 = 3.50(10−3)(87in)(11.8125in) = 3.594in2

Top Steel: Number of bars 6 #7 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 6 (

𝜋

4) (. 875𝑏1

2 ) = 3.61𝑖𝑛2 > 3.594𝑖𝑛2 → 𝐺𝑜𝑜𝑑!

Check: As= 6(0.60in2) = 3.60in

2 > 3.594in

2 Good!

Exterior Column Panel Positive Steel Reinforcement:

Φ1=0.90

db2= 0.75in

fc’= 5.5ksi

fy=60ksi

ECSW= 87in

Critical Section: 𝑑2 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝑏2 = 13 − 0.75 − 0.50(0.75𝑖𝑛) = 11.875𝑖𝑛

𝑀𝑛2 =𝐸𝑥𝑡𝑒𝑟𝑖𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Exterior Column Panel Width ∗ 𝑑 22

= 193.91 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 87𝑖𝑛 ∗ 11.875𝑖𝑛 2

= 210.74 𝑝𝑠𝑖

ρ2 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .21074ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 3.60(10−3) As = ρ2 ∗ Exterior Column Panel Width ∗ d2 = 3.60(10−3)(87in)(11.875in) = 3.723in2

Bottom Steel: Number of bars 9 #6 bar

Page 133: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 132

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 9 (

𝜋

4) (. 75𝑏1

2 ) = 3.974𝑖𝑛2 > 3.723𝑖𝑛2 → 𝐺𝑜𝑜𝑑!

Check: As= 9(0.44in2) = 3.96in

2 > 3.723 in

2 Good!

Interior Column Panel Negative Steel Reinforcement:

Φ1=0.90

db1= 0.875in

fc’= 5.5ksi

fy=60ksi

ICSW= 2*min (.25*L1, .25*L2) = 150in

Critical Section: 𝑑1 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝐼𝑏 = 13 − .75 − 0.5(0.75) = 11.8125𝑖𝑛

𝑀𝑛1 =𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Interior Column Strip Width ∗ 𝑑 21

=339.35 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 11.8125𝑖𝑛 2

= 216.178𝑝𝑠𝑖

ρ1 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .216178ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 3.70(10−3)

As = ρ1 ∗ Interior Column Panel Width ∗ d1 = 3.70(10−3)(150in)(11.8125in) = 6.56in2

Top Steel: Number of bars 12 #7 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 12 (

𝜋

4) (. 875𝑏1

2 ) = 7.21 > 6.56 → 𝐺𝑜𝑜𝑑!

Check: As= 12(0.6in2) = 7.20 in

2 > 6.56 in

2 Good!

Interior Column Panel Positive Steel Reinforcement:

Φ1=0.90

db2= 0.75in

fc’= 5.5ksi

fy=60ksi

CSW= 150in

Critical Section: 𝑑2 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝑏2 = 13 − 0.75 − 0.50(0.675𝑖𝑛) = 11.875𝑖𝑛

Page 134: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 133

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑀𝑛2 =𝐼𝑛𝑛𝑒𝑟 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑃𝑜𝑖𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Interior Column Panel Width ∗ 𝑑 22

=135.74 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 11.875𝑖𝑛 2

= 85.563𝑝𝑠𝑖

ρ2 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .085563ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 1.44(10−3)

As = ρ2 ∗ Interior Column Panel Width ∗ d2 = 1.44(10−3)(150in)(11.875in) = 2.57in2

Bottom Steel: Number of bars 6 #6 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 6 (

𝜋

4) (. 75𝑏1

2 ) = 2.65𝑖𝑛2 > 2.57𝑖𝑛2 → 𝐺𝑜𝑜𝑑!

Check: As= 6(0.44in2) = 2.64in

2 > 2.57in

2 Good!

Middle Column Panel Negative Steel Reinforcement:

Φ1=0.90

db1= 0.75in

fc’= 5.5ksi

fy=60ksi

MSW= L2-CSW = (25ft)(12in) -150in = 150in

Critical Section: 𝑑1 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝐼𝑏 = 13 − .75 − 0.5(0.5) = 11.875 𝑖𝑛

𝑀𝑛1 =𝑀𝑖𝑑𝑑𝑙𝑒 𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥Φ1 ∗ Middle Column Panel Width ∗ 𝑑 21

=113.12 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 11.875𝑖𝑛 2

= 71.305𝑝𝑠𝑖

ρ1 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .071305ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 1.20(10−3) As = ρ1 ∗ Middle Column Panel Width ∗ d1 = 1.20(10−3)(150in)(11.875in) = 2.135in2

Top Steel: Number of bars 6 #6 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) > 𝐴𝑠 → 6 (

𝜋

4) (. 75𝑏1

2 ) = 2.64 𝑖𝑛2 > 2.135in2 → 𝐺𝑜𝑜𝑑!

Check: As= 6(.44in2) = 2.64 in

2 > 2.135 in

2 Good!

Page 135: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 134

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Middle Column Panel Positive Steel Reinforcement:

Φ1=0.90

db2= 0.875in

fc’= 5.5ksi

fy=60ksi

MSW= 150 in

Critical Section: 𝑑2 = ℎ − 0.75𝑖𝑛 − 0.50 ∗ 𝑑𝑏2 = 13 − 0.75 − 0.50(0.875𝑖𝑛) = 11.8125 𝑖𝑛

𝑀𝑛2 =𝐶𝑜𝑙𝑢𝑚𝑛 𝑃𝑎𝑛𝑒𝑙 𝑃𝑜𝑖𝑡𝑖𝑣𝑒 𝑀𝑜𝑚𝑒𝑛𝑡𝑚𝑎𝑥

Φ1 ∗ Middle Column Panel Width ∗ 𝑑 22=129.27 𝑘𝑖𝑝 ∗ 𝑓𝑡 ∗ 12 ∗ 1000

0.90 ∗ 150𝑖𝑛 ∗ 11.8125𝑖𝑛 2= 82.350𝑝𝑠𝑖

ρ2 = .85 ∗𝑓𝑐′

𝑓𝑦(1 − (1 −

2 ∗ 𝑀𝑛1. 85 ∗ 𝑓𝑐′

) 12) = .85 ∗

5.5𝑘𝑠𝑖

60𝑘𝑠𝑖(1 − ((1 −

2 ∗ .08235ksi

. 85 ∗ 5.5𝑘𝑠𝑖) 12))

= 1.39(10−3)

As = ρ2 ∗ Middle Column Panel Width ∗ d2 = 1.39(10−3)(150in)(11.8125in) = 2.456in2

Bottom Steel: Number of bars 6 #7 bar

Check: 𝑛𝜋

4(𝑑𝑏12 ) < 𝐴𝑠 → 6 (

𝜋

4) (. 875𝑏1

2 ) = 3.61𝑖𝑛2 > 2.456𝑖𝑛2 → 𝐺𝑜𝑜𝑑!

Check: As= 6(0.6in2) = 3.60 in

2 > 2.456in

2 Good!

Two-Way Slab Shear 2

nd Floor Slab Shear:

Case A Edge

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 391 psf

Slab thickness 13 inch

db 1.128 inch

qdu 192.5 lbs

qlu 100 lbs

One way Shear Check

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 11.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 263.1542 𝑓𝑡

2

Page 136: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 135

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 102.9k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 390𝑘

Bw=l2

Case A Edge d 11.686 in

At 263.1542 ft^2 Vu 102.8933 kip (F)Vc 389.9956 kip OK

Two-way Slab Shear

𝐴𝑡 = (𝑙12+𝑐

2) ∗ 𝑙2 − 𝑏1 ∗ 𝑏2 = 330.1𝑓𝑡^2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 129.07𝑘 b=1 , as=30

𝑏1 = 𝑐 +𝑑

2= 29.843𝑖𝑛 , 𝑏2 = 𝑐 + 𝑑 = 35.686𝑖𝑛

𝑏0 = 2 ∗ 𝑏1 + 𝑏2 = 95.372𝑖𝑛

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=247.9644k

Case A Edge At 330.1043 ft^2

Vu 129.0708 kip b 1 as 30 b1 29.843 in b2 35.686 in b0 95.372 in (F)Vc 247.9644 kip OK

𝛾𝐹 =1

1+2

3∗√𝑏1𝑏2

= .621

Effective Width = 3h+c = 5.25ft

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 115.77𝑘 ∗ 𝑓𝑡 𝐴𝑐 = (2𝑏1 + 𝑏2) ∗ 𝑑 = 1199.34𝑖𝑛^2

𝑗

𝑐=2 ∗ 𝑏1

2 ∗ 𝑑(𝑏1 ∗ 2𝑏2) + 𝑑3(2𝑏1 + 𝑏2)

6𝑏1

𝐽

𝑐= 𝑏1 ∗ 𝑑(𝑏1 + 6𝑏2) + 𝑑

3

6= 14686.92𝑖𝑛^3

𝛾𝑣 = 1 − 𝛾𝐹 = .379

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 165.25𝑘/𝑖𝑛2

Page 137: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 136

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

(𝜙)𝑉𝑐 = .75 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Case A Edge Munb 186.35 k-ft

Yf 0.621253 Yf*Munb 115.7705 Effective

Width 5.25 ft Min Munb 46.2875 k-ft Ac 1182.798 in^2 J/c 14445.9 in^3 Yv 0.378747 Vmax 167.7526 Kips/in^2 (F)Vu 222.486 kips OK

Case B:

Case B Interior

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 391 psf

Slab thickness 13 inch

db 1.128 inch

qdu 192.5 lbs

qlu 100 lbs

One way Shear Check

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 11.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 263.1542 𝑓𝑡

2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 102.9k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 390𝑘

Bw=l2

Case B Interior d 11.686 in

At 263.1542 ft^2 Vu 102.8933 kip (F)Vc 389.9956 kip OK

Two-way Slab Shear

𝐴𝑡 = 𝐴𝑡 = (𝑙1) ∗ 𝑙2 − 𝑏1 ∗ 𝑏2 = 616.16𝑓𝑡^2

Page 138: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 137

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 240.9𝑘 b=1 , as=40

𝑏1 = 𝑐 + 𝑑 = 35.686𝑖𝑛 , 𝑏2 = 𝑐 + 𝑑 = 35.686𝑖𝑛

𝑏0 = 2(𝑏1 + 𝑏2) = 142.744𝑖𝑛

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=371.13k

Case B Interior At 616.1563 ft^2

Vu 240.9171 kip b 1 as 40 b1 35.686 in b2 35.686 in b0 142.744 in (F)Vc 371.1302 kip OK

Munb = 24.23k-ft

𝛾𝐹 =1

1 +23 ∗√𝑏1𝑏2

= .6

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 14.54𝑘 ∗ 𝑓𝑡 Effective Width = 3h+c = 5.25ft

𝐴𝑐 = 2(𝑏1 + 𝑏2) ∗ 𝑑 = 1668.11𝑖𝑛^2

𝐽

𝑐= 𝑏1 ∗ 𝑑(𝑏1 + 3𝑏2) + 𝑑

3

3= 20374.64𝑖𝑛^3

𝛾𝑣 = 1 − 𝛾𝐹 = .40

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 155.33𝑘𝑖𝑛2

(𝜙)𝑉𝑐 = .75 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Page 139: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 138

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case B Interior Munb 24.23 k-ft

Yf 0.6 Yf*Munb 14.538 Effective

Width 5.25 ft Min Munb 46.2875 k-ft Ac 1668.106 in^2 J/c 20374.64 in^3 Yv 0.4 Vmax 155.3302 Kips/in^2 (F)Vu 222.486 kips OK

Case C:

Case C Edge

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 391 psf

Slab thickness 13 inch

db 1.128 inch

qdu 192.5 lbs

qlu 100 lbs

One way Shear Check

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 11.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 263.1542 𝑓𝑡

2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 102.9k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 390𝑘

Bw=l2

Case C Edge d 11.686 in

At 263.1542 ft^2 Vu 102.8933 kip (F)Vc 389.9956 kip OK

Two-way Slab Shear

Page 140: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 139

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐴𝑡 = (𝑙12+𝑐

2) ∗ 𝑙2 − 𝑏1 ∗ 𝑏2 = 330.1𝑓𝑡^2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 129.07𝑘 b=1 , as=30

𝑏1 = 𝑐 +𝑑

2= 29.84𝑖𝑛 , 𝑏2 = 𝑐 + 𝑑 = 35.686

𝑏0 = 2 ∗ 𝑏1 + 𝑏2 = 95.372

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=247.644k

Case C Edge At 330.1043 ft^2

Vu 129.0708 kip b 1 as 30 b1 29.843 in b2 35.686 in b0 95.372 in (F)Vc 247.9644 kip OK

Munb = 186.35k-ft

𝛾𝐹 =1

1 +23 ∗√𝑏1𝑏2

= .62

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 115.77𝑘 ∗ 𝑓𝑡 Effective Width = 3h+c = 5.25ft

𝐴𝑐 = (𝑏1 + 2𝑏2) ∗ 𝑑 = 1114.517𝑖𝑛^2

𝐽

𝑐= 2 ∗ 𝑏1

2 ∗ 𝑑(𝑏1 ∗ 2𝑏2) + 𝑑3(2𝑏1 + 𝑏2)

6𝑏1= 12616.1𝑖𝑛^3

𝛾𝑣 = 1 − 𝛾𝐹 = .378

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 182.94𝑘/𝑖𝑛2

(𝜙)𝑉𝑐 = .75 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Page 141: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 140

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case C Edge Munb 186.35 k-ft

Yf 0.621253 Yf*Munb 115.7705 Effective Width 5.25 ft Min Munb 46.2875 k-ft Ac 1114.517 in^2 J/c 12616.1 in^3 Yv 0.378747 Vmax 182.9415 Kips/in^2 (F)Vu 222.486 kips OK

Case D:

Case D Corner

Column Size 24 inch

f'c 5500 psi

fy 60000 psi

L1 25 ft

L2 25 ft

qu 391 psf

Slab thickness 13 inch

db 1.128 inch

qdu 192.5 lbs

qlu 100 lbs

One way Shear Check

𝑑 = 𝑆𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − .75 − .5(𝑑𝑏) = 11.686 𝑖𝑛

𝐴𝑡 = (𝑙12−𝑐

2− 𝑑) ∗ 𝑙2 = 263.1542 𝑓𝑡

2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 102.9k

FVc = (phi) ∗ 2 ∗ √𝑓′𝑐 ∗ 𝑏𝑤 ∗ 𝑑 = 390𝑘

Bw=l2

Case D Corner d 11.686 in

At 263.1542 ft^2 Vu 102.8933 kip (F)Vc 389.9956 kip OK

Page 142: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 141

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Two-way Slab Shear

𝐴𝑡 = (𝑙12) ∗𝑙22− (𝑐 +

𝑑

2)2

= 150.07𝑓𝑡^2

𝑉𝑢 = 𝐴𝑡 ∗ 𝑞𝑢 = 58.67𝑘 b=1 , as=20

𝑏1 = 𝑐 +𝑑

2= 29.843𝑖𝑛 , 𝑏2 = 𝑐 +

𝑑

2= 29.843𝑖𝑛

𝑏0 = 𝑏1 + 𝑏2 = 59.686𝑖𝑛

(𝜙)𝑉𝑐 = (𝜙)min (2 +4

𝛽, 2 +

𝛼𝑠∗𝑑

𝑏0, 4) 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑=155.1819k

Case D Corner At 150.0652 ft^2

Vu 58.67551 kip b 1 as 20 b1 29.843 in b2 29.843 in b0 59.686 in (F)Vc 155.1819 kip OK

Munb=full slab moment (col+mid) for and edge column=End span exterior M- = 186.35k-ft

𝛾𝐹 =1

1 +23 ∗√𝑏1𝑏2

= .6

𝛾𝐹 ∗ 𝑀𝑢𝑛𝑏 = 111.81𝑘 ∗ 𝑓𝑡

Effective Width = 3h+c = 5ft

𝐴𝑐 = (2𝑏1 + 𝑏2) ∗ 𝑑 = 697.5𝑖𝑛^2

𝐽

𝑐= 𝑏12 ∗ 𝑑(𝑏1 + 4𝑏2) + 𝑑

3(𝑏1 + 𝑏2)

6𝑏1= 22946.5𝑖𝑛^3

𝛾𝑣 = 1 − 𝛾𝐹 = .38

𝑉𝑚𝑎𝑥 =𝑉𝑢

𝐴𝑐+ 𝛾𝑣 ∗ 𝑀𝑢𝑛𝑏 ∗ 12

𝐽/𝑐= 123.1𝑘/𝑖𝑛2

(𝜙)𝑉𝑐 = .75 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 = 222.486𝑘

Page 143: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

TWO-WAY SLAB DESIGN Pg 142

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Case D Corner Munb 186.35 k-ft

Yf 0.6 Yf*Munb 111.81 Effective

Width 5.25 ft Min Munb 46.2875 k-ft Ac 697.4906 in^2 J/c 22946.53 in^3 Yv 0.4 Vmax 123.1048 Kips/in^2 (F)Vu 222.486 kips OK

Page 144: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 143

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

CONCRETE CONTINUOUS L-BEAM DESIGN:

SPANNING GREEN ROOF AND THIRD FLOOR:

Design the continuous beam for the following loads by taking worst case for span:

𝑤𝑢 = 10.3 𝑘/𝑓𝑡

Use the following maximum deflections:

𝐹𝑜𝑟 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚(𝑑𝑒𝑎𝑑) + 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒(𝑑𝑒𝑎𝑑 + 𝑙𝑖𝑣𝑒 + 𝑤𝑖𝑛𝑑) =𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛

𝐹𝑜𝑟 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑙𝑖𝑣𝑒 + 𝑤𝑖𝑛𝑑 𝑜𝑛𝑙𝑦) =𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .833 𝑖𝑛

Use ASTM A615 Gr 60 rebar and 5,500 psi concrete.

GRAVITY MOMENT DESIGN:

From two-way slab design/analysis: 𝑀𝑢 = 230 𝑘 ∗ 𝑓𝑡

Estimate the beam sizeℎ = 24 𝑖𝑛, 𝑏𝑤𝑒𝑏 = 16 𝑖𝑛, 𝑑 = 21.5 𝑖𝑛, 𝑡 = 12 𝑖𝑛.

Effective Flange Width Conditions:

𝑏𝑒 =𝐿

12= 25 𝑖𝑛, 𝑏𝑒 = 6𝑡 + 𝑏𝑤 = 88 𝑖𝑛, 𝑏𝑒 = 𝑏 = 25 𝑖𝑛.

Select smallest value of 25in.

Solve for steel percentage using the following quadratic equation:

𝑀𝑛 = 𝜌𝑓𝑦𝑏𝑑2 (1 −

𝜌𝑓𝑦

1.7𝑓′𝑐) → 𝜌 = .0065

Check against the minimum percentage:

𝜌𝑚𝑖𝑛 = max(200

𝑓𝑦,3√𝑓′𝑐

𝑓𝑦) = 0.00371 < .0065 → 𝑂𝐾

Assume Lever Arm (z):

𝑧 = 0.9𝑑 = 19.35 𝑜𝑟 𝑧 = 𝑑 −𝑡

2= 15.5

Select Largest Value: 19.35 in.

