+ All Categories
Home > Documents > Ch09 Lecture Note

Ch09 Lecture Note

Date post: 07-Apr-2018
Category:
Upload: nkedir
View: 230 times
Download: 0 times
Share this document with a friend

of 18

Transcript
  • 8/6/2019 Ch09 Lecture Note

    1/181

    Chapter 9 - 1

    ISSUES TO ADDRESS... When we combine two elements...

    what equilibrium state do we get? In particular, if we specify...

    --a composition (e.g., wt% Cu - wt% Ni), and--a temperature ( T )

    then...How many phases do we get?What is the composition of each phase?How much of each phase do we get?

    Chapter 9: Phase Diagrams

    Phase BPhase A

    Nickel atomCopper atom

    Chapter 9 - 2

    Phase Equilibria: Solubility LimitIntroduction

    Solutions solid solutions, single phase Mixtures more than one phase

    Solubility Limit :Max concentration forwhich only a single phasesolution occurs.

    Question: What is thesolubility limit at 20 C?

    Answer: 65 wt% sugar .If C o < 65 wt% sugar: syrupIf C o > 65 wt% sugar: syrup + sugar.

    65

    Sucrose/Water Phase Diagram

    P u r e

    S u g a r

    T e m p e r a t u r e

    ( C )

    0 20 40 60 80 100C o =Composition (wt% sugar)

    L(liquid solution

    i.e., syrup)

    SolubilityLimit L

    (liquid)+S

    (solidsugar)20

    40

    60

    80100

    P u r e

    W a t e r

    Adapted from Fig. 9.1,Callister 7e.

  • 8/6/2019 Ch09 Lecture Note

    2/182

    Chapter 9 - 3

    Components :The elements or compounds which are present in the mixture

    (e.g., Al and Cu) Phases :

    The physically and chemically distinct material regionsthat result (e.g., and ).

    Aluminum-CopperAlloy

    Components and Phases

    (darkerphase)

    (lighterphase)

    Adapted fromchapter-openingphotograph,Chapter 9,Callister 3e.

    Chapter 9 - 4

    Effect of T & Composition ( C o ) Changing T can change # of phases:

    Adapted fromFig. 9.1,Callister 7e.

    D (100 C,90)2 phases

    B (100 C,70)1 phase

    path A to B . Changing C o can change # of phases: path B to D .

    A (20 C,70)2 phases

    70 80 1006040200

    T e m p e r a

    t u r e

    ( C )

    C o =Composition (wt% sugar)

    L(liquid solution

    i.e., syrup)

    20

    100

    40

    60

    80

    0

    L(liquid)+S

    (solidsugar)

    water-sugarsystem

  • 8/6/2019 Ch09 Lecture Note

    3/183

    Chapter 9 - 5

    Phase Equilibria

    0.12781.8FCCCu

    0.12461.9FCCNi

    r (nm)electronegCrystalStructure

    Both have the same crystal structure (FCC) and havesimilar electronegativities and atomic radii ( W. Hume Rothery rules ) suggesting high mutual solubility.

    Simple solution system (e.g., Ni-Cu solution)

    Ni and Cu are totally miscible in all proportions.

    Chapter 9 - 6

    Phase Diagrams Indicate phases as function of T , C o , and P . For this course:

    -binary systems: just 2 components.-independent variables: T and C o (P = 1 atm is almost always used).

    PhaseDiagramfor Cu-Nisystem

    Adapted from Fig. 9.3(a), Callister 7e.(Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys , P. Nash(Ed.), ASM International, Materials Park,OH (1991).

    2 phases:L (liquid) (FCC solid solution)

    3 phase fields:LL +

    wt% Ni20 40 60 80 10001000

    1100

    1200

    1300

    1400

    1500

    1600T (C)

    L (liquid)

    (FCC solidsolution)

    L + l i q u

    i d u s

    s o l i d u

    s

  • 8/6/2019 Ch09 Lecture Note

    4/184

    Chapter 9 - 7

    Note:The Ni-Cu alloy system shown in the previous slide is a binary isomorphous system;

    Note: Isomorphous : Having the same structure. In the phase diagram sense,isomorphicity means having the same crystal structure or complete solid solubility for all compositions.

    Chapter 9 - 8

    wt% Ni20 40 60 80 10001000

    1100

    1200

    1300

    14001500

    1600T (C)

    L (liquid)

    (FCC solidsolution)

    L +

    l i q u i d u s

    s o l i d u

    sCu-Niphase

    diagram

    Phase Diagrams :# and types of phases

    Rule 1: If we know T and C o , then we know:--the # and types of phases present.

