+ All Categories
Home > Documents > Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite...

Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite...

Date post: 17-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
16
4.1Antiderivatives and Indefinite Integrals.notebook 1 February 07, 2014 Ch. 4‐ Antiderivatives & Indefinite Integrals
Transcript
Page 1: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

1

February 07, 2014

Ch. 4‐Antiderivatives

& Indefinite Integrals

Page 2: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

2

February 07, 2014

Theorem:If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

G(x) = F(x) + Cwhere C is a constant.

Page 3: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

3

February 07, 2014

G(x) = F(x) + C

• C is called the constant of integration

• G is the general antiderivative of f

• G(x) = F(x) + C is the general solution of the differential equation G '(x) = F '(x) = f(x)

• A differential equation in x and y is an equation that involves x, y, and derivatives of y.  (y' = 3x)

Page 4: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

4

February 07, 2014

Example:Find the general solution of the differential equation y' = 2.In other words, find the original equation that gives you this derivative.

Page 5: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

5

February 07, 2014

Example: Find the antiderivative of y = 2x.

Page 6: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

6

February 07, 2014

dydx     = f (x)

When solving a differential equation of the form

it is convenient to write it in the equivalent differential form

dy = f(x) dx.

The operation of finding all solutions of this equation is called antidifferentiation (or indefinite integration) and is denoted by an integral sign ∫.

Page 7: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

7

February 07, 2014

variable of integration

integrand

constant of integration

antiderivative    of f(x)

y =

Notations of Antiderivatives

The expression is read as the anderivave of  f with respect to x.  The differenal  dx serves to idenfy x as the variable of integraon.  The term indefinite integral is a synonym for anderivave.

The inverse nature of integration and differentiation can be verified by substituting F'(x) for f(x) in the indefinite integration definition to obtain

Moreover, if ∫f(x)dx = F(x) + C, then

These two equations allow you to obtain integration formulas directly from differentiation formulas, as shown in the following summary.

Page 8: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

8

February 07, 2014

Basic Integration Rules

Log Function: 

Natural Exponential Function:

Exponential Function:

Page 9: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

9

February 07, 2014

Page 10: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

10

February 07, 2014

Formulas to know!!! MEMORIZEFunction Particular Antiderivative 

Page 11: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

11

February 07, 2014

Examples:

Page 12: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

12

February 07, 2014

More Examples:

Page 13: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

13

February 07, 2014

More Examples:

*Rewrite the function when necessary.

Page 14: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

14

February 07, 2014

Initial Conditions and Particular SolutionsThe equation y = ∫f(x)dx has many solutions (each differing from the others by a constant). 

This means that the graphs of any two antiderivatives of f are vertical translations of each other. 

In many applications of integration, you are given enough 

information to determine a particular solution. To do this, 

you need only know the value of y = F(x) for one value of x. 

This information is called an initial condition.

F(x) = x3 – x + C          General solution

F(2) = 4              Initial condition

Using the initial condition that F(2)=4, find the equation that passes through this point.  This equation is the particular solution.

Page 15: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

15

February 07, 2014

Example:

1. Write a function that could have the derivative: 

Is this the only possibility?

2. Assume that (1, ­1) is a point on the graph of the function.

How is this added information helpful?

Page 16: Ch. 4‐ Antiderivatives Indefinite Integrals · 2014-02-07 · 4.1Antiderivatives and Indefinite Integrals.notebook 14 February 07, 2014 Initial Conditions and Particular Solutions

4.1­Antiderivatives and Indefinite Integrals.notebook

16

February 07, 2014

Particle Motion Example:A particle moves in a straight line and has acceleration given by 

Its initial velocity is Its initial displacement isFind its position function, s(t).


Recommended