Find the required area of steel:

𝐴𝑠 = 𝑀𝑛/𝑓𝑦𝑧 = (230 ∗ 12)/(60,000 ∗ 19.35) = 2.38 𝑖𝑛2

Compute 𝐴𝑐:

0.85𝑓′𝑐𝐴𝑐 = 𝐴𝑠𝑓𝑦 → 𝐴𝑐 =

𝐴𝑠𝑓𝑦

0.85𝑓′𝑐

= 30.51 𝑖𝑛2

Page 145: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 144

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐴𝑐 < (𝑡 ∗ 𝑏𝑒) < 108 𝑖𝑛2 𝑂𝐾

Compute a:

a=𝐴𝑐/𝑏𝑒 = 1.22 𝑖𝑛

Compute z:

𝑧 = 𝑑 −𝑎

2= 20.89 𝑖𝑛

Calculate 𝐴𝑠 with revised z:

𝐴𝑠 = 𝑀𝑛/𝑓𝑦𝑧 = (230 ∗ 12)/(60,000 ∗ 20.89) = 2.20 𝑖𝑛2

Compute 𝐴𝑐 𝑤𝑖𝑡ℎ 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝐴𝑠 :

0.85𝑓′𝑐𝐴𝑐 = 𝐴𝑠𝑓𝑦 → 𝐴𝑐 =

𝐴𝑠𝑓𝑦

0.85𝑓′𝑐

= 28.26 𝑖𝑛2

Compute a:

a=𝐴𝑐/𝑏𝑒 = 1.13 𝑖𝑛

Compute z:

𝑧 = 𝑑 −𝑎

2= 20.93 𝑖𝑛

Calculate 𝐴𝑠 with revised z:

𝐴𝑠 = 𝑀𝑛/𝑓𝑦𝑧 = (230 ∗ 12)/(60,000 ∗ 20.93) = 2.20 𝑖𝑛2

OK (Close to previous Value)

Checking Minimum Reinforcing:

𝐴𝑠 𝑚𝑖𝑛 =3√𝑓′𝑐𝑏𝑤𝑑

𝑓𝑦=3 ∗ √5500 ∗ 16 ∗ 21.5

60000 = 1.28 𝑖𝑛2

But not less than:

𝐴𝑠 𝑚𝑖𝑛 =200𝑏𝑤𝑑

𝑓𝑦=200 ∗ 16 ∗ 21.5

60000 = 1.15 𝑖𝑛2 < 2.2 𝑖𝑛2 → 𝑂𝐾

Or:

𝐴𝑠 𝑚𝑖𝑛 = 𝜌𝑚𝑖𝑛𝑏𝑤𝑑 = 0.0033 ∗ 16 ∗ 21.5 = 1.14 𝑖𝑛2 < 2.2 𝑖𝑛2 → 𝑂𝐾

Check steel strain:

Compute c:

𝛽1 = .775 @ 5500 𝑝𝑠𝑖, 𝑐 =𝑎

𝛽1= 1.57𝑖𝑛

Compute Steel Strain 𝜀𝑡:

Page 146: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 145

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝜀𝑡 = 0.003𝑑 − 𝑐

𝑐= 0.003

21.5 − 1.57

1.57= .038 > .005 → 𝑂𝐾

Check Φ:

Φ = 0.9 𝑓𝑜𝑟 𝜀𝑡 > .005

Select Reinforcing:

𝐴𝑠 𝑟𝑒𝑞′𝑑: 2.20 𝑖𝑛2

Bar Design:

4#9 bars with 𝐴𝑠 : 4.00 𝑖𝑛2 with diameter 1.128 in

Stirrup Design:

#3 with diameter 0.375 in

Check fit of bars within beam width:

𝑏𝑚𝑖𝑛 = 1.5 + .375 + 2(. 375) + 4(1.128) + 3(. 375) + .375 + 1.5 = 15.76 𝑖𝑛 < 16 𝑖𝑛 → 𝑂𝐾

Verify capacity:

Φ𝑀𝑛 = Φ𝐴𝑠𝑓𝑦 (𝑑 −𝑎

2) = .9(4)(60) (21.5 −

1.13

2) = 376.83 𝑘 ∗ 𝑓𝑡 > 𝑀𝑢 → 𝑂𝐾

Check shear:

Find shear load at support:

𝑉𝑢 = 70.45 𝑘 𝑓𝑟𝑜𝑚 𝑉𝑖𝑠𝑢𝑎𝑙 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 At a distance d from the support:

𝑉𝑢𝑑 = 70.45 −21.5

12∗ 10.3 = 52.00 𝑘

Required Vn:

𝑉𝑛 =𝑉𝑢𝑑Φ=52.00

0.75= 69.33 𝑘

Finding shear strength of concrete:

𝑉𝑐 = 2𝜆√𝑓′𝑐𝑏𝑑 = 2(1)(√5500)(16)(21.5) = 51.02 𝑘

Vn exceeds Vc, so reinforcement is required.

Find Vs:

𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 69.33 − 51.00 = 18.30 𝑘

Use #3 stirrups (𝐴𝑣 = 2 ∗ .11 = .22 𝑖𝑛2)

Maximum stirrup spacing:

𝑠 =𝐴𝑣𝑓𝑦𝑑

𝑉𝑠=. 22 ∗ 60 ∗ 21.5

18.30= 15.5 𝑖𝑛

Page 147: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 146

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Use 7 inches.

Check max spacing limits:

𝑠𝑚𝑎𝑥 = min(𝐴𝑣𝑓𝑦

. 75𝑏√𝑓′𝑐,𝐴𝑣𝑓𝑦

50𝑏) = min(14.83,16.5) = 14.83 𝑖𝑛

Based on beam geometry:

4√𝑓′𝑐𝑏𝑑 = 102.05𝑘

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑠𝑚𝑎𝑥 = min (𝑑

2, 24) = 11 𝑖𝑛 𝑆𝑖𝑛𝑐𝑒 𝑖𝑡 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑎𝑛 15.5𝑖𝑛 𝑢𝑠𝑒 11𝑖𝑛 𝑠𝑝𝑎𝑐𝑖𝑛𝑔𝑠

Check max Vs:

𝑉𝑠,𝑚𝑎𝑥 = 8√𝑓′𝑐𝑏𝑑 = 204.09𝑘 > 51.02𝑘 → 𝑂𝐾

Verify capacity:

𝑉𝑠 =𝐴𝑣𝑓𝑦𝑑

𝑠= 18.92 𝑘 > 18.30𝑘 → 𝑂𝐾

Φ𝑉𝑛 = .75(51.02 + 18.30) = 52.00 𝑘𝑖𝑝 ≥ 𝑉𝑢𝑑 → 𝑂𝐾

Check deflection:

Due to uniform load,

∆=𝑤𝑙3

192𝐸𝑐𝐼𝑒

Finding Ec:

𝐸𝑐 = 57000√𝑓′𝑐 = 4227 𝑘𝑠𝑖

Finding modulus of rupture:

𝑓𝑟 = 7.5𝜆√𝑓′𝑐 = 556 𝑝𝑠𝑖=.556ksi

Gross moment of inertia:

𝐼𝑔 = 22809.6 𝑖𝑛4

Distance from neutral axis of gross (uncracked section to tension face):

𝑦𝑡 =ℎ

2=24

2= 12 𝑖𝑛

Cracking moment:

𝑀𝑐𝑟 =𝑓𝑟𝐼𝑔

𝑦𝑡= 1057.25 𝑘 ∗ 𝑖𝑛

Service moment:

𝑀𝑎 =𝑤𝑢𝑙

2

8=7.23 ∗ 252

8= 4781.25 𝑘 ∗ 𝑖𝑛, 7.23 = 𝐴𝑆𝐷 𝑤𝑢

Page 148: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 147

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Transform steel to concrete:

𝑛 =𝐸𝑠𝐸𝑐=29000

4227= 6.86

Gravity: 𝐴𝑠 = 4.00 𝑖𝑛2, 𝑑 = 21.5 𝑖𝑛

Solve for x:

𝑏𝑥𝑥

2= 𝑛𝐴𝑠(𝑑 − 𝑥) → 𝑥 = 7.0422 𝑖𝑛

Find Icr:

𝐼𝑐𝑟 =𝑏𝑥3

3+ 𝑛𝐴𝑠(𝑑 − 𝑥)

2 = 7598.58 𝑖𝑛4

Find Ie:

𝐼𝑒 = [(𝑀𝑐𝑟𝑀𝑎)3

] 𝐼𝑔 + [1 − (𝑀𝑐𝑟𝑀𝑎)3

] 𝐼𝑐𝑟 = 7649.88 𝑖𝑛4

Checking deflection:

∆=𝑤𝑙3

192𝐸𝑐𝐼𝑒= 0.03 𝑖𝑛

𝐹𝑜𝑟 𝑙𝑖𝑣𝑒 𝑎𝑛𝑑 𝑤𝑖𝑛𝑑 𝑜𝑛𝑙𝑦, ∆< .833 𝑖𝑛 → 𝑂𝐾

For long term deflection:

Gravity dead only: Δ𝐷 = 1.2 𝑖𝑛

𝜆Δ =𝜉

1 + 50𝜌′= 2.0 𝑓𝑜𝑟 𝑛𝑜 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑠𝑡𝑒𝑒𝑙

Δ𝐿𝑇 = 𝜆ΔΔ𝐷 + Δ𝐼𝑀𝐺 = 0.12 𝑖𝑛

Δ𝑇 = (1 + 𝜆𝐷)Δ𝐷 + Δ𝐼𝑀𝐺 = 0.17 𝑖𝑛 < 1.2 𝑖𝑛 → 𝑂𝐾

MOMENT DIAGRAM:

Note: Moment values in analysis were taken from slab analysis.

SHEAR DIAGRAM:

Page 149: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 148

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Note: Highest shear taken for use in analysis for worst case.

DEFLECTION DIAGRAM:

Note: Deflection in analysis and Visual Analysis both pass. Visual Analysis doesn’t account for slab.

LOADING CASES:

L-Beam 3rd Floor Dead Load: Note: Loading values are calculated by taking dead load in psf from LRFD load combination Excel and multiplying by the span. This value is the peak of the triangular loadings (5.015 k/ft). The uniform load is the beam stem weight distributed across the beam (0.2k/ft).

L-Beam 3rd Floor Live Load Note: Loading values are calculated by taking live load in psf from LRFD load combination Excel and multiplying by the span. This value is the peak of the triangular loadings (2.5 k/ft).

Page 150: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 149

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

L-Beam 3rd Floor Wind Load Note: Loading values are calculated by taking live load in psf from LRFD load combination Excel and multiplying by the span. This value is the peak of the uniform load (0.59 k/ft).

L-Beam 3rd Floor Wind Uplift Load Note: Note: Loading values are calculated by taking live load in psf from LRFD load combination Excel and multiplying by the span. This value is the peak of the uniform load (0.86 k/ft).

SPANNING SECOND FLOOR:

Design the continuous beam for the following loads by taking worst case for span:

𝑤𝑢 = 9.78 𝑘/𝑓𝑡

Use the following maximum deflections:

𝐹𝑜𝑟 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚(𝑑𝑒𝑎𝑑) + 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒(𝑑𝑒𝑎𝑑 + 𝑙𝑖𝑣𝑒 + 𝑤𝑖𝑛𝑑) =𝐿

240=25 𝑓𝑡 ∗ 12 𝑖𝑛

240= 1.25 𝑖𝑛

𝐹𝑜𝑟 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑙𝑖𝑣𝑒 + 𝑤𝑖𝑛𝑑 𝑜𝑛𝑙𝑦) =𝐿

360=25 𝑓𝑡 ∗ 12 𝑖𝑛

360= .833 𝑖𝑛

Use ASTM A615 Gr 60 rebar and 5,500 psi concrete.

GRAVITY MOMENT DESIGN:

From two-way slab design/analysis: 𝑀𝑢 = 217 𝑘 ∗ 𝑓𝑡

Estimate the beam size ℎ = 24 𝑖𝑛, 𝑏𝑤𝑒𝑏 = 16 𝑖𝑛, 𝑑 = 21.5 𝑖𝑛, 𝑡 = 12 𝑖𝑛.

Effective Flange Width Conditions:

𝑏𝑒 =𝐿

12= 25 𝑖𝑛, 𝑏𝑒 = 6𝑡 + 𝑏𝑤 = 88 𝑖𝑛, 𝑏𝑒 = 𝑏 = 25 𝑖𝑛.

Select smallest value of 25in.

Solve for steel percentage using the following quadratic equation:

𝑀𝑛 = 𝜌𝑓𝑦𝑏𝑑2 (1 −

𝜌𝑓𝑦

1.7𝑓′𝑐) → 𝜌 = .0061

Check against the minimum percentage:

Page 151: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 150

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝜌𝑚𝑖𝑛 = max(200

𝑓𝑦,3√𝑓′𝑐

𝑓𝑦) = 0.00371 < .0061 → 𝑂𝐾

Assume Lever Arm (z):

𝑧 = 0.9𝑑 = 19.35 𝑜𝑟 𝑧 = 𝑑 −𝑡

2= 15.5

Select Largest Value: 19.35 in.

Find the required area of steel:

𝐴𝑠 = 𝑀𝑛/𝑓𝑦𝑧 = (217 ∗ 12)/(60,000 ∗ 19.35) = 2.24 𝑖𝑛2

Compute 𝐴𝑐:

0.85𝑓′𝑐𝐴𝑐 = 𝐴𝑠𝑓𝑦 → 𝐴𝑐 =

𝐴𝑠𝑓𝑦

0.85𝑓′𝑐

= 28.79 𝑖𝑛2

𝐴𝑐 < (𝑡 ∗ 𝑏𝑒) < 108 𝑖𝑛2 𝑂𝐾

Compute a:

a=𝐴𝑐/𝑏𝑒 = 1.15 𝑖𝑛

Compute z:

𝑧 = 𝑑 −𝑎

2= 20.92 𝑖𝑛

Calculate 𝐴𝑠 with revised z:

𝐴𝑠 = 𝑀𝑛/𝑓𝑦𝑧 = (217 ∗ 12)/(60,000 ∗ 20.92) = 2.24 𝑖𝑛2

Compute 𝐴𝑐 𝑤𝑖𝑡ℎ 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝐴𝑠 :

0.85𝑓′𝑐𝐴𝑐 = 𝐴𝑠𝑓𝑦 → 𝐴𝑐 =

𝐴𝑠𝑓𝑦

0.85𝑓′𝑐

= 26.62 𝑖𝑛2

Compute a:

a=𝐴𝑐/𝑏𝑒 = 1.06 𝑖𝑛

Compute z:

𝑧 = 𝑑 −𝑎

2= 20.97 𝑖𝑛

Calculate 𝐴𝑠 with revised z:

𝐴𝑠 = 𝑀𝑛/𝑓𝑦𝑧 = (230 ∗ 12)/(60,000 ∗ 20.93) = 2.07 𝑖𝑛2

OK (Close to previous Value)

Checking Minimum Reinforcing:

𝐴𝑠 𝑚𝑖𝑛 =3√𝑓′𝑐𝑏𝑤𝑑

𝑓𝑦=3 ∗ √5500 ∗ 16 ∗ 21.5

60000 = 1.28 𝑖𝑛2

Page 152: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 151

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

But not less than:

𝐴𝑠 𝑚𝑖𝑛 =200𝑏𝑤𝑑

𝑓𝑦=200 ∗ 16 ∗ 21.5

60000 = 1.15 𝑖𝑛2 < 2.07 𝑖𝑛2 → 𝑂𝐾

Or:

𝐴𝑠 𝑚𝑖𝑛 = 𝜌𝑚𝑖𝑛𝑏𝑤𝑑 = 0.0033 ∗ 16 ∗ 21.5 = 1.14 𝑖𝑛2 < 2. .07 𝑖𝑛2 → 𝑂𝐾

Check steel strain:

Compute c:

𝛽1 = .775 @ 5500 𝑝𝑠𝑖, 𝑐 =𝑎

𝛽1= 1.49𝑖𝑛

Compute Steel Strain 𝜀𝑡:

𝜀𝑡 = 0.003𝑑 − 𝑐

𝑐= 0.003

21.5 − 1.57

1.57= .04 > .005 → 𝑂𝐾

Check Φ:

Φ = 0.9 𝑓𝑜𝑟 𝜀𝑡 > .005

Select Reinforcing:

𝐴𝑠 𝑟𝑒𝑞′𝑑: 2.07 𝑖𝑛2

Bar Design:

3#9 bars with 𝐴𝑠 : 3.00 𝑖𝑛2 with diameter 1.128 in

Stirrup Design:

#3 with diameter 0.375 in

Check fit of bars within beam width:

𝑏𝑚𝑖𝑛 = 1.5 + .375 + 2(. 375) + 3(1.128) + 2(. 375) + .375 + 1.5 = 12.63 𝑖𝑛 < 16 𝑖𝑛 → 𝑂𝐾

Verify capacity:

Φ𝑀𝑛 = Φ𝐴𝑠𝑓𝑦 (𝑑 −𝑎

2) = .9(3)(60) (21.5 −

1.13

2) = 283.06 𝑘 ∗ 𝑓𝑡 > 𝑀𝑢 → 𝑂𝐾

Check shear:

Find shear load at support:

𝑉𝑢 = 60 𝑘 𝑓𝑟𝑜𝑚 𝑉𝑖𝑠𝑢𝑎𝑙 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 At a distance d from the support:

𝑉𝑢𝑑 = 60 −21.5

12∗ 9.78 = 42.48 𝑘

Required Vn:

Page 153: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 152

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑉𝑛 =𝑉𝑢𝑑Φ=42.48

0.75= 56.64 𝑘

Finding shear strength of concrete:

𝑉𝑐 = 2𝜆√𝑓′𝑐𝑏𝑑 = 2(1)(√5500)(16)(21.5) = 51.02 𝑘

Vn exceeds Vc, so reinforcement is required.

Find Vs:

𝑉𝑠 = 𝑉𝑛 − 𝑉𝑐 = 56.64 − 51.02 = 5.61 𝑘

Use #3 stirrups (𝐴𝑣 = 2 ∗ .11 = .22 𝑖𝑛2)

Maximum stirrup spacing:

𝑠 =𝐴𝑣𝑓𝑦𝑑

𝑉𝑠=. 22 ∗ 60 ∗ 21.5

5.61= 50.56 𝑖𝑛

Use 7 inches.

Check max spacing limits:

𝑠𝑚𝑎𝑥 = min(𝐴𝑣𝑓𝑦

. 75𝑏√𝑓′𝑐,𝐴𝑣𝑓𝑦

50𝑏) = min(14.83,16.5) = 14.83 𝑖𝑛

Based on beam geometry:

4√𝑓′𝑐𝑏𝑑 = 102.05𝑘

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑠𝑚𝑎𝑥 = min (𝑑

2, 24) = 11 𝑖𝑛 𝑆𝑖𝑛𝑐𝑒 𝑖𝑡 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑎𝑛 50.6𝑖𝑛 𝑢𝑠𝑒 11𝑖𝑛 𝑠𝑝𝑎𝑐𝑖𝑛𝑔𝑠

Check max Vs:

𝑉𝑠,𝑚𝑎𝑥 = 8√𝑓′𝑐𝑏𝑑 = 204.09𝑘 > 51.02𝑘 → 𝑂𝐾

Verify capacity:

𝑉𝑠 =𝐴𝑣𝑓𝑦𝑑

𝑠= 5.68𝑘 > 5.61𝑘 → 𝑂𝐾

Φ𝑉𝑛 = .75(51.02 + 5.61) = 42.48 𝑘𝑖𝑝 ≥ 𝑉𝑢𝑑 → 𝑂𝐾

Check deflection:

Due to uniform load,

∆=𝑤𝑙3

192𝐸𝑐𝐼𝑒

Finding Ec:

𝐸𝑐 = 57000√𝑓′𝑐 = 4227 𝑘𝑠𝑖

Finding modulus of rupture:

𝑓𝑟 = 7.5𝜆√𝑓′𝑐 = 556 𝑝𝑠𝑖=.556ksi

Page 154: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 153

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Gross moment of inertia:

𝐼𝑔 = 22809.6 𝑖𝑛4

Distance from neutral axis of gross (uncracked section to tension face):

𝑦𝑡 =ℎ

2=24

2= 12 𝑖𝑛

Cracking moment:

𝑀𝑐𝑟 =𝑓𝑟𝐼𝑔

𝑦𝑡= 1057.25 𝑘 ∗ 𝑖𝑛

Service moment:

𝑀𝑎 =𝑤𝑢𝑙

2

8=7.31 ∗ 252

8= 6853.13 𝑘 ∗ 𝑖𝑛, 7.31 = 𝐴𝑆𝐷 𝑤𝑢

Transform steel to concrete:

𝑛 =𝐸𝑠𝐸𝑐=29000

4227= 6.86

Gravity: 𝐴𝑠 = 3.00 𝑖𝑛2, 𝑑 = 21.5 𝑖𝑛

Solve for x:

𝑏𝑥𝑥

2= 𝑛𝐴𝑠(𝑑 − 𝑥) → 𝑥 = 6.2613 𝑖𝑛

Find Icr:

𝐼𝑐𝑟 =𝑏𝑥3

3+ 𝑛𝐴𝑠(𝑑 − 𝑥)

2 = 6088.4 𝑖𝑛4

Find Ie:

𝐼𝑒 = [(𝑀𝑐𝑟𝑀𝑎)3

] 𝐼𝑔 + [1 − (𝑀𝑐𝑟𝑀𝑎)3

] 𝐼𝑐𝑟 = 6149.79 𝑖𝑛4

Checking deflection:

∆=𝑤𝑙3

192𝐸𝑐𝐼𝑒= 0.04 𝑖𝑛

𝐹𝑜𝑟 𝑙𝑖𝑣𝑒 𝑎𝑛𝑑 𝑤𝑖𝑛𝑑 𝑜𝑛𝑙𝑦, ∆< .833 𝑖𝑛 → 𝑂𝐾

For long term deflection:

Gravity dead only: Δ𝐷 = 1.2 𝑖𝑛

𝜆Δ =𝜉

1 + 50𝜌′= 2.0 𝑓𝑜𝑟 𝑛𝑜 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑠𝑡𝑒𝑒𝑙

Δ𝐿𝑇 = 𝜆ΔΔ𝐷 + Δ𝐼𝑀𝐺 = 0.15 𝑖𝑛

Δ𝑇 = (1 + 𝜆𝐷)Δ𝐷 + Δ𝐼𝑀𝐺 = 0.21 𝑖𝑛 < 1.2 𝑖𝑛 → 𝑂𝐾

Page 155: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 154

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

MOMENT DIAGRAM:

Note: Moment values in analysis were taken from slab analysis.