    Examples:A(1100 C, 60):

    1 phase: B (1250 C, 35):

    2 phases: L +

    Adapted from Fig. 9.3(a), Callister 7e.(Fig. 9.3(a) is adapted from Phase Diagrams of Binary Nickel Alloys , P. Nash(Ed.), ASM International, Materials Park,OH, 1991).

    B ( 1 2 5 0 C

    , 3 5 )

    A (1100

    C,60)

  • 8/6/2019 Ch09 Lecture Note

    5/185

    Chapter 9 - 9

    wt% Ni20

    1200

    1300

    T (C)

    L (liquid)

    (solid) L

    +

    l i q u i d u s

    s o l i d u s

    30 40 50

    L +

    Cu-Nisystem

    Phase Diagrams :composition of phases

    Rule 2: If we know T and C o , then we know:--the composition of each phase.

    Examples:T A A

    35C o32C L

    At T A = 1320 C:Only Liquid ( L)C L = Co ( = 35 wt% Ni)

    At T B = 1250 C:Both and LC L = C liquidus ( = 32 wt% Ni here)C = C solidus ( = 43 wt% Ni here)

    At T D = 1190 C:Only Solid ( )C = C o ( = 35 wt% Ni )

    C o = 35 wt% Ni

    Adapted from Fig. 9.3(b), Callister 7e.(Fig. 9.3(b) is adapted from Phase Diagrams of Binary Nickel Alloys , P. Nash (Ed.), ASM

    International, Materials Park, OH, 1991.)

    B T B

    D T D

    tie line

    4C 3

    Chapter 9 - 10

    Rule 3: If we know T and C o , then we know:--the amount of each phase (given in wt%).

    Examples:

    At T A: Only Liquid (L)W L = 100 wt%, W = 0

    At T D : Only Solid ( )W L = 0, W = 100 wt%

    C o = 35 wt% Ni

    Adapted from Fig. 9.3(b), Callister 7e.(Fig. 9.3(b) is adapted from Phase Diagrams of Binary Nickel Alloys , P. Nash (Ed.), ASMInternational, Materials Park, OH, 1991.)

    Phase Diagrams :weight fractions of phases

    wt% Ni20

    1200

    1300

    T (C)

    L (liquid)

    (solid) L

    +

    l i q u i d u s

    s o l i d u s

    30 40 50

    L +

    Cu-Nisystem

    T A A

    35C o

    32C L

    B T B

    D T D

    tie line

    4C 3

    R S

    At T B : Both and L

    %7332433543 wt =

    =

    = 27 wt%

    W L =S

    R + S

    W =R

    R + S

  • 8/6/2019 Ch09 Lecture Note

    6/186

    Chapter 9 - 11

    Tie line connects the phases in equilibrium witheach other - essentially an isotherm

    The Lever Rule

    How much of each phase?Think of it as a lever (teeter-totter)

    M L M

    R S

    R M S M L=

    L

    L

    LL

    LL C C

    C C S R

    R W

    C C C C

    S R S

    M M M

    W

    =+

    =

    =+

    =+

    =

    00

    wt% Ni

    20

    1200

    1300

    T (C)

    L (liquid)

    (solid) L

    +

    l i q u i d u s

    s o l i d u s

    30 40 50

    L +

    B T B

    tie line

    C o C L C

    S R

    Adapted from Fig. 9.3(b),Callister 7e.

    Chapter 9 - 12

    wt% Ni20

    1200

    1300

    30 40 501100

    L (liquid)

    (solid)

    L +

    L +

    T (C)

    A

    35C o

    L: 35wt%Ni

    Cu-Nisystem

    Phase diagram:Cu-Ni system.

    System is:--binary

    i.e. , 2 components:

    Cu and Ni.--isomorphousi.e., completesolubility of onecomponent inanother; phasefield extends from0 to 100 wt% Ni.

    Adapted from Fig. 9.4,Callister 7e.

    ConsiderC o = 35 wt%Ni .

    Ex: Cooling in a Cu-Ni Binary

    4635

    4332

    : 43 wt% Ni

    L: 32 wt% Ni

    L: 24 wt% Ni

    : 36 wt% Ni

    B : 46 wt% NiL: 35 wt% Ni

    C

    D

    E

    24 36

  • 8/6/2019 Ch09 Lecture Note

    7/187

    Chapter 9 - 13

    C changes as we solidify. Cu-Ni case:

    Fast rate of cooling:Cored structure

    Slow rate of cooling:Equilibrium structure

    First to solidify has C = 46 wt% Ni.Last to solidify has C = 35 wt% Ni.

