+ All Categories
Home > Technology > CFD T section pipe flow benchmarking

CFD T section pipe flow benchmarking

Date post: 03-Jun-2015
Category:
Upload: pramodkrishnani
View: 1,343 times
Download: 0 times
Share this document with a friend
Description:
CFD Project during Masters Degree.
Popular Tags:
35
Flow through 90 degree diversions of rectangular cross-section ME – 259 Introduction to Computational Fluid Dynamics Prof. Dongmei Zhou Presented By Pramod Krishnani Fall 2007
Transcript
Page 1: CFD T section pipe flow benchmarking

Flow through 90 degree diversions of rectangular cross-section

ME – 259 Introduction to Computational Fluid Dynamics

Prof. Dongmei Zhou

Presented By Pramod Krishnani

Fall 2007

Page 2: CFD T section pipe flow benchmarking

Introduction CFD Model

Page 3: CFD T section pipe flow benchmarking

Introduction Applications

Living Cardiovascular system

River channel Bifurcation

Page 4: CFD T section pipe flow benchmarking

Fluent Settings CFD Simulation: 3ddp (3-D Double Precision)Convergence criteria:

Continuity = 1e-06 X- velocity = 1e-06 Y- velocity = 1e-06 Z- velocity = 1e-06

Discretization : Pressure : PRESTO Momentum equation setting = Second Order

UpwindSolver : Coupled

Page 5: CFD T section pipe flow benchmarking

Boundary Conditions (BC)BC 1 : Main channel Velocity Inlet

BC 2 : Main channel Pressure Outlet

BC 3 : Branch Velocity outlet

Page 6: CFD T section pipe flow benchmarking

Procedure For study Grid Independent Study

Creation of Different Mesh Files in GAMBIT ® Simulated in FLUENT® 3D Find Reattachment Length in Zone A Plot Truncation Error

Parameter Study Simulated

Scenario 1 : Used Cases In Benchmark Paper Scenario 2 : Change Fluid from water to Hydrogen Scenario 3 : Keeping Reynolds Number constant

changed Discharge Ratio

Page 7: CFD T section pipe flow benchmarking

Grid Independent Study Simulation results of Reattachment Length in Zone A

Reattachment Length in Zone A

Analytical Resultfrom

Liepsch Paper

Mesh Size

Re-attachment

Lengthin Zone A (meters)

Error From

Analytical

% Error From

Analytical Or

Truncation error

Error From Best

Mesh Size

% Error From Best Mesh Size

Or Truncation

error

2.87704

148176 2.42857 0.44847 15.58789589 0.43507 15.19290134

453600 2.48654 0.3905 13.57297778 0.3771 13.16855471

1185408 2.64287 0.23417 8.139268137 0.22077 7.709418782

4000752 2.85714 0.0199 0.691683119 0.0065 0.226983839

4634784 2.86364 0.0134 0.465756472 0 0

Page 8: CFD T section pipe flow benchmarking

Grid Independent Study Truncation Error Plots

Comparing with Liepsch Paper

Comparing with Best Mesh Size

Page 9: CFD T section pipe flow benchmarking

Grid Independent Study Streamline plots of velocity of Case 1 at Z =

2.0

Page 10: CFD T section pipe flow benchmarking

Grid Independent Study Comparison of velocity profiles at Z=4.0

plane

Page 11: CFD T section pipe flow benchmarking

Grid Independent Study Skin Friction Plots At Outer wall Of The Main

ChannelSkin Friction Plots At Branch Left wallSkin Friction Plots At Branch Right Wall

Page 12: CFD T section pipe flow benchmarking

Grid Independent Study Z-plots of Vorticity Profiles at different

positions of Y keeping X constant

Page 13: CFD T section pipe flow benchmarking

Grid Independent Study Z-plots of Vorticity Profiles at different

positions of X keeping Y constant

Page 14: CFD T section pipe flow benchmarking

Parameter Study Mesh Size Used : 81 x 70 x 80 Scenario Used

1. Study of Cases in Paper 2. Change of Fluid to Hydrogen 3. Keeping Re Constant Change Discharge

ratio ‘r’

Page 15: CFD T section pipe flow benchmarking

Parameter Study Scenario 1 : Study of Cases in Paper

Case Reynold

Number AR

Discharge

Ratior

Main channel Velocity inlet

V1 = Ub (m/sec)

Branch Velocity Outlet

V2 (m/sec)

1 515 8 0.23 0.000258738 0.000059509

2 496 8 0.44 0.00024919 0.000109643

3 525 8 0.64 0.000026376 0.000168806

4 1062 8 0.58 0.000533548 0.000309458

5 496 1 0.44 0.00024919 0.000109643

Page 16: CFD T section pipe flow benchmarking

Parameter Study Scenario 1 : Study of Cases in Paper

Velocity streamline plots of the simulation

Page 17: CFD T section pipe flow benchmarking

Parameter Study Scenario 1 : Study of Cases in Paper

Velocity streamline plots of the Paper or benchmark

Page 18: CFD T section pipe flow benchmarking

Parameter Study Scenario 2 : Change of Fluid to Hydrogen

Parameter Study Scenario 2 : Re-attachment Length

FluidReynolds number

Discharge Ratio ‘ r ’

Reattachment Length Xr (meters)

Water 496 0.44 2.48654

Hydrogen 496 0.44 3.2

Page 19: CFD T section pipe flow benchmarking

Parameter Study Scenario 2 : Change of Fluid to Hydrogen

Page 20: CFD T section pipe flow benchmarking

Parameter Study Scenario 3 : Keeping ‘Re’ Constant Change

Discharge ratio ‘r’Reynold Number

Discharge Ratio 'r' Main channel Inlet Velocity

V1 (m/sec)

Branch Velocity Outlet

V2 (m/sec)

515

0.23

0.000258738

0.000059509

0.75 0.000194053

1 0.000258738

1.5 0.000388107

2 0.000776214

Page 21: CFD T section pipe flow benchmarking

Parameter Study Scenario

3 Velocity Streamline plot at r = 0.23

Page 22: CFD T section pipe flow benchmarking

Parameter Study Scenario 3 Velocity Streamline plot at r = 0.75

Page 23: CFD T section pipe flow benchmarking

Parameter Study Scenario 3 Velocity Streamline plot at r = 1.00

Page 24: CFD T section pipe flow benchmarking

Parameter Study Scenario 3 Velocity Streamline plot at r = 1.50

Page 25: CFD T section pipe flow benchmarking

Parameter Study Scenario 3 Velocity Streamline plot at r = 2.00

Page 26: CFD T section pipe flow benchmarking

Conclusion Grid Independent Study

Comparing with Liepsch Paper

Comparing with Best Mesh Size

Page 27: CFD T section pipe flow benchmarking

Conclusion Parameter Study Scenario 1

Page 28: CFD T section pipe flow benchmarking

Conclusion Parameter Study Scenario 1

Page 29: CFD T section pipe flow benchmarking

Conclusion Parameter Study Scenario 2

Page 30: CFD T section pipe flow benchmarking

Conclusion Parameter Study Scenario 3

Page 31: CFD T section pipe flow benchmarking

Conclusion Parameter Study Scenario 3

Page 32: CFD T section pipe flow benchmarking

Conclusion Parameter Study Scenario 3

Page 33: CFD T section pipe flow benchmarking

Conclusion Parameter Study Scenario 3

Page 34: CFD T section pipe flow benchmarking

Conclusion Parameter Study Scenario 3

Page 35: CFD T section pipe flow benchmarking

Questions


Recommended