SHEAR DIAGRAM:

DEFLECTION DIAGRAM:

Note: Deflection in analysis and Visual Analysis both pass. Visual Analysis doesn’t account for slab.

LOADING CASES: L-Beam 2nd Floor Dead Load

Note: Loading values are calculated by taking dead load in psf from LRFD load combination Excel and multiplying by the span. This value is the peak of the triangular loadings (4.89 k/ft). The uniform load is the beam stem weight distributed across the beam (0.2k/ft).

Page 156: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONTINUOUS L-BEAM DESIGN Pg 155

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

L-Beam 2nd Floor Live Load

Note: Loading values are calculated by taking live load in psf from LRFD load combination Excel and multiplying by the span. This value is the peak of the triangular loadings (2.5 k/ft).

Page 157: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONCRETE COLUMN DESIGNS Pg 156

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

CONCRETE COLUMN DESIGN:

SPANNING GREEN ROOF AND THIRD FLOOR:

Design the continuous column with f’c = 4000 psi and fy = 60000 psi.

COMPUTING DESIGN VALUES:

Assuming F=0.65

Obtaining Pu from Slab Analysis Axial Loading:

Pu = 885.82k

Solving for Pn:

𝑃𝑛 =𝑃𝑛0.65

=885.82𝑘

0.65= 1362.8𝑘

From Slab Analysis Unbalanced Moment:

Mux = 123.6 k-ft

Muy = 123.6 k-ft

Mnx = 190.2 k-ft

Mnx = 190.2 k-ft

As a result of biaxial bending, the design moment about the x- or y- axis is assumed to equal:

𝑀𝑛𝑥 +𝑀𝑛𝑦 = 190.2𝑘 − 𝑓𝑡 + 190.2 𝑘 − 𝑓𝑡 = 380.3𝑘 − 𝑓𝑡

DETERMINING STEEL REQUIRED:

𝑒𝑥 = 𝑒𝑦 =(12𝑖𝑛𝑓𝑡) (380.3𝑘 − 𝑓𝑡)

1362.8𝑘= 3.35 𝑖𝑛

𝛾 =20𝑖𝑛

24𝑖𝑛= 0.83

Obtaining rg from Graph 8 Appendix A:

Page 158: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

CONCRETE COLUMN DESIGNS Pg 157

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑅𝑛 =𝑃𝑛𝑒

𝑓′𝑐𝐴𝑔ℎ

=(1362.8𝑘)(3.35𝑖𝑛)

(4000𝑝𝑠𝑖)(24𝑖𝑛 ∗ 24𝑖𝑛)(24𝑖𝑛)= 0.08

𝐾𝑛 =𝑃𝑛𝑓′𝑐𝐴𝑔=

(1362.8𝑘)

(4000𝑝𝑠𝑖)(24𝑖𝑛 ∗ 24𝑖𝑛)= 0.59

Thus by interpolation from Graph 8 Appendix A with bars on all four faces: rg = 0.01

Determining As:

As = rg bd = (0.01)(24in)(24in)= 5.76in2

Use 8#8 Bars with As = 6.32 in2

DETERMINING TIES:

From ACI 7.10.5.2 and ACI 7.10.5.3 select minimum of 3 spacing conditions:

Assume #3 Ties

1) 48in x Tie Dia.

2) 16in x Vert. Bar Dia.

3) Least Dimension.

Computing Conditions:

1) 48in x 3/8in = 18in

2) 16in x 1in = 16in

3) Least Dim. = 24in

Select 16in for tie spacing.

Use #3 ties @ 16in

Page 159: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

SIMPLE SHEAR CONNECTIONS DESIGNS Pg 158

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

SIMPLE SHEAR CONNECTIONS

The simple shear connections were designed using the recommended maximum bolting from the

AISC manual (Tables 10-1 and 10-2) for double angles. The design used Group A bolts, threads

included in the shear plane and standard sized holes. The following table summarizes the

maximum amount of bolts per connection based on the depth of each wide flange in our design.

It also shows the angle thickness for each of these connections.

Beam Depth No. Bolts Bolt Plate

Thickness

10 2 3/4" 1/4"

12 3 3/4" 1/4"

14 3 3/4" 1/4"

16 4 3/4" 5/16"

18 5 3/4" 3/8"

Table 10-1 in the manual was used to determine the capacity of each bolted connection, which

was then compared to the shear values found from the beam designs. An Excel “IF” function

was used to check whether the capacities meet these shear loadings. The results are shown

below:

Beam No. Bolts Bolt Dia. Angle

Thickness Shear (k) Capacity

(k) Check

12x16 3 3/4" 1/4" 4.99 50.9 OK

12x40 3 3/4" 1/4" 2.2 50.9 OK

12x87 3 3/4" 1/4" 21.6 50.9 OK

14x26 3 3/4" 1/4" 7.85 50.9 OK

14x30 3 3/4" 1/4" 14.7 50.9 OK

14x30 3 3/4" 1/4" 4.513 50.9 OK

16x31 4 3/4" 5/16" 16.6 83.9 OK

16x31 4 3/4" 5/16" 15.4 83.9 OK

16x31 4 3/4" 5/16" 15.91 83.9 OK

18x35 5 3/4" 3/8" 18.92 119 OK

18x55 5 3/4" 3/8" 7.62 119 OK

18x55 5 3/4" 3/8" 28.07 119 OK

18x55 5 3/4" 3/8" 19.2 119 OK

18x97 5 3/4" 3/8" 63.5 119 OK

18x97 5 3/4" 3/8" 68.8 119 OK

18x97 5 3/4" 3/8" 55.1 119 OK

As the results show, all of the simple shear bolted connections passed the design checks.

Page 160: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

SIMPLE SHEAR CONNECTIONS DESIGNS Pg 159

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

However, the design calls for bolts in the beam flanges and welds to the column webs. Per AISC

Table 10-2, this calls for Weld type B. Using this table, the following capacities and design

checks are summarized below:

Beam

Col. Flange

Thickness Col. Web Thickness

Angle Thickness

Weld Length

(in)

Weld Size

(D/16) Capacity

(k)

Min Support

Thickness (in.)

Shear (k) Check

12x16 .86" .525" 1/4" 8.5 0.25 32.1 0.19 4.99 OK

12x40 .86" .525" 1/4" 8.5 0.25 32.1 0.19 2.2 OK

12x87 .86" .525" 1/4" 8.5 0.25 32 0.19 21.6 OK

14x26 .86" .525" 1/4" 8.5 0.25 32.1 0.19 7.85 OK

14x30 .86" .525" 1/4" 8.5 0.25 32.1 0.19 14.7 OK

14x30 .86" .525" 1/4" 8.5 0.25 32.1 0.19 4.513 OK

16x31 .86" .525" 5/16" 11.5 0.25 53.3 0.19 16.6 OK

16x31 .86" .525" 5/16" 11.5 0.25 53.3 0.19 15.4 OK

16x31 .86" .525" 5/16" 11.5 0.25 53.3 0.19 15.91 OK

18x35 .86" .525" 3/8" 14.5 0.25 76.4 0.19 18.92 OK

18x55 .86" .525" 3/8" 14.5 0.25 76.4 0.19 7.62 OK

18x55 .86" .525" 3/8" 14.5 0.25 76.4 0.19 28.07 OK

18x55 .86" .525" 3/8" 14.5 0.25 76.4 0.19 19.2 OK

18x97 .86" .525" 3/8" 14.5 0.25 76.4 0.19 63.5 OK

18x97 .86" .525" 3/8" 14.5 0.25 76.4 0.19 68.8 OK

18x97 .86" .525" 3/8" 14.5 0.25 76.4 0.19 55.1 OK

ALL DESIGN CHECKS ARE SATISFIED. THEREFORE CONSTRUCT ALL SIMPLE

SHEAR CONNECTIONS ACCORDING TO AUTOCAD DRAWINGS.

Page 161: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF CONNECTIONS DESIGN Pg 160

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

ROOF CONNECTIONS

FOR WELDED CONNECTIONS FROM JOIST TO JOIST GIRDER AND JOIST TO

PERIMETER BEAM (W12x87):

According to the Vulcraft Manual, one should use the following minimum welds: two 1/8 inch

fillet welds that are 1 inch long.

From the roof joist design, the largest ASD load combination amounts to 282.55 lb/ft. Using this

information, one can find the end reactions of the joist:

𝑤𝑙

2=(282.55

𝑙𝑏𝑓𝑡∗ 50 𝑓𝑡)

2= 7.06 𝑘

For .81-in. flange thickness, 𝐷𝑚𝑖𝑛 = 5 from AISC Specification Table J2.4.

Try 5/16-in fillet welds, 𝐷 = 5. From AISC equation 8-2:

𝐿𝑟𝑒𝑞 =𝑃

2𝐷(0.928)=

7.06 𝑘𝑖𝑝𝑠

2(5)(0.928)= .761 𝑖𝑛

Weld the minimum length required by Vulcraft:

𝐿 = 1 𝑖𝑛 > .761 𝑖𝑛 → 𝑂𝐾

Check the maximum size of fillet weld:

𝑀𝑎𝑥 𝑠𝑖𝑧𝑒 = .375 − .0625 = .3125 𝑖𝑛 = .3125 𝑖𝑛 → 𝑂𝐾

Check the minimum length:

𝐿𝑚𝑖𝑛 = 4(. 1875 𝑖𝑛) = .75 𝑖𝑛 < 1 𝑖𝑛 → 𝑂𝐾

Check the weld length to weld size ratio: 𝐿

𝑤=

1

. 3125= 3.2 < 100 → 𝐶ℎ𝑒𝑐𝑘 𝛽 𝑓𝑎𝑐𝑡𝑜𝑟 𝑛𝑜𝑡 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦

Check Base Metals by the largest effective weld size. (𝑎 =𝐷

16)

For the Perimeter Beam:

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 65 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 81 𝑖𝑛 = 2.63 𝑖𝑛 > .3125 𝑖𝑛 → 𝑂𝐾

THEREFORE USE 2 1 INCH 5/16 FILLET WELDS.

FOR UNSTIFFENED SEATED CONNECTIONS FROM JOIST GIRDERS TO COLUMNS:

Solving for joist girder reactions gives a design load of 𝑅 = 61.2 𝑘𝑖𝑝𝑠.

Page 162: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF CONNECTIONS DESIGN Pg 161

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Use ¾-in-diamter Group A bolts in standard holes to connect the supported joist girder to the

seat. Use 70 ksi electrode welds to connect the seat to the column flange (W14x109) and ASTM

A36 angles.

Shear Yielding and Flexural Yielding of Angle

According to Vulcraft, assume 𝑙𝑏 = .5 𝑖𝑛. Use AISC Table 10-6 with an angle length of

8 inches and thickness of 5/8-in.

𝐴𝑛𝑔𝑙𝑒 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ: 𝑅

Ω= 72 𝑘𝑖𝑝𝑠 > 61.2 𝑘𝑖𝑝𝑠 → 𝑂𝐾

𝑊𝑒𝑙𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 8𝑥4 𝑠𝑒𝑎𝑡 𝑎𝑛𝑔𝑙𝑒 𝑠𝑖𝑧𝑒, .5 𝑖𝑛 𝑓𝑖𝑙𝑙𝑒𝑡 𝑤𝑒𝑙𝑑𝑠: 𝑅

Ω= 71.2 𝑘𝑖𝑝𝑠 > 61.2 𝑘𝑖𝑝𝑠

→ 𝑂𝐾

𝐵𝑜𝑙𝑡 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒 𝐸:𝑅

Ω= 71.6 𝑘𝑖𝑝𝑠 > 61.2 𝑘𝑖𝑝𝑠 → 𝑂𝐾

THEREFORE USE AN L8X4X5/8 WITH TWO ¾-IN DIAMETER GROUP A BOLTS

FROM GRIDER TO SEAT AND 2 ¼-INCH FILLET WELDS FROM SEAT TO

COLUMN.

.

Page 163: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF CONNECTIONS DESIGN Pg 162

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

DIAPHRAGM DESIGN:

Using interpolated MWRFS wind loads, find the diaphragm load, shear, and chord forces for

each steel floor. Use a diaphragm depth of 150 feet and length of 100 feet. Use the following

wind pressures:

MWRFS wind pressures (psf): Height (ft) Windward wall Leeward wall Side wall

38 7.8 13.9 -10.4 -4.2 -13.3 -7.1

53 8.9 15.0 -10.4 -4.2 -13.3 -7.1

68 9.7 15.9 -10.4 -4.2 -13.3 -7.1

83 10.5 16.7 -10.4 -4.2 -13.3 -7.1

98 11.2 17.4 -10.4 -4.2 -13.3 -7.1

100 11.4 17.6 -10.4 -4.2 -13.3 -7.1

Finding the loads for each diaphragm on each floor using half of the floor height above and

below the level being considered gives the below table.

w in lb/ft for diaphragms Height Windward p Leeward p Side p

38 58.18 104.52 -77.89 -31.54 -99.78 -53.43

53 124.59 217.29 -155.79 -63.09 -199.56 -106.86

68 139.16 231.86 -155.79 -63.09 -199.56 -106.86

83 151.32 244.01 -155.79 -63.09 -199.56 -106.86

98 78.57 124.92 -77.89 -31.54 -99.78 -53.43

100 84.28 130.63 -77.89 -31.54 -99.78 -53.43

An example of the calculations used in this table is as follows:

𝑊𝑖𝑛𝑑𝑤𝑎𝑟𝑑 𝑑𝑖𝑎𝑝ℎ𝑟𝑎𝑚 𝑙𝑜𝑎𝑑 𝑎𝑡 53 𝑓𝑡 = (7.5 𝑓𝑡)(7.8 𝑝𝑠𝑓) + (7.5 𝑓𝑡)(8.9 𝑝𝑠𝑓) = 125 𝑝𝑙𝑓

Use superposition to add the windward and leeward maximum positive and negative values to

obtain the worst case scenario on each diaphragm. Assume side pressures cancel each other and

therefore do not contribute to the diaphragm loading. Use the equations 𝑉𝑢 =𝑤𝑙

2 and 𝑀𝑢 =

𝑤𝑙2

8 to

find the maximum shear and moment on each diaphragm.

Maximum Shear and Moment on diaphragms

Height (ft) Vu (kip) Mu (k*ft)

38 13.68 228.02

53 27.98 466.34

68 29.07 484.56

Page 164: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

ROOF CONNECTIONS DESIGN Pg 163

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

83 29.99 499.75

98 15.21 253.51

100 15.64 260.65

Find diaphragm shear and chord force by dividing by the diaphragm depth of 150 ft. Also,

multiply the diaphragm shear by an ASD load factor of 0.6.

Diaphragm Shear and Chord Force Height (ft) Vu (plf) T (kip) Vu with ASD load factor (plf)

38 91.21 1.52 54.73

53 186.54 3.11 111.92

68 193.82 3.23 116.29

83 199.90 3.33 119.94

98 101.40 1.69 60.84

100 104.26 1.74 62.56

From the Vulcraft manual using a 1.5B22 deck with a span of 5 ft, choose 5/8 puddle welds for

support fasteners and #10 TEK screws for sidelap fasteners. Use 5 sidelap fasteners to give a

strength of 537 plf, which exceeds the values found above. Therefore, use this type of

diaphragm for all of the steel floors.

Page 165: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 164

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

LATERAL STEEL ANALYSIS:

Visual Analysis was used to analyze the steel lateral force resisting system. A 3D model of the

steel was created and the diaphragm reactions at each of the floors were applied to this model.

These reactions were found using the same distributed loads found in the previous diaphragm

design. The reactions were calculated using the equation 𝑉𝑢 =𝑤𝑙

2.

Diaphragm reactions (k) Height Windward Leeward Side

38 4.36 7.84 -5.84 -2.37 -7.48 -4.01

53 9.34 16.30 -11.68 -4.73 -14.97 -8.01

68 10.44 17.39 -11.68 -4.73 -14.97 -8.01

83 11.35 18.30 -11.68 -4.73 -14.97 -8.01

98 5.89 9.37 -5.84 -2.37 -7.48 -4.01

100 6.32 9.80 -5.84 -2.37 -7.48 -4.01

A series of pictures showing the inputs of the model follows on the next few pages. All of the

material designations and section properties were made to the match previous designs and

AutoCAD drawings. An assumed 2L6x6x1/2 was used for each brace. Fixed supports were

used in order to make the program run; Visual Analysis will not run if pinned supports are used

in a 3D model. Although fixed supports are not the best approximation of the connections, they

at least allow one to obtain results and run the program. There are no moment reactions found

by the program, and any errors these supports may cause will be factored into load combinations

and factors of safety. Therefore, the fixed supports should be an okay in the first order analysis

completed by the program. Outputs vary on which member is being analyzed, therefore results

will be shown in a case by case basis in the subsequent analyses and design.

[PICUTRES APPEAR ON NEXT PAGE]

Page 166: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 165

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Fixed Supports:

Page 167: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 166

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Member Releases:

Note: Moment releases are shown as circles on the ends of each member.

Page 168: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 167

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Member Materials:

Note: The part of the model not seen in this picture follows the same settings.

Page 169: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 168

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Member Sections:

Note: The members not show in this picture match the sections designated in the AutoCAD

drawings and previous designs.

Page 170: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 169

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Rigid Diaphragms:

Page 171: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 170

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Node Locations:

Note: Nodes not found in this picture follow the locations designated in the AutoCAD drawings.

Page 172: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 171

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Picture View:

Page 173: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 172

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Windward Wall Loads:

Page 174: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 173

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Leeward Wall Loads:

Page 175: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 174

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Sidewall Loads

Page 176: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 175

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

More sidewall Loads:

Note: Loads not seen in this picture match the loads in the previous photograph.

Page 177: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 176

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Dead Loads:

Note: These loads are the same in the other corner of the building.

Page 178: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 177

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Live loads:

Note: Loads are the same in the other corner of the building.

Page 179: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 178

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Live roof load:

Note: Loads are same in the other corner of building.

Page 180: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

LATERAL STEEL ANALYSIS Pg 179

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Roof Wind Load:

Note: Loads are the same in the other corner of the building.

Page 181: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

APPROXIMATE SECOND ORDER ANALYSIS Pg 180

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

APPROXIMATE SECOND ORDER ANALYSIS:

Perform an approximate second order analysis for the column circled below using ASD. Use a

2D model so that lateral translation can be restrained properly and pin supports can be used.

Apply the lateral loads found from the diaphragm design that add both the windward and

leeward loads. A similar analysis should be conducted for every member in the LRFS, but for

the scope of this project, only one member is analyzed. Place artificial rollers at each floor to

restrain lateral translation (AJR). From iterations not shown in this paper, try W14x109

columns.

Building Floor dimensions: 𝐿 = 100 𝑓𝑡, 𝐵 = 150 𝑓𝑡 Story height: ℎ = 15 𝑓𝑡 Floor and Roof Loads:

Page 182: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

APPROXIMATE SECOND ORDER ANALYSIS Pg 181

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑤𝑑𝑒𝑎𝑑 𝑓𝑙𝑜𝑜𝑟 = 𝑤𝑑𝑓 = 32.5 𝑝𝑠𝑓

𝑤𝑙𝑖𝑣𝑒 𝑓𝑙𝑜𝑜𝑟 = 𝑤𝑙 = 65 𝑝𝑠𝑓

𝑤𝑤𝑖𝑛𝑑 = 𝑤𝑤 = 16 𝑝𝑠𝑓

𝑤𝑙𝑖𝑣𝑒 𝑟𝑜𝑜𝑓 = 𝑤𝑙𝑟 = 20 𝑝𝑠𝑓

𝑤𝑑𝑒𝑎𝑑 𝑟𝑜𝑜𝑓 = 𝑤𝑑𝑟 = 30 𝑝𝑠𝑓

Story loads:

𝑃𝐷𝑠𝑡𝑜𝑟𝑦 = 𝐿𝐵(3𝑤𝑑𝑓 + 𝑤𝑑𝑟) = (100)(150)(3 ∗ 32.5 + 30) = 1913 𝑘𝑖𝑝

𝑃𝐿𝑟𝑠𝑡𝑜𝑟𝑦 = 𝐿𝐵𝑤𝑙𝑟 = (100)(150)(20) = 300 𝑘𝑖𝑝

𝑃𝐿𝑠𝑡𝑜𝑟𝑦 = 𝐿𝐵3𝑤𝑙 = (100)(150)(3)(65) = 2925 𝑘𝑖𝑝

𝑃𝑤𝑠𝑡𝑜𝑟𝑦 = 𝐿𝐵𝑤𝑤 = (100)(150)(16) = 240 𝑘𝑖𝑝

Bottom column axial loads when translation is restrained (results obtained from visual analysis):

𝑃𝐷𝑛𝑡 = 231.3 𝑘𝑖𝑝

𝑃𝐿𝑛𝑡 = 341 𝑘𝑖𝑝

𝑃𝐿𝑟𝑛𝑡 = 33.1 𝑘𝑖𝑝

𝑃𝑊𝑛𝑡 = 9.85 𝑘𝑖𝑝 Bottom column bending moment when translation is restrained:

𝑀𝐷𝑛𝑡 = 0 𝑘𝑖𝑝 ∗ 𝑖𝑛

𝑀𝐿𝑛𝑡 = 0 𝑘𝑖𝑝 ∗ 𝑖𝑛

𝑀𝐿𝑟𝑛𝑡 = 0 𝑘𝑖𝑝 ∗ 𝑖𝑛

𝑀𝑊𝑛𝑡 = 0 𝑘𝑖𝑝 ∗ 𝑖𝑛 Artificial Joint Reactions due to the restraints (rollers in x) provided at each floor to restrain

translation (nt):

𝐴𝐽𝑅𝐷 = (

1.333.133.9510.48

)𝑘𝑖𝑝

𝐴𝐽𝑅𝐿𝑟 = (

1.57−.230.201.17

)𝑘𝑖𝑝

𝐴𝐽𝑅𝐿 = (

−2.306.716.9916.53

)𝑘𝑖𝑝

𝐴𝐽𝑅𝑊 = (

21.1928.4224.1319.92

)𝑘𝑖𝑝

Bottom column axial loads when translation is restrained (results obtained from visual analysis):

𝑃𝐷𝑙𝑡 = 19.96 𝑘𝑖𝑝

𝑃𝐿𝑙𝑡 = 24.67 𝑘𝑖𝑝

Page 183: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

APPROXIMATE SECOND ORDER ANALYSIS Pg 182

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑃𝐿𝑟𝑙𝑡 = 4.75 𝑘𝑖𝑝

𝑃𝑊𝑙𝑡 = 144.7 𝑘𝑖𝑝 Bottom column bending moment when translation is restrained:

𝑀𝐷𝑙𝑡 = 3.15 𝑘𝑖𝑝 ∗ 𝑖𝑛

𝑀𝐿𝑙𝑡 = 1.25 𝑘𝑖𝑝 ∗ 𝑖𝑛

𝑀𝐿𝑟𝑙𝑡 = 1.02 𝑘𝑖𝑝 ∗ 𝑖𝑛

𝑀𝑊𝑙𝑡 = 98.52 𝑘𝑖𝑝 ∗ 𝑖𝑛 Load factor matrix (LRFD load conditions ASCE 7-10 2.3):

𝛾𝑠𝑡𝑟 =

(

1 0 0 01 1 0 01 0 1 01 . 75 . 75 01 0 0 . 61 . 75 . 75 . 451 . 75 0 0. 6 0 0 . 6. 6 0 0 0 )

Factored Loads:

𝑃𝑢𝑠𝑡𝑜𝑟𝑦 = 𝛾𝑠𝑡𝑟 (

19132925300240

) =

(

191348382213433220574440410712921148)

𝑘𝑖𝑝

𝑃𝑛𝑡 = 𝛾𝑠𝑡𝑟 (

231.334133.19.85

) =

(

231.3572.3264.4511.88237.21516.31487.05144,69138.78)

𝑘𝑖𝑝

Page 184: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

APPROXIMATE SECOND ORDER ANALYSIS Pg 183

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑃𝑙𝑡 = 𝛾𝑠𝑡𝑟 (

19.9624.674.75144.7

) =

(

19.9644.6324.7142.03106.78107.1438.4698.8011.98 )

𝑘𝑖𝑝

𝑀𝑛𝑡 = 𝛾𝑠𝑡𝑟 (

0000

) =

(

000000)

𝑘𝑖𝑝 ∗ 𝑖𝑛

𝑀𝑙𝑡 = 𝛾𝑠𝑡𝑟 (

3.151.251.0298.52

) =

(

3.154.404.174.8562.2649.194.0961.001.89 )

𝑘𝑖𝑝 ∗ 𝑖𝑛

Factored lateral loads on the “lt” frame. Note these are the cumulative loads on the bottom

column since we are examining the bottom column:

𝑝1 = 𝛾𝑠𝑡𝑟 (

1.33−2.31.5721.19

) =

(

1.33−.972.90. 7814.0410.32−.4013.51. 80 )

𝑘𝑖𝑝

𝑝2 = 𝛾𝑠𝑡𝑟 (

3.136.71−.2328.42

) =

(

3.139.842.907.9920.1820.788.1618.931.88 )

𝑘𝑖𝑝

Page 185: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

APPROXIMATE SECOND ORDER ANALYSIS Pg 184

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑝3 = 𝛾𝑠𝑡𝑟 (

3.956.99. 2024.13

) =

(

3.9510.944.159.3418.4320.209.1916.852.37 )

𝑘𝑖𝑝

𝑝4 = 𝛾𝑠𝑡𝑟 (

10.4816.531.1719.92

) =

(

10.4827.0111.6523.7622.4332.7222.8818.246.29 )

𝑘𝑖𝑝

𝐻𝑢∑𝑝𝑖 =

(

18.8946.8221.641.8775.0984.0239.8467.5311.33)

𝑘𝑖𝑝

Deflection of the joint at the top of the bottom column due to each load case (found in Visual

Analysis):

∆= (

. 0290

. 0422

. 0044

. 1508

) 𝑖𝑛

Factored deflections corresponding to loads Hu:

∆𝐻= 𝛾𝑠𝑡𝑟∆=

(

. 029. 0712. 0334. 0640. 1195. 1318. 0607. 1079. 0174)

𝑖𝑛

ASD load factor: 𝛼 = 1.6

Factored axial load in moment frames. (This structure has no moment frames):

Page 186: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

APPROXIMATE SECOND ORDER ANALYSIS Pg 185

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑃𝑢𝑚𝑓 =

(

000000)

𝑘𝑖𝑝

Rm factor:

𝑅𝑚 = 1 − .15𝑃𝑢𝑚𝑓

𝑃𝑢𝑠𝑡𝑜𝑟𝑦=

(

111111)

Buckling load per story:

𝑃𝑒𝑠𝑡𝑜𝑟𝑦 = (𝑅𝑚𝐻𝑢ℎ

∆𝐻) =

(

117248.3118365.2116407.2117759.4113106.3114746.6118141.7112654.3117206.9)

𝑘𝑖𝑝

P-Big Delta Amplification factor B2:

𝐵2 =

(

𝑏𝑖 = max (1,1

1 −𝛼𝑃𝑢𝑠𝑡𝑜𝑟𝑦𝑖𝑃𝑒𝑠𝑡𝑜𝑟𝑦𝑖 )

=

(

1.031.071.031.061.031.071.061.021.02)

Find P-Little Delta factor B1:

Note: Bottom column is pinned at base. M1 is always zero. CM therefore is always 0.6.

𝐶𝑀 = 0.6 Required axial design strength:

𝑃𝑟 = (𝑃𝑛𝑡 + 𝐵2𝑃𝑙𝑡) =

(

250619286555341627527241140)

𝑘𝑖𝑝

Page 187: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

APPROXIMATE SECOND ORDER ANALYSIS Pg 186

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Steel properties and column section properties (W14X109):

𝐸𝑠 = 29000 𝑘𝑠𝑖 𝐼 = 1240 𝑖𝑛4

Effective length factor: 𝑘 = 1.0 (pin-pin connection)

Column buckling load:

𝑃𝑒1 =𝜋𝐸𝑠𝐼

(𝑘ℎ)2= 3486.80 𝑘𝑖𝑝

P-small delta Amplification factor B1:

𝐵1 = (𝑏𝑖 = max (1,𝐶𝑀

1 −𝛼𝑃𝑟𝑖𝑃𝑒1

) =

(

111111)

Required bending moment design strength:

𝑀𝑟 = (𝐵1𝑀𝑛𝑡 + 𝐵2𝑀𝑙𝑡) =

(

3.244.714.305.1464.1352.634.3462.221.93 )

𝑘𝑖𝑝 ∗ 𝑖𝑛

Checking Member:

𝑃𝑐 = 808 𝑘𝑖𝑝

𝐿𝑏 = 15 𝑓𝑡, 𝐿𝑟 = 48.5 𝑓𝑡, 𝐿𝑝 = 13.2 𝑓𝑡 → 𝑍𝑜𝑛𝑒 𝐼𝐼 𝑀𝑝

Ω= 479 𝑘 ∗ 𝑓𝑡,

𝐵𝐹

Ω= 5.01 𝑘𝑖𝑝

𝑀𝑛Ω= 𝐶𝑏 [

𝑀𝑝

Ω−𝐵𝐹

Ω(𝐿𝑏 − 𝐿𝑝)] = 469.98 𝑘 ∗ 𝑓𝑡

𝑃𝑟

𝑃𝑐=627

808= 0.78 > 0.2

𝑃𝑟𝑃𝑐+8

9(𝑀𝑟𝑀𝑐) =

627

808+8

9(64.13/12

469.98) = 0.79 < 1.0 → 𝑂𝐾!

Page 188: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 187

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

BRACED FRAME DESIGN:

Design the braced frame connections for the braces and maximum factored loads shown below.

Use ASD.

Brace 1: Maximum factored load of 92.55 kip.

Brace 2: Maximum factored load of 101.0 kip.

Page 189: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 188

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

DESIGN OF BRACE 1:

Draw the brace in AutoCAD. Use the following properties for all members involved:

Beam:

W18x55 𝑑 = 18.1 𝑖𝑛

ASTM A992 𝑡𝑓 = .63 𝑖𝑛

𝐹𝑦 = 50 𝑘𝑠𝑖

𝐹𝑢 = 65 𝑘𝑠𝑖

Column:

W14X109 𝑑 = 14.3 𝑖𝑛

ASTM A992 𝑡𝑓 = .595 𝑖𝑛

𝐹𝑦 = 50 𝑘𝑠𝑖 𝑏𝑓 = 14.6 𝑖𝑛

𝐹𝑢 = 65 𝑘𝑠𝑖 𝑡𝑤 = .525 𝑖𝑛

Diagonal Brace:

2L6x6x1/2x3/8 𝑡 = .5 𝑖𝑛

ASTM A36 𝐴 = 11.5 𝑖𝑛2

𝐹𝑦 = 36 𝑘𝑠𝑖 �� = 1.67 𝑖𝑛

𝐹𝑢 = 58 𝑘𝑠𝑖

Clip Angle:

2L6X6X3/8

ASTM A36

𝐹𝑦 = 36 𝑘𝑠𝑖

𝐹𝑢 = 58 𝑘𝑠𝑖

Gusset Plate:

𝑡 = .375 𝑖𝑛 ASTM A36

𝐹𝑦 = 36 𝑘𝑠𝑖

𝐹𝑢 = 58 𝑘𝑠𝑖

Solve for the dimensions of the gusset plate/center of gravity for beam to gusset and column to

gusset connections:

𝑒𝑏 =18.1

2= 9.05 𝑖𝑛 (𝑓𝑜𝑟 𝑊18𝑋55)

𝑒𝑐 =14.3

2= 7.15 𝑖𝑛 (𝑓𝑜𝑟 𝑊14𝑋109)

𝛽 = 6 𝑖𝑛

𝜃 = 59∘ Solving for Alpha:

𝛼 = 𝑒𝑏 tan 𝜃 − 𝑒𝑐 + 𝛽 tan𝜃

Page 190: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 189

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝛼 = 17.9 𝑖𝑛

Finding loads per Uniform Force Method (AISC Part 13)

𝑟 = √(𝛼 + 𝑒𝑐)2 + (𝛽 + 𝑒𝑏)2 = 29.22 𝑖𝑛

𝑉𝑐 =𝛽

𝑟𝑃 =

6 𝑖𝑛

29.22 𝑖𝑛92.55 𝑘𝑖𝑝 = 19 𝑘𝑖𝑝

𝐻𝑐 =𝑒𝑐𝑟𝑃 =

7.15 𝑖𝑛

29.22 𝑖𝑛92.55 𝑘𝑖𝑝 = 22.65 𝑘𝑖𝑝

𝑉𝑏 =𝑒𝑏𝑟𝑃 =

9.05 𝑖𝑛

29.22 𝑖𝑛92.55 𝑘𝑖𝑝 = 28.66 𝑘𝑖𝑝

𝐻𝑏 =𝛼

𝑟𝑃 =

17.9 𝑖𝑛

29.22 𝑖𝑛92.55 𝑘𝑖𝑝 = 56.70 𝑘𝑖𝑝

Design of welds connecting Diagonal brace to the Gusset Plate:

For ½-in. angles, 𝐷𝑚𝑖𝑛 = 3 from AISC Specification Table J2.4.

Try 3/16-in fillet welds, 𝐷 = 3. From AISC equation 8-2:

𝐿𝑟𝑒𝑞 =𝑃

4𝐷(0.928)=

92.55 𝑘𝑖𝑝

4(3)(0.928)= 8.31 𝑖𝑛

Weld the entire length of the angle minus some clearance.

𝐿 = 19 𝑖𝑛 > 8.31 𝑖𝑛 → 𝑂𝐾

Check the maximum size of fillet weld:

𝑀𝑎𝑥 𝑠𝑖𝑧𝑒 = .375 − .0625 = .3125 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

Check the minimum length:

𝐿𝑚𝑖𝑛 = 4(. 1875 𝑖𝑛) = .75 𝑖𝑛 < 19 𝑖𝑛 → 𝑂𝐾

𝐿𝑚𝑖𝑛 = 6 𝑖𝑛 < 19 𝑖𝑛 → 𝑂𝐾

Check the weld length to weld size ratio: 𝐿

𝑤=

19

. 1875= 101.33 > 100 → 𝐶ℎ𝑒𝑐𝑘 𝛽 𝑓𝑎𝑐𝑡𝑜𝑟

𝛽 = 1.2 − .002 ∗𝑙

𝑤= 1.2 − .002 ∗ 101.33 = .997

Recheck strength: 𝑅𝑛Ω= (. 997)(4)(3)(. 928)(19) = 211 𝑘𝑖𝑝 > 92.55 𝑘𝑖𝑝 → 𝑂𝐾

Check Base Metals by the largest effective weld size (𝑎 =𝐷

16):

For the Diagonal brace:

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 58 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 5 𝑖𝑛 = 1.17 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

Page 191: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 190

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

For the Gusset plate:

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 58 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 375 𝑖𝑛 = .879 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

Tensile Yielding of Diagonal Brace:

𝑅𝑛Ω=𝐹𝑦𝐴𝑔

Ω=36 𝑘𝑠𝑖 ∗ 11.5 𝑖𝑛2

1.67= 247.9 𝑘𝑖𝑝 > 92.55 𝑘𝑖𝑝 → 𝑂𝐾

Tensile Rupture of Diagonal Brace:

𝐴𝑛 = 𝐴𝑔 = 11.5 𝑖𝑛2

𝑈 = 1 −��

𝑙= 1 −

1.67 𝑖𝑛

19 𝑖𝑛= 0.912

𝐴𝑒 = 𝐴𝑛𝑈 = 11.5 𝑖𝑛2 ∗ .912 = 10.48 𝑖𝑛2

𝑅𝑛Ω=𝐹𝑢𝐴𝑒Ω

=58 𝑘𝑠𝑖 ∗ 10.48 𝑖𝑛2

2= 303.9 𝑘𝑖𝑝𝑠 > 92.55 𝑘𝑖𝑝𝑠 → 𝑂𝐾

Welds connecting Clip Angle to Column

Design weld for 𝑉𝑐 + 𝐻𝑐 = 19 𝑘𝑖𝑝 + 22.65 𝑘𝑖𝑝 = 41.65 𝑘𝑖𝑝𝑠 For 3/8-in. angles, 𝐷𝑚𝑖𝑛 = 3 from AISC Specification Table J2.4.

Try 5/16-in fillet welds, 𝐷 = 5. From AISC equation 8-2:

𝐿𝑟𝑒𝑞 =𝑉𝑐 + 𝐻𝑐2𝐷(0.928)

=41.65 𝑘𝑖𝑝

2(5)(0.928)= 4.49 𝑖𝑛

Fillet weld for the entire length of gusset for full length minus some clearance:

𝐿 = 9.5 𝑖𝑛 > 4.49 𝑖𝑛 → 𝑂𝐾

Check the maximum size of fillet weld:

𝑀𝑎𝑥 𝑠𝑖𝑧𝑒 = .375 − .0625 = .3125 𝑖𝑛 = .3125 𝑖𝑛 → 𝑂𝐾

Check the minimum length:

𝐿𝑚𝑖𝑛 = 4(. 3125 𝑖𝑛) = 1.25 𝑖𝑛 < 9.5 𝑖𝑛 → 𝑂𝐾

𝐿𝑚𝑖𝑛 = 7.375 𝑖𝑛 < 9.5 𝑖𝑛 → 𝑂𝐾

Check the weld length to weld size ratio: 𝐿

𝑤=

9.5

. 3125= 30.4 < 100 → 𝐶ℎ𝑒𝑐𝑘 𝛽 𝑓𝑎𝑐𝑡𝑜𝑟 𝑛𝑜𝑡 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦

Check Base Metals by the largest effective weld size.

For the Clip Angle:

Page 192: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 191

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 58 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 375 𝑖𝑛 = .879 𝑖𝑛 > .3125 𝑖𝑛 → 𝑂𝐾

For the Column Flange:

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 65 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 595 𝑖𝑛 = 1.56 𝑖𝑛 > .3125 𝑖𝑛 → 𝑂𝐾

Bolts connecting Clip Angle from Column to Gusset Plate

Use the following load for design: 𝑅 = √𝑉𝑐2 + 𝐻𝑐

2 = 29.56 𝑘𝑖𝑝𝑠

From AISC Manual Table 7-1, find the minimum number of 1-in. Group A, threads

included, bolts.

𝑛𝑚𝑖𝑛 =𝑅𝑟𝑛Ω

=29.56 𝑘𝑖𝑝𝑠

21.2 𝑘𝑖𝑝𝑠= 1.4 𝑏𝑜𝑙𝑡𝑠

Try 4 standard sized bolts at 2.5 inches on center.

Shear Yielding of Clip Angle from column to Gusset Plate

Follow AISC specification J4-2. 𝑅𝑛Ω=. 6𝐹𝑦𝐴𝑔𝑣

Ω=. 6 ∗ 36 𝑘𝑠𝑖 ∗ 12 𝑖𝑛 ∗ .375 𝑖𝑛 ∗ 2

1.5= 129.6 𝑘𝑖𝑝𝑠 > 29.56 𝑘𝑖𝑝𝑠

→ 𝑂𝐾

Shear Rupture of Clip Angle from column to Gusset Plate

Following AISC specification J4-2:

𝐴𝑛𝑣 = 2(. 375 𝑖𝑛)[12 − 4(1 𝑖𝑛 + .125 𝑖𝑛)] = 5.625 𝑖𝑛2

𝑅𝑛Ω=. 6𝐹𝑢𝐴𝑛𝑣Ω

=. 6 ∗ 58 𝑘𝑠𝑖 ∗ 5.625 𝑖𝑛2

2= 97.9 𝑘𝑖𝑝𝑠 > 29.56 𝑘𝑖𝑝𝑠

Block Shear Rupture of Clip Angle from column to Gusset Plate

Assume uniform tension stress, so use 𝑈𝑏𝑠 = 1.

𝐴𝑔𝑣 = 2(12 𝑖𝑛 − 2.25 𝑖𝑛). 375 𝑖𝑛 = 7.31 𝑖𝑛2

𝐴𝑛𝑣 = 7.31 𝑖𝑛2 − .375 𝑖𝑛(3.5)(1.125 𝑖𝑛)2 = 4.36 𝑖𝑛2

𝐴𝑛𝑡 = [(3 𝑖𝑛 ∗ .375 𝑖𝑛) − (.5 ∗ 1.125 𝑖𝑛 ∗ .375 𝑖𝑛)]2 = 1.83 𝑖𝑛2

From AISC Specification J4-3:

𝑅𝑛 = .6𝐹𝑢𝐴𝑛𝑣 + 𝑈𝑏𝑠𝐹𝑢𝐴𝑛𝑡 ≤ .5𝐹𝑦𝐴𝑔𝑣 + 𝑈𝑏𝑠𝐹𝑢𝐴𝑛𝑡

𝑅𝑛 = .6(58)(4.36) + 1(58)(1.83) ≤ .5(36)(7.31) + 1(58)(1.83) 𝑅𝑛 = 257.9 𝑘𝑖𝑝𝑠 ≤ 237.7 𝑘𝑖𝑝𝑠 𝑅𝑛Ω=237.7

2= 118.9 𝑘𝑖𝑝𝑠 > 29.56 𝑘𝑖𝑝𝑠 → 𝑂𝐾

Page 193: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 192

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Shear Bearing Strength at Bolt Holes

𝑙𝑐 = 2.25 −1.125

2= 1.6875 𝑖𝑛

Consider deformation at the bolthole at service load a design consideration.

𝑅𝑛 = 1.2𝑙𝑐𝑡𝐹𝑢 ≤ 2.4𝑑𝑡𝐹𝑢

𝑅𝑛 = 1.2(1.6875 𝑖𝑛)(. 375 𝑖𝑛)(58 𝑘𝑠𝑖)4 ≤ 2.4(1 𝑖𝑛)(. 375 𝑖𝑛)(58 𝑘𝑠𝑖)4

𝑅𝑛 = 176.18 𝑘𝑖𝑝𝑠 ≤ 208.8 𝑘𝑖𝑝𝑠 𝑅𝑛Ω=176.18

2= 88.09 𝑘𝑖𝑝𝑠 > 29.56 𝑘𝑖𝑝𝑠 → 𝑂𝐾

Design of welds connecting Beam to the Gusset Plate:

Design connection for 𝑉𝑏 +𝐻𝑏 = 28.66 𝑘𝑖𝑝 + 56.7 𝑘𝑖𝑝 = 85.36 𝑘𝑖𝑝𝑠 For 3/8-in. plate thickness, 𝐷𝑚𝑖𝑛 = 3 from AISC Specification Table J2.4.

Try 3/16-in fillet welds, 𝐷 = 3. From AISC equation 8-2:

𝐿𝑟𝑒𝑞 =𝑃

2𝐷(0.928)=85.36 𝑘𝑖𝑝𝑠

2(3)(0.928)= 15.33 𝑖𝑛

Weld the entire length of the minus some clearance.

𝐿 = 33 𝑖𝑛 > 15.33 𝑖𝑛 → 𝑂𝐾

Check the maximum size of fillet weld:

𝑀𝑎𝑥 𝑠𝑖𝑧𝑒 = .375 − .0625 = .3125 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

Check the minimum length:

𝐿𝑚𝑖𝑛 = 4(. 1875 𝑖𝑛) = .75 𝑖𝑛 < 33 𝑖𝑛 → 𝑂𝐾

𝐿𝑚𝑖𝑛 = .375 𝑖𝑛 < 33 𝑖𝑛 → 𝑂𝐾

Check the weld length to weld size ratio: 𝐿

𝑤=

33

. 1875= 176 > 100 → 𝐶ℎ𝑒𝑐𝑘 𝛽 𝑓𝑎𝑐𝑡𝑜𝑟

𝛽 = 1.2 − .002 ∗𝑙

𝑤= 1.2 − .002 ∗ 176 = .848

Recheck strength: 𝑅𝑛Ω= (. 848)(2)(3)(. 928)(33) = 155.8 𝑘𝑖𝑝 > 85.36 𝑘𝑖𝑝 → 𝑂𝐾

Check Base Metals by the largest effective weld size. (𝑎 =𝐷

16)

For the Beam:

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 65 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 63 𝑖𝑛 = 1.65 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

For the Gusset plate:

Page 194: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 193

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 58 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 375 𝑖𝑛 = .88 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

Gusset Plate Compression

Whitmore section effective width, 𝑤 = 29.42 𝑖𝑛

According to AISC Part 9, “The Whitmore section may spread across the joint between

connecting elements, but cannot spread beyond an unconnected edge.” Thus, this section

is ok.

𝐿1 = 6.18 𝑖𝑛

𝐿2 = 6.7 𝑖𝑛

𝐿3 = −16 𝑖𝑛

Unbraced length, 𝑙 =𝐿1+𝐿2+𝐿3

3= −1.04 𝑖𝑛

Because this value is negative, use the alternate method discussed by William A.

Thornton, P.E., PH.D. and Carlo Lini, P.E. in The Whitmore Section, Steel Wise, Modern

Steel Construction, July 2011. In this method, take the unbraced length as:

𝐿2 = 𝑙 = 6.7 𝑖𝑛

Page 195: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 194

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑟 =𝑡

√12=. 375 𝑖𝑛

√12= .108 𝑖𝑛

By AISC Manual specification J4: 𝑘𝑙

𝑟=1(6.7 𝑖𝑛)

.108 𝑖𝑛= 62.04

From Table 4-22, 𝐹𝑐𝑟

Ω= 17.5 𝑘𝑠𝑖

𝐴𝑔 = 𝑤𝑡 = 29.42 𝑖𝑛 ∗ .375 𝑖𝑛 = 11.03 𝑖𝑛2

𝑃𝑛Ω=𝐹𝑐𝑟𝐴𝑔

Ω=17.5 𝑘𝑠𝑖 ∗ 11.03 𝑖𝑛2

1.67= 115.6 𝑘𝑖𝑝𝑠 > 92.55 𝑘𝑖𝑝𝑠 → 𝑂𝐾

Tensile Yielding of Gusset Plate

𝑅𝑛Ω=𝐹𝑦𝐴𝑔

Ω=36 𝑘𝑠𝑖 ∗ 11.03 𝑖𝑛2

1.67= 237.8 𝑘𝑖𝑝 > 92.55 𝑘𝑖𝑝 → 𝑂𝐾

Tensile Rupture of Gusset Plate:

𝐴𝑛 = 𝐴𝑔 = 11.03 𝑖𝑛2

Case 4 in AISC table D3.1: 𝑈 = 1.0

𝐴𝑒 = 𝐴𝑛𝑈 = 11.03 𝑖𝑛2 ∗ 1 = 11.03 𝑖𝑛2

Page 196: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 195

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑅𝑛Ω=𝐹𝑢𝐴𝑒Ω

=58 𝑘𝑠𝑖 ∗ 11.03 𝑖𝑛2

2= 319.9 𝑘𝑖𝑝𝑠 > 92.55 𝑘𝑖𝑝𝑠 → 𝑂𝐾

Connection Geometry

𝛼 = 17.9 𝑖𝑛

𝛽 = 6 𝑖𝑛

𝜃 = 59°

𝑒𝑏 =18.1

2= 9.05 𝑖𝑛 (𝑓𝑜𝑟 𝑊18𝑋55)

𝑒𝑐 =14.3

2= 7.15 𝑖𝑛 (𝑓𝑜𝑟 𝑊14𝑋109)

𝛼 = 𝑒𝑏 tan 𝜃 − 𝑒𝑐 + 𝛽 tan𝜃

17.9 = 9.05tan 59° − 7.15 + 6 tan 59° → 𝑇𝑟𝑢𝑒 → 𝑂𝐾

ALL CHECKS ARE SATISFIED; THEREFORE CONSTRUCT BRACE ACCORDING

TO AUTOCAD DRAWING.

DESIGN OF BRACE 2:

Draw the brace in AutoCAD. Use the following properties for all members involved:

Beam:

W14x30 𝑑 = 13.8 𝑖𝑛

ASTM A992 𝑡𝑓 = .385 𝑖𝑛

𝐹𝑦 = 50 𝑘𝑠𝑖

𝐹𝑢 = 65 𝑘𝑠𝑖

Page 197: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 196

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Column:

W14X109 𝑑 = 14.3 𝑖𝑛

ASTM A992 𝑡𝑓 = .595 𝑖𝑛

𝐹𝑦 = 50 𝑘𝑠𝑖 𝑏𝑓 = 14.6 𝑖𝑛

𝐹𝑢 = 65 𝑘𝑠𝑖 𝑡𝑤 = .525 𝑖𝑛

Diagonal Brace:

2L6x6x1/2x3/8 𝑡 = .5 𝑖𝑛

ASTM A36 𝐴 = 11.5 𝑖𝑛2

𝐹𝑦 = 36 𝑘𝑠𝑖 �� = 1.67 𝑖𝑛

𝐹𝑢 = 58 𝑘𝑠𝑖

Clip Angle:

2L6X6X3/8

ASTM A36

𝐹𝑦 = 36 𝑘𝑠𝑖

𝐹𝑢 = 58 𝑘𝑠𝑖

Gusset Plate:

𝑡 = .375 𝑖𝑛 ASTM A36

𝐹𝑦 = 36 𝑘𝑠𝑖

𝐹𝑢 = 58 𝑘𝑠𝑖

Solve for the dimensions of the gusset plate/center of gravity for beam to gusset and column to

gusset connections:

𝑒𝑏 =13.8

2= 6.90 𝑖𝑛 (𝑓𝑜𝑟 𝑊14𝑥30)

𝑒𝑐 =14.3

2= 7.15 𝑖𝑛 (𝑓𝑜𝑟 𝑊14𝑋109)

𝛽 = 6 𝑖𝑛

𝜃 = 59° Solving for Alpha:

𝛼 = 𝑒𝑏 tan 𝜃 − 𝑒𝑐 + 𝛽 tan𝜃

𝛼 = 14.32 𝑖𝑛

Finding loads per Uniform Force Method (AISC Part 13)

𝑟 = √(𝛼 + 𝑒𝑐)2 + (𝛽 + 𝑒𝑏)2 = 25.05 𝑖𝑛

𝑉𝑐 =𝛽

𝑟𝑃 =

6 𝑖𝑛

25.05 𝑖𝑛101 𝑘𝑖𝑝 = 24.2 𝑘𝑖𝑝

𝐻𝑐 =𝑒𝑐𝑟𝑃 =

7.15 𝑖𝑛

25.05 𝑖𝑛101 𝑘𝑖𝑝 = 28.8 𝑘𝑖𝑝

Page 198: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 197

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑉𝑏 =𝑒𝑏𝑟𝑃 =

6.90 𝑖𝑛

25.05 𝑖𝑛101 𝑘𝑖𝑝 = 27.8 𝑘𝑖𝑝

𝐻𝑏 =𝛼

𝑟𝑃 =

14.32 𝑖𝑛

25.05 𝑖𝑛101 𝑘𝑖𝑝 = 57.74 𝑘𝑖𝑝

Design of welds connecting Diagonal brace to the Gusset Plate:

For ½-in. angles, 𝐷𝑚𝑖𝑛 = 3 from AISC Specification Table J2.4.

Try 3/16-in fillet welds, 𝐷 = 3. From AISC equation 8-2:

𝐿𝑟𝑒𝑞 =𝑃

4𝐷(0.928)=

101 𝑘𝑖𝑝

4(3)(0.928)= 9.07 𝑖𝑛

Weld the entire length of the angle minus some clearance.

𝐿 = 16 𝑖𝑛 > 9.07 𝑖𝑛 → 𝑂𝐾

Check the maximum size of fillet weld:

𝑀𝑎𝑥 𝑠𝑖𝑧𝑒 = .375 − .0625 = .3125 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

Check the minimum length:

𝐿𝑚𝑖𝑛 = 4(. 1875 𝑖𝑛) = .75 𝑖𝑛 < 16 𝑖𝑛 → 𝑂𝐾

𝐿𝑚𝑖𝑛 = 6 𝑖𝑛 < 16 𝑖𝑛 → 𝑂𝐾

Check the weld length to weld size ratio: 𝐿

𝑤=

16

. 1875= 85.33 < 100 → 𝛽 𝑓𝑎𝑐𝑡𝑜𝑟 𝐶ℎ𝑒𝑐𝑘 𝑛𝑜𝑡 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦

Check Base Metals by the largest effective weld size. (𝑎 =𝐷

16)

For the Diagonal brace:

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 58 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 5 𝑖𝑛 = 1.17 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

For the Gusset plate:

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 58 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 375 𝑖𝑛 = .88 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

Tensile Yielding of Diagonal Brace:

𝑅𝑛Ω=𝐹𝑦𝐴𝑔

Ω=36 𝑘𝑠𝑖 ∗ 11.5 𝑖𝑛2

1.67= 247.9 𝑘𝑖𝑝 > 101 𝑘𝑖𝑝 → 𝑂𝐾

Tensile Rupture of Diagonal Brace:

𝐴𝑛 = 𝐴𝑔 = 11.5 𝑖𝑛2

𝑈 = 1 −��

𝑙= 1 −

1.67 𝑖𝑛

16 𝑖𝑛= 0.899

Page 199: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 198

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐴𝑒 = 𝐴𝑛𝑈 = 11.5 𝑖𝑛2 ∗ .899 = 10.34 𝑖𝑛2

𝑅𝑛Ω=𝐹𝑢𝐴𝑒Ω

=58 𝑘𝑠𝑖 ∗ 10.34 𝑖𝑛2

2= 299.9 𝑘𝑖𝑝𝑠 > 101 𝑘𝑖𝑝𝑠 → 𝑂𝐾

Welds connecting Clip Angle to Column

Design weld for 𝑉𝑐 + 𝐻𝑐 = 24.2 𝑘𝑖𝑝 + 28.8 𝑘𝑖𝑝 = 53 𝑘𝑖𝑝𝑠 For 3/8-in. angles, 𝐷𝑚𝑖𝑛 = 3 from AISC Specification Table J2.4.

Try 5/16-in fillet welds, 𝐷 = 5. From AISC equation 8-2:

𝐿𝑟𝑒𝑞 =𝑉𝑐 + 𝐻𝑐2𝐷(0.928)

=53 𝑘𝑖𝑝

2(5)(0.928)= 5.71 𝑖𝑛

Fillet weld for the entire length of gusset for full length minus some clearance:

𝐿 = 9.5 𝑖𝑛 > 5.71 𝑖𝑛 → 𝑂𝐾

Check the maximum size of fillet weld:

𝑀𝑎𝑥 𝑠𝑖𝑧𝑒 = .375 − .0625 = .3125 𝑖𝑛 = .3125 𝑖𝑛 → 𝑂𝐾

Check the minimum length:

𝐿𝑚𝑖𝑛 = 4(. 3125 𝑖𝑛) = 1.25 𝑖𝑛 < 9.5 𝑖𝑛 → 𝑂𝐾

𝐿𝑚𝑖𝑛 = 7.375 𝑖𝑛 < 9.5 𝑖𝑛 → 𝑂𝐾

Check the weld length to weld size ratio: 𝐿

𝑤=

9.5

. 3125= 30.4 < 100 → 𝐶ℎ𝑒𝑐𝑘 𝛽 𝑓𝑎𝑐𝑡𝑜𝑟 𝑛𝑜𝑡 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦

Check Base Metals by the largest effective weld size.

For the Clip Angle:

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 58 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 375 𝑖𝑛 = .879 𝑖𝑛 > .3125 𝑖𝑛 → 𝑂𝐾

For the Column Flange:

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 65 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 595 𝑖𝑛 = 1.56 𝑖𝑛 > .3125 𝑖𝑛 → 𝑂𝐾

Bolts connecting Clip Angle from Column to Gusset Plate

Use the following load for design: 𝑅 = √𝑉𝑐2 + 𝐻𝑐

2 = 37.62 𝑘𝑖𝑝𝑠

From AISC Manual Table 7-1, find the minimum number of 1-in. Group A, threads

included, bolts.

𝑛𝑚𝑖𝑛 =𝑅𝑟𝑛Ω

=37.62 𝑘𝑖𝑝𝑠

21.2 𝑘𝑖𝑝𝑠= 1.77 𝑏𝑜𝑙𝑡𝑠

Try 4 standard sized bolts at 2.5 inches on center.

Page 200: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 199

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Shear Yielding of Clip Angle from column to Gusset Plate

Follow AISC specification J4-2. 𝑅𝑛Ω=. 6𝐹𝑦𝐴𝑔𝑣

Ω=. 6 ∗ 36 𝑘𝑠𝑖 ∗ 12 𝑖𝑛 ∗ .375 𝑖𝑛 ∗ 2

1.5= 129.6 𝑘𝑖𝑝𝑠 > 37.62 𝑘𝑖𝑝𝑠

→ 𝑂𝐾

Shear Rupture of Clip Angle from column to Gusset Plate

Following AISC specification J4-2:

𝐴𝑛𝑣 = 2(. 375 𝑖𝑛)[12 − 4(1 𝑖𝑛 + .125 𝑖𝑛)] = 5.625 𝑖𝑛2

𝑅𝑛Ω=. 6𝐹𝑢𝐴𝑛𝑣Ω

=. 6 ∗ 58 𝑘𝑠𝑖 ∗ 5.625 𝑖𝑛2

2= 97.9 𝑘𝑖𝑝𝑠 > 37.62 𝑘𝑖𝑝𝑠

Block Shear Rupture of Clip Angle from column to Gusset Plate

Assume uniform tension stress, so use 𝑈𝑏𝑠 = 1.

𝐴𝑔𝑣 = 2(12 𝑖𝑛 − 2.25 𝑖𝑛). 375 𝑖𝑛 = 7.31 𝑖𝑛2

𝐴𝑛𝑣 = 7.31 𝑖𝑛2 − .375 𝑖𝑛(3.5)(1.125 𝑖𝑛)2 = 4.36 𝑖𝑛2

𝐴𝑛𝑡 = [(3 𝑖𝑛 ∗ .375 𝑖𝑛) − (.5 ∗ 1.125 𝑖𝑛 ∗ .375 𝑖𝑛)]2 = 1.83 𝑖𝑛2

From AISC Specification J4-3:

𝑅𝑛 = .6𝐹𝑢𝐴𝑛𝑣 + 𝑈𝑏𝑠𝐹𝑢𝐴𝑛𝑡 ≤ .5𝐹𝑦𝐴𝑔𝑣 + 𝑈𝑏𝑠𝐹𝑢𝐴𝑛𝑡

𝑅𝑛 = .6(58)(4.36) + 1(58)(1.83) ≤ .5(36)(7.31) + 1(58)(1.83) 𝑅𝑛 = 257.9 𝑘𝑖𝑝𝑠 ≤ 237.7 𝑘𝑖𝑝𝑠 𝑅𝑛Ω=237.7

2= 118.9 𝑘𝑖𝑝𝑠 > 37.62 𝑘𝑖𝑝𝑠 → 𝑂𝐾

Shear Bearing Strength at Bolt Holes

𝑙𝑐 = 2.25 −1.125

2= 1.6875 𝑖𝑛

Consider deformation at the bolthole at service load a design consideration.

𝑅𝑛 = 1.2𝑙𝑐𝑡𝐹𝑢 ≤ 2.4𝑑𝑡𝐹𝑢

𝑅𝑛 = 1.2(1.6875 𝑖𝑛)(. 375 𝑖𝑛)(58 𝑘𝑠𝑖)4 ≤ 2.4(1 𝑖𝑛)(. 375 𝑖𝑛)(58 𝑘𝑠𝑖)4

𝑅𝑛 = 176.18 𝑘𝑖𝑝𝑠 ≤ 208.8 𝑘𝑖𝑝𝑠 𝑅𝑛Ω=176.18

2= 88.09 𝑘𝑖𝑝𝑠 > 37.62 𝑘𝑖𝑝𝑠 → 𝑂𝐾

Design of welds connecting Beam to the Gusset Plate:

Design connection for 𝑉𝑏 +𝐻𝑏 = 27.8 𝑘𝑖𝑝 + 57.74 𝑘𝑖𝑝 = 85.54 𝑘𝑖𝑝𝑠 For 3/8-in. plate thickness, 𝐷𝑚𝑖𝑛 = 3 from AISC Specification Table J2.4.

Page 201: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 200

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Try 3/16-in fillet welds, 𝐷 = 3. From AISC equation 8-2:

𝐿𝑟𝑒𝑞 =𝑃

2𝐷(0.928)=85.54 𝑘𝑖𝑝𝑠

2(3)(0.928)= 15.36 𝑖𝑛

Weld the entire length of the minus some clearance.

𝐿 = 25 𝑖𝑛 > 15.36 𝑖𝑛 → 𝑂𝐾

Check the maximum size of fillet weld:

𝑀𝑎𝑥 𝑠𝑖𝑧𝑒 = .375 − .0625 = .3125 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

Check the minimum length:

𝐿𝑚𝑖𝑛 = 4(. 1875 𝑖𝑛) = .75 𝑖𝑛 < 25 𝑖𝑛 → 𝑂𝐾

𝐿𝑚𝑖𝑛 = .375 𝑖𝑛 < 25 𝑖𝑛 → 𝑂𝐾

Check the weld length to weld size ratio: 𝐿

𝑤=

25

. 1875= 133.3 > 100 → 𝐶ℎ𝑒𝑐𝑘 𝛽 𝑓𝑎𝑐𝑡𝑜𝑟

𝛽 = 1.2 − .002 ∗𝑙

𝑤= 1.2 − .002 ∗ 133.3 = .933

Recheck strength: 𝑅𝑛Ω= (. 933)(2)(3)(. 928)(25) = 129.9 𝑘𝑖𝑝 > 85.54 𝑘𝑖𝑝 → 𝑂𝐾

Check Base Metals by the largest effective weld size. (𝑎 =𝐷

16)

For the Beam:

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 65 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 63 𝑖𝑛 = 1.65 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

For the Gusset plate:

𝑎 =Ω𝐹𝑢

. 707𝐹𝐸𝑋𝑋𝑡𝐵𝑀 =

2 ∗ 58 𝑘𝑠𝑖

. 707 ∗ 70 𝑘𝑠𝑖. 375 𝑖𝑛 = .88 𝑖𝑛 > .1875 𝑖𝑛 → 𝑂𝐾

Gusset Plate Compression

Whitmore section effective width, 𝑤 = 25.48 𝑖𝑛

According to AISC Part 9, “The Whitmore section may spread across the joint between

connecting elements, but cannot spread beyond an unconnected edge.” Thus, this section

is ok.

Page 202: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 201

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐿1 = 3.87 𝑖𝑛

𝐿2 = 7.68 𝑖𝑛

𝐿3 = −11.34𝑖𝑛

Unbraced length, 𝑙 =𝐿1+𝐿2+𝐿3

3= 0.21 𝑖𝑛

Page 203: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 202

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑟 =𝑡

√12=. 375 𝑖𝑛

√12= .108 𝑖𝑛

By AISC Manual specification J4: 𝑘𝑙

𝑟=1(0.21 𝑖𝑛)

. 108 𝑖𝑛= 1.94

From Table 4-22, 𝐹𝑐𝑟

Ω= 21.6 𝑘𝑠𝑖

𝐴𝑔 = 𝑤𝑡 = 25.48 𝑖𝑛 ∗ .375 𝑖𝑛 = 9.56 𝑖𝑛2

𝑃𝑛Ω=𝐹𝑐𝑟𝐴𝑔

Ω=21.6 𝑘𝑠𝑖 ∗ 9.56 𝑖𝑛2

1.67= 123.7 𝑘𝑖𝑝𝑠 > 101 𝑘𝑖𝑝𝑠 → 𝑂𝐾

Tensile Yielding of Gusset Plate

𝑅𝑛Ω=𝐹𝑦𝐴𝑔

Ω=36 𝑘𝑠𝑖 ∗ 9.56 𝑖𝑛2

1.67= 206.1 𝑘𝑖𝑝 > 101 𝑘𝑖𝑝 → 𝑂𝐾

Tensile Rupture of Gusset Plate:

𝐴𝑛 = 𝐴𝑔 = 9.56 𝑖𝑛2

Case 4 in AISC table D3.1: 𝑈 = 1.0

𝐴𝑒 = 𝐴𝑛𝑈 = 9.56 𝑖𝑛2 ∗ 1 = 9.56 𝑖𝑛2

Page 204: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

BRACED FRAME DESIGN Pg 203

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑅𝑛Ω=𝐹𝑢𝐴𝑒Ω

=58 𝑘𝑠𝑖 ∗ 9.56 𝑖𝑛2

2= 277.2 𝑘𝑖𝑝𝑠 > 101 𝑘𝑖𝑝𝑠 → 𝑂𝐾

Connection Geometry

𝛼 = 14.32 𝑖𝑛

𝛽 = 6 𝑖𝑛

𝜃 = 59°

𝑒𝑏 =13.8

2= 6.90 𝑖𝑛 (𝑓𝑜𝑟 𝑊14𝑥30)

𝑒𝑐 =14.3

2= 7.15 𝑖𝑛 (𝑓𝑜𝑟 𝑊14𝑋109)

𝛼 = 𝑒𝑏 tan 𝜃 − 𝑒𝑐 + 𝛽 tan𝜃

14.32 = 6.9tan 59° − 7.15 + 6 tan 59° → 𝑇𝑟𝑢𝑒 → 𝑂𝐾

ALL CHECKS ARE SATISFIED; THEREFORE CONSTRUCT BRACE ACCORDING

TO AUTOCAD DRAWING.

Page 205: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

SHEAR WALL DESIGN Pg 204

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

SHEAR WALL DESIGN

Concrete self-weight = 150 pcf (0.8333ft) + 15psf for finishes = 140psf

Loading from the lateral framing system:

Fx Fy

D (kip) L (kip) D (kip) L (kip)

0.024 0.025 165.61 223.698

0.04 0.057 155.296 210.07

-0.39 -1.502 208.637 297.482

Wind Load:

Wind Pressure p = qGCp – qi(GCpi) (ksi):

Height Windward (in) p Leeward (out) p Side (out) p

15 11.4 -10.4 -13.3

30 13.2 -10.4 -13.3

40 14.1 -10.4 -13.3

48 14.8 -10.4 -13.3

60 15.4 -10.4 -13.3

70 16 -10.4 -13.3

90 17 -10.4 -13.3

98 17.4 -10.4 -13.3

Wind Pressure p = qGCp – qi(GCpi) (kip*ft):

Height Windward (in) p Leeward (out) p Side (out) p

15 41.04 -37.44 -47.88

30 47.52 -37.44 -47.88

40 50.76 -37.44 -47.88

48 53.28 -37.44 -47.88

60 55.44 -37.44 -47.88

70 57.6 -37.44 -47.88

90 61.2 -37.44 -47.88

98 62.64 -37.44 -47.88

Roof Wind Pressure p = qGCp – qi(GCpi) (ksi):

Distance From

Edge

Case A

(positive)

Case B

(negative)

0 to h/2 -16.2 -5.7

h/2 to h -16.2 -5.7

h to 2h -10.4 -5.7

> 2h -7.5 -5.7

Roof Wind Pressure p = qGCp – qi(GCpi) (kip*ft):

Distance From Case A Case B

Page 206: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

SHEAR WALL DESIGN Pg 205

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Edge (positive) (negative)

0 to h/2 -58.32 -20.52

h/2 to h -58.32 -20.52

h to 2h -37.44 -20.52

> 2h -27 -20.52

Moment about the slab:

+↺ΣM=0;

Mu= 1678.351 kip*ft

Summing the forces in the x-direction:

+ ΣFx=0;

Vu= 50.76

Summing the moments in the y-direction:

↑+ ΣFy=0;

Nu= -239.184 kip

Loadings

Mu (kip): Moment 1678.351

Nu (kip): Horizontal -239.182

Vu (kip): Vertical 50.76

Wall Classification: Short ACI 318 App

A

h(w): 10 in

l(w): 25 ft ℎ𝑤

𝑙𝑤< 2

38

25= 1.52 < 2 We may now use the strut-and-tie method ACI 318 Appendix A for

the shear walls.

Moment Capacity:

Moment Capacity

As (in^2): 7.2

f'c (psi): 8000

fy (psi): 60000

h (in): 10

lw (ft): 25

ϕ: 0.65

λ: 1

d=0.90*lw=22.5 ft

Page 207: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

SHEAR WALL DESIGN Pg 206

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑇 = 𝐴𝑠 ∗ 𝑓𝑦 = 432 𝑘𝑖𝑝

𝑎 =𝑇

0.85 ∗ 𝑓 ′𝑐 ∗ ℎ= 6.35 𝑖𝑛

𝑎1 =| 𝐴𝑠 ∗ 𝑓𝑦 + 𝑁𝑢|

0.85 ∗ 𝑓 ′𝑐 ∗ ℎ= 2.85𝑖𝑛

𝐶 = 0.85 ∗ 𝑓 ′𝑐 ∗ ℎ ∗ 𝑎1 = 192.816 𝑘𝑖𝑝

𝑀𝑛 = 𝑇 (𝑑 −𝑎

2) + 𝑁𝑢 (

𝑙𝑤 − 𝑎

2) = 6679.16 𝑘𝑖𝑝 ∗ 𝑓𝑡

𝜙𝑀𝑛 = 0.65 ∗ 6679.43 = 4341.45 𝑘𝑖𝑝 ∗ 𝑓𝑡 𝜙𝑀𝑛 > 𝑀𝑢 4341.63 kip*ft > 1678.351 kip*ft Ok!

Shear Capacity

𝑉(𝑐1) = 3.3λ(𝑓′𝑐)12 ∗ ℎ ∗ 𝑑 +

|𝑁𝑢| ∗ 𝑑

4 ∗ 𝑙𝑤= 796.88 𝑘𝑖𝑝 ∗ 𝑓𝑡

𝑉(𝑐2) = (0.60λ(𝑓 ′𝑐)12 +

lw(1.25 ∗ λ ∗ (𝑓 ′𝑐)12 +

0.20|𝑁𝑢|𝑙𝑤 ∗ ℎ

)

|𝑀𝑢||𝑉𝑢|

−𝑙𝑤2

) ∗ ℎ ∗ 𝑑 = 629.66 𝑘𝑖𝑝 ∗ 𝑓𝑡

Choose the smaller of the two Vc values.

Vcmin = 629.66 kip

𝜙𝑉𝑐 = 472.25 𝑘𝑖𝑝

|𝜙𝑉𝑐| > |𝑁𝑢| 472.25 kip > 239.162 kip Ok!

Check Steel: |𝜙𝑉𝑐|

2= 236.12 < 𝑉𝑢 < 𝜙𝑉𝑐 236.12 < 239.162 < 472.25 Provide minimum shear

wall steel per ACI 318 11.9.9.2 and 11.9.9.4 hw

lw=38

25= 1.5 < 2 ρ(min ) = 0.0025 → ρ(t) = ρ(l)

Horizontal Steel:

As(h)= 3.6in2 #7 Bars @ 16” O.C.

ρ(t) = ρ(l)

ρ(𝑡) =𝐴𝑠(ℎ)

ℎ ∗ 𝑡= ρ(l) = 0.0225

ρ(𝑚𝑖𝑛) = 0.0025 + .5(2.5 −ℎ

𝑙𝑤)(ρ(t) − .0025) = 0.0235

As(v)= ρ(min) ∗ h ∗ t = 3.76in2

Vertical Steel:

As(v)= 3.8in2 #7 Bars @ 16” O.C.

Moment resisting at the end of shear walls:

Trial value of As: 8 #7 Bars As= 4.8in2

𝑇 = 𝐴𝑠 ∗ 𝑓𝑦 = 288 𝑘𝑖𝑝

𝑎 =𝑇 + 𝑁𝑛

0.85 ∗ 𝑓 ′𝑐 ∗ ℎ= 7.75 𝑖𝑛

Page 208: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

SHEAR WALL DESIGN Pg 207

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑀𝑛 = 𝑇 (𝑑 −𝑎

2) + 𝑁𝑢 (

𝑙𝑤 − 𝑎

2) = 111594.762 𝑘𝑖𝑝 ∗ 𝑖𝑛

𝜙𝑀𝑛 = 9299.56 𝑘𝑖𝑝 ∗ 𝑓𝑡 > 𝑀𝑢Ok!

Provide 8 #7 Bars at each end.

Steel Strain

𝑐 = 11.12 𝑖𝑛

ε(t)= 0.0537 >.004 Ok!

ε(t)= 0.0537 >.005 Ok! 𝜙 = 0.90

ρ(g) =n ∗ cross sectional area

boundary width ∗ boundary length= 0.0121

ρ(g) = 0.01875 > 0.01 Although ties are not ideal ties are required.

Add #4 closed ties at 16” O.C. vertical maximum at each horizontal bar.

ALL CHECKS ARE SATISFIED; THEREFORE CONSTRUCT SHEAR WALLS

ACCORDING TO AUTOCAD DRAWING.

Page 209: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FOUNDATION DESIGN Pg 208

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FOUNDATION DESIGN GREEN ROOF EDGE COLUMN FOOTING

Given Data and assumptions

Variable Value Unit

qa 8000 psf

Soil Depth weight γw 110 pcf

Slab weight with Thickness (4")

50 psf

Soil Depth 24 in

LL Surcharge 100 psf

Point Dead Load 118.9 k

Point Live Load 31.25 k

Soil Weight gw 220 psf

Column Size (c) 24 in^2

Ka 0.33

Kp 3

Theta 30 degrees

f'c 4000 psi

Reinforcement fy 60000 psi

Cover Cc 3 in

Calculations

𝑞𝑛𝑒𝑡 = 8000𝑝𝑠𝑓– (𝑁𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝐿𝑜𝑎𝑑𝑠)𝑝𝑠𝑓 = 8000𝑝𝑠𝑓 − 100𝑝𝑠𝑓 − 50𝑝𝑠𝑓 − 220𝑝𝑠𝑓= 7630𝑝𝑠𝑓 𝑆𝑢𝑚 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑙𝑜𝑎𝑑𝑠 = 118.9𝑘 + 31.25𝑘 = 150.15𝑘

𝐵 = 𝐿 = √150.15𝑘/7.63𝑘𝑠𝑓 = 4.44𝑓𝑡

Say 4.5ft 𝑄𝑑 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐷𝑒𝑎𝑑 𝐿𝑜𝑎𝑑) + .27 ∗ 𝐵2 = 118.9𝑘 + .27𝑘𝑠𝑓 ∗ (4.5𝑓𝑡)2 = 124.3675𝑘

𝑄𝐿 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐿𝑖𝑣𝑒 𝐿𝑜𝑎𝑑) + .1 ∗ 𝐵2 = 31.25𝑘 + .1𝑘𝑠𝑓 ∗ (4.5𝑓𝑡)2 = 33.275𝑘 𝑄𝑢 = 1.2 ∗ (𝑄𝑑) + 1.6(𝑄𝐿) = 202.481𝑘

𝑞𝑢 = 𝑄𝑢

𝐵2=202.481𝑘

(4.5𝑓𝑡)2= 10𝑘𝑠𝑓

𝐴𝑠𝑠𝑢𝑚𝑒 𝑑 = 10𝑖𝑛 Calculate One-way and Two-way Shear

One way

𝑉𝑢 = (𝐵

2−𝑐

2− 𝑑) ∗ 𝐿 ∗ 𝑞𝑢 = (

4.5𝑓𝑡

2−2𝑓𝑡

2− (10

12)𝑓𝑡) ∗ 4.5𝑓𝑡 ∗ 10𝑘𝑠𝑓 = 18.75𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 2 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝐿 ∗ 𝑑 =. 75 ∗ 2 ∗ 1 ∗ √4000𝑝𝑠𝑖 ∗ 4.5𝑓𝑡 ∗ 12 ∗ 10𝑖𝑛

1000𝑙𝑏= 51.23𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

51.23𝑘 > 18.75𝑘 𝑂𝐾

Page 210: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FOUNDATION DESIGN Pg 209

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Two-Way

𝑏0 = 4 ∗ (𝑐 + 𝑑) = 4(24 + 10) = 136𝑖𝑛

𝑉𝑢 = (𝐵 ∗ 𝐿 − (𝑏04)2

) ∗ 𝑞𝑢 = 122.22𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑 = 258.01𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

258.01𝑘 > 122.22𝑘 𝑂𝐾 Add 3 to 4 inches to initial d value

𝑑 = 13𝑖𝑛 Check Moment

𝑀𝑢 = 𝑞𝑢 ∗ 𝐿 ∗(𝐵2 −

𝑐2)2

2= 35.15𝑘 ∗ 𝑓𝑡

𝑀𝑛 =𝑀𝑢𝜙=35.15𝑘 ∗ 𝑓𝑡

. 9= 39.06𝑘 ∗ 𝑓𝑡

𝑀𝑛 = 𝜌𝑓𝑦𝐿𝑑2(1 −

𝜌𝑓𝑦

1.7 ∗ 𝑓′𝑐)

𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜌 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝜌 = .0008

𝐴𝑠 = 𝜌𝐵𝑑 = (. 0008) ∗ 4.5𝑓𝑡 ∗12𝑖𝑛

𝑓𝑡∗ 13𝑖𝑛 = .54454𝑖𝑛2

USE 3 #4 BARS IN EACH DIRECTON

𝐴𝑠 = .6𝑖𝑛2

𝑎 =(𝐴𝑆𝑓𝑦)

. 85𝑓′𝑐𝐿= .196

𝜙𝑀𝑛 = .9 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ (𝑑 −𝑎

2) = 34.84𝑘 ∗ 𝑓𝑡

𝜙𝑀𝑛314 = .9 ∗ .85 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ 𝑑 = 29.835𝑘 ∗ 𝑓𝑡

𝑅𝑎𝑡𝑖𝑜 =𝑀𝑛314𝑀𝑛

= .856

Summary: Design for a 4.5ft long by 4.5ft wide by 13in deep foundation imbedded 2ft below the

foundation slab with 3 #4 bars spanning both directions.

Page 211: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FOUNDATION DESIGN Pg 210

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

SHEAR WALL FOUNDATION DESIGN Given Data and assumptions

Variable Value Unit

qa 8000 psf

Concrete Weight wc 150 pcf

Soil Depth weight γw 110 pcf

Slab weight with Thickness (4") 50 psf

Soil Depth 24 in

LL Surcharge 100 psf

Ka 0.33

Kp 3

Theta 30 degrees

f'c 4000 psi

Reinforcement fy 60000 psi

Cover Cc 3 in

Assumed foundation dimension (parallel) B

30 ft

Assumed foundation dimension (perpendicular) L

10 ft

Foundation Thickness 24 in

Wall Thickness twall 10 in

Wall Length lw 25 ft

Calculations

𝐹𝑜𝑜𝑡𝑖𝑛𝑔 𝑤𝑒𝑖𝑔ℎ𝑡 𝑃𝑓 = 𝐵 ∗ 𝐿 ∗ ℎ ∗ 𝑤𝑐 = 30𝑓𝑡 ∗ 10𝑓𝑡 ∗ 24𝑖𝑛 ∗𝑓𝑡

12𝑖𝑛∗ 150𝑝𝑐𝑓 = 90𝑘

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑉𝑓 = 𝐵 ∗ 𝐿 ∗ ℎ =30𝑓𝑡 ∗ 10𝑓𝑡 ∗ 24𝑖𝑛 ∗

𝑓𝑡12𝑖𝑛

27𝑓𝑡3= 22.23𝑦𝑑3

𝑆𝑜𝑖𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑃𝑠𝑜𝑖𝑙 = 𝐵 ∗ 𝐿 ∗ ℎ𝑠𝑜𝑖𝑙 ∗ 𝛾𝑠𝑜𝑖𝑙 = 30𝑓𝑡 ∗ 10𝑓𝑡 ∗ 24𝑖𝑛 ∗1𝑓𝑡

12𝑖𝑛∗ 110𝑝𝑐𝑓 = 66𝑘

𝑆𝑢𝑟𝑐ℎ𝑎𝑟𝑔𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 𝑃𝑠𝑢𝑟𝐿 = 𝐵 ∗ 𝐿 ∗ 𝑤𝑠𝑢𝑟𝐿 = 30𝑘 Total Loads from Shear Wall Design

𝑃𝑤 = 239𝑘 𝑉𝑤 = 50.76𝑘

𝑀𝑤 = 1678.351𝑘 ∗ 𝑓𝑡 Factored Service Loads 𝑄𝑠 = 1(𝑃𝑓 + 𝑃𝑤) = 329𝑘

𝑉𝑠 = .6 ∗ 𝑉𝑤 = 30.46𝑘

Page 212: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FOUNDATION DESIGN Pg 211

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝑀𝑠 = 𝑀𝑤 ∗ .6 + (𝑉𝑠 ∗ℎ𝑠𝑜𝑖𝑙12) = 1068𝑘 ∗ 𝑓𝑡

Factored Strength Loads 𝑄𝑢 = 1.4 ∗ (𝑃𝑓 + 𝑃𝑤) = 460.6𝑘

𝑉𝑢 = .5 ∗ (𝑉𝑤) = 25.38𝑘

𝑀𝑢 = 𝑀𝑤 + (𝑉𝑢 ∗ℎ𝑠𝑜𝑖𝑙12) = 1729.111𝑘 ∗ 𝑓𝑡

𝑆𝑜𝑖𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑞𝑐𝑜𝑛 =𝑄𝑠𝐵𝐿= 1096.67𝑝𝑠𝑓

𝐷𝑒𝑚𝑎𝑛𝑑 ∶ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜𝑠 𝑞𝑐𝑜𝑛𝑞𝑎

= .137 < 1 𝑂𝐾

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =𝑀𝑠𝑄𝑠= 3.25𝑓𝑡

𝐵

6= 5𝑓𝑡

𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑦 <𝐵

6

Max soil pressure with eccentricity

𝑞𝑚𝑎𝑥 = 𝑞𝑐𝑜𝑛 ∗ (1 + 6 ∗𝐸𝑐𝑐

𝐵) = 1808.62𝑝𝑠𝑓

𝑞𝑚𝑎𝑥𝑞𝑎

= .226 < 1 𝑂𝐾

Minimum soil pressure with eccentricity

𝑞𝑚𝑖𝑛 = 𝑞𝑐𝑜𝑛 ∗ (1 − 6 ∗𝐸𝑐𝑐

𝐵) = 384.72𝑝𝑠𝑓

Check Sliding Resistance

Coefficient of friction 𝜇 = tan (2

3∗ 𝜙) = .36

𝐷𝑒𝑝𝑡ℎ 𝑓𝑟𝑜𝑚 𝑡𝑜𝑝 𝑜𝑓 𝑠𝑜𝑖𝑙 𝑡𝑜 𝑏𝑜𝑡𝑡𝑜𝑚 𝑜𝑓 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝐻 = ℎ + ℎ𝑠𝑜𝑖𝑙 = 4𝑓𝑡

𝑁𝑒𝑡 𝑒𝑎𝑟𝑡ℎ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑃𝑛𝑒𝑡 =1

2(𝐾𝑝 − 𝐾𝑎)𝛾𝑠𝑜𝑖𝑙 ∗ 𝐻

2 ∗ 𝐿 = 58.74𝑘

𝑇𝑜𝑡𝑎𝑙 𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑉𝑓𝑡𝑔 = 𝑄𝑠 ∗ 𝜇 + 𝑃𝑛𝑒𝑡 = 177.18𝑘

𝑆𝑎𝑓𝑒𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝐹𝑆𝑠𝑙𝑑 =𝑉𝑓𝑡𝑔

𝑉𝑠= 5.82 > 1.67 𝑂𝐾

Design reinforced concrete foundation for bending moment and shear

𝑆𝑜𝑖𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑞𝑢𝑐𝑜𝑛 =𝑄𝑢𝐵 ∗ 𝐿

= 1535.33𝑝𝑠𝑓

Max LRFD soil pressure

𝑞𝑢𝑚𝑎𝑥 = 𝑞𝑢𝑐𝑜𝑛 ∗ (1 + 6 ∗𝐸𝑐𝑐

𝐵) = 2532.1𝑝𝑠𝑓

Min LRFD soil pressure

𝑞𝑢𝑚𝑖𝑛 = 𝑞𝑢𝑐𝑜𝑛 ∗ (1 − 6 ∗𝐸𝑐𝑐

𝐵) = 538.61𝑝𝑠𝑓

Design for shear Parallel to Wall Length

Page 213: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FOUNDATION DESIGN Pg 212

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

Choose Size and # of tension steel bars Bar size=9 Bar num=20

𝐴𝑠 = 20𝑖𝑛2

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑑 = ℎ − 𝑐𝑐 − 1.5𝑑𝑏 = 24 − 3 − 1.5 ∗ 1.128 = 1.61𝑓𝑡

𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 𝑓𝑜𝑜𝑡𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙𝑣 =𝐵

2−𝑙𝑤2− 𝑑 = .891𝑓𝑡

Interpolating using lv to find the critical section soil pressure 𝑞𝑢2 = 2472.86𝑝𝑠𝑓

𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑓𝑜𝑟𝑐𝑒 𝐹𝑢 =𝑞𝑢𝑚𝑎𝑥 + 𝑞𝑢2

2∗ 𝑙𝑣 ∗ 𝐿 = 22.3𝑘

𝜙𝑉𝑐 = .75 ∗ 2 ∗ √4000 ∗ 𝐿 ∗ 𝑑 = 219.81𝑘 𝐹𝑢𝜙𝑉𝑐

= .102 < 1 𝑂𝐾

Check two-way shear 𝑏1 = 𝑙𝑤 + 𝑑 = 26.61𝑓𝑡 𝑏2 = 𝑡𝑤𝑎𝑙𝑙 + 𝑑 = 2.443𝑓𝑡

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝐴𝑐 = 2(𝑏1 + 𝑏2) ∗ 𝑑 = 93.49𝑓𝑡2

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑜𝑢𝑠 𝐽𝑐 =𝑏1 ∗ 𝑑 ∗ (𝑏1 + 3 ∗ 𝑏2) + 𝑑

3

3= 485.7𝑓𝑡3

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑒𝑠𝑠 𝑜𝑛 𝑤𝑎𝑙𝑙 𝑒𝑛𝑑 𝑣𝑢 =𝐹𝑢𝐴𝑐+𝑀𝑢𝐽𝑐= 26.38𝑝𝑠𝑖

𝜙𝑣𝑐 = .75 ∗ 4 ∗ √4000 = 189.74𝑝𝑠𝑖 𝑣𝑢𝜙𝑣𝑐

= .14 < 1 𝑂𝐾

Bending Moment Parallel to wall

𝑙𝑚 =𝐵

2−𝑙𝑤2= 2.5𝑓𝑡

Interpolating using lm to find the critical section soil pressure 𝑞𝑢2 =2365.939psf

𝐹𝑢 =𝑞𝑢𝑚𝑎𝑥 + 𝑞𝑢2

2∗ 𝑙𝑚 ∗ 𝐿 = 61.225𝑘

𝐹𝑜𝑟𝑐𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑟𝑚 𝑎𝑠 = 𝑙𝑚 −𝑙𝑚∗(2∗𝑞𝑢2+𝑞𝑢𝑚𝑎𝑥)

3∗(𝑞𝑢2+𝑞𝑢𝑚𝑎𝑥)=1.264ft

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑡 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑀𝑢𝑝𝑟𝑙 = (𝐹𝑢 ∗ 𝑎𝑠) = 77.4𝑘 ∗ 𝑓𝑡

𝜙𝑀𝑛 = .9 ∗ .85 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ 𝑑 =1477.1k*ft 𝑀𝑢𝑝𝑟𝑙

𝜙𝑀𝑛= .053 < 1 𝑂𝐾

Design for Shear force Perpendicular to wall length Choose Bar size and Spacing Bar size= 9, Spacing = 10in

𝐴𝑠 =1.2𝑖𝑛2

𝑓𝑡

𝑙𝑣 =𝐿

2−𝑡𝑤𝑎𝑙𝑙2− 𝑑 = 2.975𝑓𝑡

Page 214: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

FOUNDATION DESIGN Pg 213

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐹𝑢 = 𝑞𝑚𝑎𝑥 ∗ 𝑙𝑣 = 5.4𝑘

𝑓𝑡

𝜙𝑉𝑐 = .75 ∗ 2 ∗ √4000 ∗ 𝑑 = 21.98𝑘

𝑓𝑡

𝐹𝑢𝜙𝑉𝑐

= .245 < 1 𝑂𝐾

Design for bending moment perpendicular to wall

𝑙𝑚 =𝐿

2−𝑡𝑤𝑎𝑙𝑙2

= 2.584𝑓𝑡

𝑀𝑢𝑝𝑟𝑝 = 𝑞𝑚𝑎𝑥 ∗𝑙𝑚2

2= 18 𝑘 ∗

𝑓𝑡

𝑓𝑡

𝜙𝑀𝑛 = .9 ∗ .85 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ 𝑑 = 88.63 𝑘 ∗𝑓𝑡

𝑓𝑡

𝑀𝑢𝑝𝑟𝑝

𝜙𝑀𝑛= .215 < 1 𝑂𝐾

Summary Provide foundation B=30ft long, L=10ft wide, h=2ft thick with 20 # 9 bars top and bottom in the long direction and #9 bars at 10in spacing OC top and bottom in the short direction. Provide footing of this specification at all shear wall locations and overlap as necessary.

Page 215: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

APPENDIX Pg 214

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

APPENDIX

Page 216: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 215

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FOUNDATION DESIGN GREEN ROOF CORNER COLUMN FOOTING

Given Data and assumptions

Variable Value Unit

qa 8000 psf

Soil Depth weight γw 110 pcf

Slab weight with Thickness (4")

50 psf

Soil Depth 24 in

LL Surcharge 100 psf

Point Dead Load 118.9 k

Point Live Load 31.25 k

Soil Weight gw 220 psf

Column Size (c) 24 in^2

Ka 0.33

Kp 3

Theta 30 degrees

f'c 4000 psi

Reinforcement fy 60000 psi

Cover Cc 3 in

Calculations

𝑞𝑛𝑒𝑡 = 8000𝑝𝑠𝑓– (𝑁𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝐿𝑜𝑎𝑑𝑠)𝑝𝑠𝑓 = 8000𝑝𝑠𝑓 − 100𝑝𝑠𝑓 − 50𝑝𝑠𝑓 − 220𝑝𝑠𝑓= 7630𝑝𝑠𝑓 𝑆𝑢𝑚 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑙𝑜𝑎𝑑𝑠 = 59.5𝐾 + 15.63𝐾 = 75.13𝑘

𝐵 = 𝐿 = √75.13𝑘/7.63𝑘𝑠𝑓3.14𝑓𝑡

Say 3.5ft 𝑄𝑑 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐷𝑒𝑎𝑑 𝐿𝑜𝑎𝑑) + .27 ∗ 𝐵2 = 59.5𝑘 + .27𝑘𝑠𝑓 ∗ (3.5𝑓𝑡)2 = 62.81𝐾 𝑄𝐿 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐿𝑖𝑣𝑒 𝐿𝑜𝑎𝑑) + .1 ∗ 𝐵2 = 15.63𝑘 + .1𝑘𝑠𝑓 ∗ (3.5𝑓𝑡)2 = 16.86𝑘

𝑄𝑢 = 1.2 ∗ (𝑄𝑑) + 1.6(𝑄𝐿) = 102.34𝑘

𝑞𝑢 = 𝑄𝑢

𝐵2= 8.35𝑘𝑠𝑓

𝐴𝑠𝑠𝑢𝑚𝑒 𝑑 = 9𝑖𝑛 Calculate One-way and Two-way Shear

One way

𝑉𝑢 = (𝐵

2−𝑐

2− 𝑑) ∗ 𝐿 ∗ 𝑞𝑢 = 0𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 2 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝐿 ∗ 𝑑 =. 75 ∗ 2 ∗ 1 ∗ √4000𝑝𝑠𝑖 ∗ 3.5𝑓𝑡 ∗ 12 ∗ 9𝑖𝑛

1000𝑙𝑏= 35.86𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

Page 217: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 216

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

35.86𝑘 > 0𝑘 𝑂𝐾

Two-Way

𝑏0 = 4 ∗ (𝑐 + 𝑑) = 4(24 + 9) = 132𝑖𝑛

𝑉𝑢 = (𝐵 ∗ 𝐿 − (𝑏04)2

) ∗ 𝑞𝑢 = 39.16𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑 = 225.41𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

225.41𝑘 > 39.16𝑘 𝑂𝐾 Add 3 to 4 inches to initial d value

𝑑 = 12𝑖𝑛 Check Moment

𝑀𝑢 = 𝑞𝑢 ∗ 𝐿 ∗(𝐵2 −

𝑐2)2

2= 8.224𝑘 ∗ 𝑓𝑡

𝑀𝑛 =𝑀𝑢𝜙=35.15𝑘 ∗ 𝑓𝑡

. 9= 9.14𝑘 ∗ 𝑓𝑡

𝑀𝑛 = 𝜌𝑓𝑦𝐿𝑑2(1 −

𝜌𝑓𝑦

1.7 ∗ 𝑓′𝑐)

𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜌 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝜌 = .0003

𝐴𝑠 = 𝜌𝐵𝑑 = (. 0003) ∗ 3.5𝑓𝑡 ∗12𝑖𝑛

𝑓𝑡∗ 12𝑖𝑛 = .134𝑖𝑛2

USE 2 #3 BARS IN EACH DIRECTON

𝐴𝑠 = .22𝑖𝑛2

𝑎 =(𝐴𝑆𝑓𝑦)

. 85𝑓′𝑐𝐿= .092

𝜙𝑀𝑛 = .9 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ (𝑑 −𝑎

2) = 11.83𝑘 ∗ 𝑓𝑡

𝜙𝑀𝑛314 = .9 ∗ .85 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ 𝑑 = 10.1𝑘 ∗ 𝑓𝑡

𝑅𝑎𝑡𝑖𝑜 =𝑀𝑛314𝑀𝑛

= .853

Summary: Design for a 3.5ft long by 3.5ft wide by 12in deep foundation imbedded 2ft below the

foundation slab with 2 #3 bars spanning both directions.

Page 218: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 217

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FOUNDATION DESIGN GREEN ROOF INTERIOR COLUMN FOOTING

Given Data and assumptions

Variable Value Unit

qa 8000 psf

Soil Depth weight γw 110 pcf

Slab weight with Thickness (4")

50 psf

Soil Depth 24 in

LL Surcharge 100 psf

Point Dead Load 158.4 k

Point Live Load 61.7 k

Soil Weight gw 220 psf

Column Size (c) 24 in^2

Ka 0.33

Kp 3

Theta 30 degrees

f'c 4000 psi

Reinforcement fy 60000 psi

Cover Cc 3 in

Calculations

𝑞𝑛𝑒𝑡 = 8000𝑝𝑠𝑓– (𝑁𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝐿𝑜𝑎𝑑𝑠)𝑝𝑠𝑓 = 8000𝑝𝑠𝑓 − 100𝑝𝑠𝑓 − 50𝑝𝑠𝑓 − 220𝑝𝑠𝑓= 7630𝑝𝑠𝑓 𝑆𝑢𝑚 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑙𝑜𝑎𝑑𝑠 = 237.9𝐾 + 62.5𝐾 = 300.4𝑘

𝐵 = 𝐿 = √300.4𝑘/7.63𝑘𝑠𝑓 = 6.27𝑓𝑡

Say 6.5ft 𝑄𝑑 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐷𝑒𝑎𝑑 𝐿𝑜𝑎𝑑) + .27 ∗ 𝐵2 = 249.31𝐾 𝑄𝐿 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐿𝑖𝑣𝑒 𝐿𝑜𝑎𝑑) + .1 ∗ 𝐵2 = 66.73𝑘

𝑄𝑢 = 1.2 ∗ (𝑄𝑑) + 1.6(𝑄𝐿) = 405.93𝑘

𝑞𝑢 = 𝑄𝑢

𝐵2= 9.61𝑘𝑠𝑓

𝐴𝑠𝑠𝑢𝑚𝑒 𝑑 = 16𝑖𝑛

Calculate One-way and Two-way Shear One way

𝑉𝑢 = (𝐵

2−𝑐

2− 𝑑) ∗ 𝐿 ∗ 𝑞𝑢 = 57.25𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 2 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝐿 ∗ 𝑑 = 118.4𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

Page 219: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 218

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

118.4𝑘 > 57.25𝑘 𝑂𝐾

Two-Way

𝑏0 = 4 ∗ (𝑐 + 𝑑) = 4(24 + 16) = 160𝑖𝑛

𝑉𝑢 = (𝐵 ∗ 𝐿 − (𝑏04)2

) ∗ 𝑞𝑢 = 300𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑 = 485.73𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

485.73𝑘 > 300𝑘 𝑂𝐾 Add 3 to 4 inches to initial d value

𝑑 = 19𝑖𝑛 Check Moment

𝑀𝑢 = 𝑞𝑢 ∗ 𝐿 ∗(𝐵2 −

𝑐2)2

2= 158.1𝑘 ∗ 𝑓𝑡

𝑀𝑛 =𝑀𝑢𝜙=35.15𝑘 ∗ 𝑓𝑡

. 9= 175.64𝑘 ∗ 𝑓𝑡

𝑀𝑛 = 𝜌𝑓𝑦𝐿𝑑2(1 −

𝜌𝑓𝑦

1.7 ∗ 𝑓′𝑐)

𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜌 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝜌 = .0011

𝐴𝑠 = 𝜌𝐵𝑑 = 1.681𝑖𝑛2

USE 4 #6 BARS IN EACH DIRECTON

𝐴𝑠 = 1.76𝑖𝑛2

𝑎 =(𝐴𝑆𝑓𝑦)

. 85𝑓′𝑐𝐿= .398

𝜙𝑀𝑛 = .9 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ (𝑑 −𝑎

2) = 148.9𝑘 ∗ 𝑓𝑡

𝜙𝑀𝑛314 = .9 ∗ .85 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ 𝑑 = 127.91𝑘 ∗ 𝑓𝑡

𝑅𝑎𝑡𝑖𝑜 =𝑀𝑛314𝑀𝑛

= .859

Summary: Design for a 6.5ft long by 6.5ft wide by 19in deep foundation imbedded 2ft below the

foundation slab with 4 #6 bars spanning both directions.

Page 220: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 219

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FOUNDATION DESIGN GREEN ROOF/INTERIOR EDGE COLUMN FOOTING

Given Data and assumptions

Variable Value Unit

qa 8000 psf

Soil Depth weight γw 110 pcf

Slab weight with Thickness (4")

50 psf

Soil Depth 24 in

LL Surcharge 100 psf

Point Dead Load 383.9 k

Point Live Load 164 k

Soil Weight gw 220 psf

Column Size (c) 24 in^2

Ka 0.33

Kp 3

Theta 30 degrees

f'c 4000 psi

Reinforcement fy 60000 psi

Cover Cc 3 in

Calculations

𝑞𝑛𝑒𝑡 = 8000𝑝𝑠𝑓– (𝑁𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝐿𝑜𝑎𝑑𝑠)𝑝𝑠𝑓 = 8000𝑝𝑠𝑓 − 100𝑝𝑠𝑓 − 50𝑝𝑠𝑓 − 220𝑝𝑠𝑓= 7630𝑝𝑠𝑓 𝑆𝑢𝑚 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑙𝑜𝑎𝑑𝑠 = 158.4𝑘 + 61.7𝑘 = 220.1𝑘

𝐵 = 𝐿 = √220.1𝑘/7.63𝑘𝑠𝑓 = 5.37𝑓𝑡

Say 5.5ft 𝑄𝑑 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐷𝑒𝑎𝑑 𝐿𝑜𝑎𝑑) + .27 ∗ 𝐵

2 = 166.5675𝐾 𝑄𝐿 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐿𝑖𝑣𝑒 𝐿𝑜𝑎𝑑) + .1 ∗ 𝐵

2 = 64.73𝑘 𝑄𝑢 = 1.2 ∗ (𝑄𝑑) + 1.6(𝑄𝐿) = 303.441𝑘

𝑞𝑢 = 𝑄𝑢

𝐵2= 10.03𝑘𝑠𝑓

𝐴𝑠𝑠𝑢𝑚𝑒 𝑑 = 14𝑖𝑛

Calculate One-way and Two-way Shear One way

𝑉𝑢 = (𝐵

2−𝑐

2− 𝑑) ∗ 𝐿 ∗ 𝑞𝑢 = 32.2𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 2 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝐿 ∗ 𝑑 = 87.66𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

Page 221: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 220

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

87.66𝑘 > 32.2𝑘 𝑂𝐾

Two-Way

𝑏0 = 4 ∗ (𝑐 + 𝑑) = 4(24 + 14) = 152𝑖𝑛

𝑉𝑢 = (𝐵 ∗ 𝐿 − (𝑏04)2

) ∗ 𝑞𝑢 = 202.9𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑 = 403.8𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

403.8𝑘 > 202.9𝑘 𝑂𝐾 Add 3 to 4 inches to initial d value

𝑑 = 17𝑖𝑛 Check Moment

𝑀𝑢 = 𝑞𝑢 ∗ 𝐿 ∗(𝐵2 −

𝑐2)2

2= 84.5 𝑘 ∗ 𝑓𝑡

𝑀𝑛 =𝑀𝑢𝜙= 93.867 𝑘 ∗ 𝑓𝑡

𝑀𝑛 = 𝜌𝑓𝑦𝐿𝑑2(1 −

𝜌𝑓𝑦

1.7 ∗ 𝑓′𝑐)

𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜌 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝜌 = .0009

𝐴𝑠 = 𝜌𝐵𝑑 = 1.002𝑖𝑛2

USE 3 #6 BARS IN EACH DIRECTON

𝐴𝑠 = 1.32𝑖𝑛2

𝑎 =(𝐴𝑆𝑓𝑦)

. 85𝑓′𝑐𝐿= .353

𝜙𝑀𝑛 = .9 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ (𝑑 −𝑎

2) = 99.93𝑘 ∗ 𝑓𝑡

𝜙𝑀𝑛314 = .9 ∗ .85 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ 𝑑 = 85.833𝑘 ∗ 𝑓𝑡

𝑅𝑎𝑡𝑖𝑜 =𝑀𝑛314𝑀𝑛

= .859

Summary: Design for a 5.5ft long by 5.5ft wide by 17in deep foundation imbedded 2ft below the

foundation slab with 3 #6 bars spanning both directions.

Page 222: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 221

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FOUNDATION DESIGN GREEN ROOF/INTERIOR INTERIOR COLUMN FOOTING

Given Data and assumptions

Variable Value Unit

qa 8000 psf

Soil Depth weight γw 110 pcf

Slab weight with Thickness (4")

50 psf

Soil Depth 24 in

LL Surcharge 100 psf

Point Dead Load 118.9 k

Point Live Load 31.25 k

Soil Weight gw 220 psf

Column Size (c) 24 in^2

Ka 0.33

Kp 3

Theta 30 degrees

f'c 4000 psi

Reinforcement fy 60000 psi

Cover Cc 3 in

Calculations

𝑞𝑛𝑒𝑡 = 8000𝑝𝑠𝑓– (𝑁𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝐿𝑜𝑎𝑑𝑠)𝑝𝑠𝑓 = 8000𝑝𝑠𝑓 − 100𝑝𝑠𝑓 − 50𝑝𝑠𝑓 − 220𝑝𝑠𝑓= 7630𝑝𝑠𝑓

𝑆𝑢𝑚 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑙𝑜𝑎𝑑𝑠 = 547.9𝑘

𝐵 = 𝐿 = √220.1𝑘/7.63𝑘𝑠𝑓 = 8.47𝑓𝑡

Say 8.5ft 𝑄𝑑 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐷𝑒𝑎𝑑 𝐿𝑜𝑎𝑑) + .27 ∗ 𝐵

2 = 403.4075 𝑄𝐿 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐿𝑖𝑣𝑒 𝐿𝑜𝑎𝑑) + .1 ∗ 𝐵

2 = 171.225𝑘 𝑄𝑢 = 1.2 ∗ (𝑄𝑑) + 1.6(𝑄𝐿) = 758.05𝑘

𝑞𝑢 = 𝑄𝑢

𝐵2= 10.5𝑘𝑠𝑓

𝐴𝑠𝑠𝑢𝑚𝑒 𝑑 = 25𝑖𝑛

Calculate One-way and Two-way Shear One way

𝑉𝑢 = (𝐵

2−𝑐

2− 𝑑) ∗ 𝐿 ∗ 𝑞𝑢 = 104.05𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 2 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝐿 ∗ 𝑑 = 241.9𝑘

Page 223: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 222

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

241.9𝑘 > 104.05𝑘 𝑂𝐾

Two-Way

𝑏0 = 4 ∗ (𝑐 + 𝑑) = 4(24 + 25) = 196𝑖𝑛

𝑉𝑢 = (𝐵 ∗ 𝐿 − (𝑏04)2

) ∗ 𝑞𝑢 = 583.11𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑 = 929.71𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

929.71𝑘 > 583.11𝑘 𝑂𝐾 Add 3 to 4 inches to initial d value

𝑑 = 28𝑖𝑛 Check Moment

𝑀𝑢 = 𝑞𝑢 ∗ 𝐿 ∗(𝐵2 −

𝑐2)2

2= 470 𝑘 ∗ 𝑓𝑡

𝑀𝑛 =𝑀𝑢𝜙= 523.32 𝑘 ∗ 𝑓𝑡

𝑀𝑛 = 𝜌𝑓𝑦𝐿𝑑2(1 −

𝜌𝑓𝑦

1.7 ∗ 𝑓′𝑐)

𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜌 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝜌 = .0012

𝐴𝑠 = 𝜌𝐵𝑑 = 3.4𝑖𝑛2

USE 8 #6 BARS IN EACH DIRECTON

𝐴𝑠 = 3.52𝑖𝑛2

𝑎 =(𝐴𝑆𝑓𝑦)

. 85𝑓′𝑐𝐿= .609

𝜙𝑀𝑛 = .9 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ (𝑑 −𝑎

2) = 438.7𝑘 ∗ 𝑓𝑡

𝜙𝑀𝑛314 = .9 ∗ .85 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ 𝑑 = 377𝑘 ∗ 𝑓𝑡

𝑅𝑎𝑡𝑖𝑜 =𝑀𝑛314𝑀𝑛

= .859

Summary: Design for a 8.5ft long by 8.5ft wide by 28in deep foundation imbedded 2ft below the

foundation slab with 8 #6 bars spanning both directions.

Page 224: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 223

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FOUNDATION DESIGN INTERIOR ROOF EDGE COLUMN FOOTING

Given Data and assumptions

Variable Value Unit

qa 8000 psf

Soil Depth weight γw 110 pcf

Slab weight with Thickness (4")

50 psf

Soil Depth 24 in

LL Surcharge 100 psf

Point Dead Load 264.9 k

Point Live Load 132.8 k

Soil Weight gw 220 psf

Column Size (c) 24 in^2

Ka 0.33

Kp 3

Theta 30 degrees

f'c 4000 psi

Reinforcement fy 60000 psi

Cover Cc 3 in

Calculations

𝑞𝑛𝑒𝑡 = 8000𝑝𝑠𝑓– (𝑁𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝐿𝑜𝑎𝑑𝑠)𝑝𝑠𝑓 = 8000𝑝𝑠𝑓 − 100𝑝𝑠𝑓 − 50𝑝𝑠𝑓 − 220𝑝𝑠𝑓= 7630𝑝𝑠𝑓

𝑆𝑢𝑚 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑙𝑜𝑎𝑑𝑠 = 397.7𝑘

𝐵 = 𝐿 = √397.7𝑘/7.63𝑘𝑠𝑓 = 7.2𝑓𝑡

Say 7.5ft 𝑄𝑑 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐷𝑒𝑎𝑑 𝐿𝑜𝑎𝑑) + .27 ∗ 𝐵

2 = 280.1𝑘 𝑄𝐿 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐿𝑖𝑣𝑒 𝐿𝑜𝑎𝑑) + .1 ∗ 𝐵

2 = 138.43𝑘 𝑄𝑢 = 1.2 ∗ (𝑄𝑑) + 1.6(𝑄𝐿) = 557.6𝑘

𝑞𝑢 = 𝑄𝑢

𝐵2= 9.91𝑘𝑠𝑓

𝐴𝑠𝑠𝑢𝑚𝑒 𝑑 = 23𝑖𝑛

Calculate One-way and Two-way Shear One way

𝑉𝑢 = (𝐵

2−𝑐

2− 𝑑) ∗ 𝐿 ∗ 𝑞𝑢 = 62𝑘

Page 225: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 224

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

𝜙𝑉𝑐 = 𝜙 ∗ 2 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝐿 ∗ 𝑑 = 196.4𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

196.4𝑘 > 62𝑘 𝑂𝐾

Two-Way

𝑏0 = 4 ∗ (𝑐 + 𝑑) = 4(24 + 23) = 188𝑖𝑛

𝑉𝑢 = (𝐵 ∗ 𝐿 − (𝑏04)2

) ∗ 𝑞𝑢 = 405.5226𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑 = 820.42𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

820.42𝑘 > 405.52𝑘 𝑂𝐾 Add 3 to 4 inches to initial d value

𝑑 = 26𝑖𝑛 Check Moment

𝑀𝑢 = 𝑞𝑢 ∗ 𝐿 ∗(𝐵2 −

𝑐2)2

2= 281.12 𝑘 ∗ 𝑓𝑡

𝑀𝑛 =𝑀𝑢𝜙= 312.25𝑘 ∗ 𝑓𝑡

𝑀𝑛 = 𝜌𝑓𝑦𝐿𝑑2(1 −

𝜌𝑓𝑦

1.7 ∗ 𝑓′𝑐)

𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜌 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝜌 = .0009

𝐴𝑠 = 𝜌𝐵𝑑 = 2.18𝑖𝑛2

USE 5 #6 BARS IN EACH DIRECTON

𝐴𝑠 = 2.2𝑖𝑛2

𝑎 =(𝐴𝑆𝑓𝑦)

. 85𝑓′𝑐𝐿= .431

𝜙𝑀𝑛 = .9 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ (𝑑 −𝑎

2) = 255.26𝑘 ∗ 𝑓𝑡

𝜙𝑀𝑛314 = .9 ∗ .85 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ 𝑑 = 218.8𝑘 ∗ 𝑓𝑡

𝑅𝑎𝑡𝑖𝑜 =𝑀𝑛314𝑀𝑛

= .857

Summary: Design for a 7.5ft long by 7.5ft wide by 26in deep foundation imbedded 2ft below the

foundation slab with 5 #6 bars spanning both directions.

Page 226: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 225

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FOUNDATION DESIGN INTERIOR ROOF INTERIOR COLUMN FOOTING

Given Data and assumptions

Variable Value Unit

qa 8000 psf

Soil Depth weight γw 110 pcf

Slab weight with Thickness (4")

50 psf

Soil Depth 24 in

LL Surcharge 100 psf

Point Dead Load 487.2 k

Point Live Load 184.3 k

Soil Weight gw 220 psf

Column Size (c) 24 in^2

Ka 0.33

Kp 3

Theta 30 degrees

f'c 4000 psi

Reinforcement fy 60000 psi

Cover Cc 3 in

Calculations

𝑞𝑛𝑒𝑡 = 8000𝑝𝑠𝑓– (𝑁𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝐿𝑜𝑎𝑑𝑠)𝑝𝑠𝑓 = 8000𝑝𝑠𝑓 − 100𝑝𝑠𝑓 − 50𝑝𝑠𝑓 − 220𝑝𝑠𝑓= 7630𝑝𝑠𝑓

𝑆𝑢𝑚 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑙𝑜𝑎𝑑𝑠 = 671.5𝑘

𝐵 = 𝐿 = √397.7𝑘/7.63𝑘𝑠𝑓 = 9.38𝑓𝑡

Say 9.5ft 𝑄𝑑 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐷𝑒𝑎𝑑 𝐿𝑜𝑎𝑑) + .27 ∗ 𝐵

2 = 511.57𝑘 𝑄𝐿 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐿𝑖𝑣𝑒 𝐿𝑜𝑎𝑑) + .1 ∗ 𝐵

2 = 193.33𝑘 𝑄𝑢 = 1.2 ∗ (𝑄𝑑) + 1.6(𝑄𝐿) = 923.2𝑘

𝑞𝑢 = 𝑄𝑢

𝐵2= 10.23𝑘𝑠𝑓

𝐴𝑠𝑠𝑢𝑚𝑒 𝑑 = 27𝑖𝑛

Calculate One-way and Two-way Shear One way

𝑉𝑢 = (𝐵

2−𝑐

2− 𝑑) ∗ 𝐿 ∗ 𝑞𝑢 = 145.8𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 2 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝐿 ∗ 𝑑 = 292𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

Page 227: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 226

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

292𝑘 > 145.8𝑘 𝑂𝐾

Two-Way

𝑏0 = 4 ∗ (𝑐 + 𝑑) = 4(24 + 27) = 204𝑖𝑛

𝑉𝑢 = (𝐵 ∗ 𝐿 − (𝑏04)2

) ∗ 𝑞𝑢 = 738.43𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑 = 1045.1𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

1045.1𝑘 > 738.43𝑘 𝑂𝐾 Add 3 to 4 inches to initial d value

𝑑 = 30𝑖𝑛 Check Moment

𝑀𝑢 = 𝑞𝑢 ∗ 𝐿 ∗(𝐵2 −

𝑐2)2

2= 683.3 𝑘 ∗ 𝑓𝑡

𝑀𝑛 =𝑀𝑢𝜙= 759.21𝑘 ∗ 𝑓𝑡

𝑀𝑛 = 𝜌𝑓𝑦𝐿𝑑2(1 −

𝜌𝑓𝑦

1.7 ∗ 𝑓′𝑐)

𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜌 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝜌 = .0013

𝐴𝑠 = 𝜌𝐵𝑑 = 4.61𝑖𝑛2

USE 8 #7 BARS IN EACH DIRECTON

𝐴𝑠 = 4.8𝑖𝑛2

𝑎 =(𝐴𝑆𝑓𝑦)

. 85𝑓′𝑐𝐿= .743

𝜙𝑀𝑛 = .9 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ (𝑑 −𝑎

2) = 639.98𝐾 ∗ 𝑓𝑡

𝜙𝑀𝑛314 = .9 ∗ .85 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ 𝑑 = 550.8𝑘 ∗ 𝑓𝑡

𝑅𝑎𝑡𝑖𝑜 =𝑀𝑛314𝑀𝑛

= .86

Summary: Design for a 9.5ft long by 9.5ft wide by 30in deep foundation imbedded 2ft below the

foundation slab with 8 #7 bars spanning both directions.

Page 228: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 227

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

FOUNDATION DESIGN INTERIOR ROOF CORNER COLUMN FOOTING

Given Data and assumptions

Variable Value Unit

qa 8000 psf

Soil Depth weight γw 110 pcf

Slab weight with Thickness (4")

50 psf

Soil Depth 24 in

LL Surcharge 100 psf

Point Dead Load 265 k

Point Live Load 231.8 k

Soil Weight gw 220 psf

Column Size (c) 24 in^2

Ka 0.33

Kp 3

Theta 30 degrees

f'c 4000 psi

Reinforcement fy 60000 psi

Cover Cc 3 in

Calculations

𝑞𝑛𝑒𝑡 = 8000𝑝𝑠𝑓– (𝑁𝑜𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝐿𝑜𝑎𝑑𝑠)𝑝𝑠𝑓 = 8000𝑝𝑠𝑓 − 100𝑝𝑠𝑓 − 50𝑝𝑠𝑓 − 220𝑝𝑠𝑓= 7630𝑝𝑠𝑓

𝑆𝑢𝑚 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑙𝑜𝑎𝑑𝑠 = 379.8𝑘

𝐵 = 𝐿 = √397.7𝑘/7.63𝑘𝑠𝑓 = 7.22𝑓𝑡

Say 7.5ft 𝑄𝑑 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐷𝑒𝑎𝑑 𝐿𝑜𝑎𝑑) + .27 ∗ 𝐵

2 = 280.2𝑘 𝑄𝐿 = (𝐶𝑜𝑙𝑢𝑚𝑛 𝐿𝑖𝑣𝑒 𝐿𝑜𝑎𝑑) + .1 ∗ 𝐵

2 = 138.43𝑘 𝑄𝑢 = 1.2 ∗ (𝑄𝑑) + 1.6(𝑄𝐿) = 557.71𝑘

𝑞𝑢 = 𝑄𝑢

𝐵2= 9.915𝑘𝑠𝑓

𝐴𝑠𝑠𝑢𝑚𝑒 𝑑 = 23𝑖𝑛

Calculate One-way and Two-way Shear One way

𝑉𝑢 = (𝐵

2−𝑐

2− 𝑑) ∗ 𝐿 ∗ 𝑞𝑢 = 62𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 2 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝐿 ∗ 𝑑 = 196.4𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

Page 229: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 228

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

196.4𝑘 > 62𝑘 𝑂𝐾

Two-Way

𝑏0 = 4 ∗ (𝑐 + 𝑑) = 4(24 + 23) = 188𝑖𝑛

𝑉𝑢 = (𝐵 ∗ 𝐿 − (𝑏04)2

) ∗ 𝑞𝑢 = 405.61𝑘

𝜙𝑉𝑐 = 𝜙 ∗ 4 ∗ 𝜆 ∗ √𝑓′𝑐 ∗ 𝑏0 ∗ 𝑑 = 820.42𝑘

𝐶ℎ𝑒𝑐𝑘 𝜙𝑉𝑐 > 𝑉𝑢

820.42𝑘 > 405.61𝑘 𝑂𝐾 Add 3 to 4 inches to initial d value

𝑑 = 26𝑖𝑛 Check Moment

𝑀𝑢 = 𝑞𝑢 ∗ 𝐿 ∗(𝐵2 −

𝑐2)2

2= 281.2𝑘 ∗ 𝑓𝑡

𝑀𝑛 =𝑀𝑢𝜙= 312.42𝑘 ∗ 𝑓𝑡

𝑀𝑛 = 𝜌𝑓𝑦𝐿𝑑2(1 −

𝜌𝑓𝑦

1.7 ∗ 𝑓′𝑐)

𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜌 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝜌 = .0009

𝐴𝑠 = 𝜌𝐵𝑑 = 2.18𝑖𝑛2

USE 5 #6 BARS IN EACH DIRECTON

𝐴𝑠 = 2.2𝑖𝑛2

𝑎 =(𝐴𝑆𝑓𝑦)

. 85𝑓′𝑐𝐿= .43

𝜙𝑀𝑛 = .9 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ (𝑑 −𝑎

2) = 255.3𝐾 ∗ 𝑓𝑡

𝜙𝑀𝑛314 = .9 ∗ .85 ∗ 𝐴𝑠 ∗ 𝑓𝑦 ∗ 𝑑 = 218.8𝑘 ∗ 𝑓𝑡

𝑅𝑎𝑡𝑖𝑜 =𝑀𝑛314𝑀𝑛

= .857

Summary: Design for a 7.5ft long by 7.5ft wide by 26in deep foundation imbedded 2ft below the

foundation slab with 5 #6 bars spanning both directions.

Page 230: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

AUTOCAD Pg 229

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

AUTOCAD DRAWINGS

Page 231: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
David.Lutz
Typewritten Text
1-20
Page 232: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
2-20
Page 233: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
3-20
Page 234: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
4-20
Page 235: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
5-20
Page 236: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
6-20
Page 237: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
7-20
Page 238: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
8-20
Page 239: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
9-20
Page 240: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
10-20
Page 241: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
11-20
Page 242: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
12-20
Page 243: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
13-20
Page 244: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
14-20
Page 245: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
15-20
Page 246: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
16-20
Page 247: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
17-20
Page 248: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
18-20
Page 249: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
19-20
Page 250: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:
David.Lutz
Typewritten Text
20-20
Page 251: CES 4743C Structural Design - Dominick Tota, E.I....CES 4743C Structural Design FINAL PROJECT SUBMITTAL Team Vandelay: Jonathon Ambar Paul Heagney Dominick Tota David Lutz Due Date:

REFERENCES Pg 230

Vandelay Industries CES 4743 FINAL PROJECT SUBMITTAL

REFERENCES:

Florida Building Code 2010, Building. Tallahassee, FL: Florida Building Commission, 2011.

International Code Council. International Code Council, Inc., 2011. Web. 24 Sept.

2014. <www.ecodes.biz>.

Microsoft Excel. Redmond, WA: Microsoft Corp., 1991. Computer software.

Minimum Design Loads for Buildings and Other Structures (7-10). Reston, VA: American

Society of Civil Engineers, 2010. Print.

Steel Construction Manual. 14th ed. Chicago, IL: American Institute of Steel Construction,

2011. Print.

Visual Analysis Edu. Vers. 10.0. Bozeman, MT: IES, Inc., 2012. Computer software.


Recommended