    Cored vs Equilibrium Phases

    First to solidify:46 wt% Ni

    Uniform C :35 wt% Ni

    Last to solidify:< 35 wt% Ni

    Chapter 9 - 14

    Mechanical Properties: Cu-Ni System Effect of solid solution strengthening on:

    --Tensile strength ( TS ) --Ductility (% EL,% AR )

    --Peak as a function of C o --Min. as a function of C o

    Adapted from Fig. 9.6(a), Callister 7e. Adapted from Fig. 9.6(b), Callister 7e.

    T e n s

    i l e S t r e n g t h

    ( M P a )

    Composition, wt% NiCu Ni0 20 40 60 80 100

    200

    300

    400

    TS forpure Ni

    TS for pure Cu E l o n g a

    t i o n

    ( % E L )

    Composition, wt% NiCu Ni0 20 40 60 80 10020

    30

    40

    50

    60

    %EL for

    pure Ni

    %EL for pure Cu

  • 8/6/2019 Ch09 Lecture Note

    8/188

    Chapter 9 - 15

    : Min. melting T E

    2 componentshas a special compositionwith a min. melting T.

    Adapted from Fig. 9.7,Callister 7e.

    Binary-Eutectic Systems

    Eutectic transitionL(C E ) (C E ) + (C E )

    3 single phase regions(L, , )

    Limited solubility: : mostly Cu: mostly Ag

    T E : No liquid below T E C E

    composition

    Ex.: Cu-Ag systemCu-Agsystem

    L (liquid)

    L + L+

    +

    C o , wt% Ag20 40 60 80 1000

    200

    1200T (C)

    400

    600

    800

    1000

    C E

    T E 8.0 71.9 91.2779 C

    Chapter 9 - 16

    L+ L+

    +

    200

    T (C)

    18.3

    C , wt% Sn20 60 80 1000

    300

    100

    L (liquid)

    183 C61.9 97.8

    For a 40 wt% Sn-60 wt% Pb alloy at 150 C, find...--the phases present: Pb-Sn

    system

    EX: Pb-Sn Eutectic System (1)

    + --compositions of phases:

    C O = 40 wt% Sn

    --the relative amountof each phase:

    150

    40C o

    11C

    99C

    S R

    C = 11 wt% SnC = 99 wt% Sn

    W =C - C O C - C

    = 99 - 4099 - 11 =5988 = 67 wt%

    S R +S =

    W =C O - C C - C

    =R R +S

    = 2988

    = 33 wt%= 40 - 1199 - 11

    Adapted from Fig. 9.8,Callister 7e.

  • 8/6/2019 Ch09 Lecture Note

    9/189

    Chapter 9 - 17

    L+

    +

    200

    T (C)

    C , wt% Sn20 60 80 1000

    300

    100

    L (liquid)

    L+

    183 C

    For a 40 wt% Sn-60 wt% Pb alloy at 200 C, find...--the phases present: Pb-Sn

    system

    Adapted from Fig. 9.8,Callister 7e.

    EX: Pb-Sn Eutectic System (2)

    + L--compositions of phases:

    C O = 40 wt% Sn

    --the relative amountof each phase:

    W =C L - C O C L - C

    =46 - 4046 - 17

    =6

    29 = 21 wt%

    W L =C O - C C L - C

    =2329 = 79 wt%

    40 C o

    46C L

    17C

    220S R

    C = 17 wt% SnC L = 46 wt% Sn

    Chapter 9 - 18

    C o < 2 wt% Sn Result:

    --at extreme ends

    --polycrystal of grainsi.e., only one solid phase.

    Adapted from Fig. 9.11,Callister 7e.

    Microstructuresin Eutectic Systems: I

    0

    L+ 200

    T (C)

    C o , wt% Sn10

    2

    20C o

    300

    100

    L

    30

    +

    400

    (room T solubility limit)

    T E (Pb-SnSystem)

    L

    L: C o wt% Sn

    : C o wt% Sn

  • 8/6/2019 Ch09 Lecture Note

    10/1810

    Chapter 9 - 19

    2 wt% Sn < C o < 18.3 wt% Sn Result:

    Initially liquid + then alonefinally two phases

    polycrystalfine -phase inclusions

    Adapted from Fig. 9.12,Callister 7e.

    Microstructures

    in Eutectic Systems: II

    Pb-Snsystem

    L +

    200

    T (C)

    C o , wt% Sn10

    18.3

    200C o

    300

    100

    L

    30

    +

    400

    (sol. limit at T E )

    T E

    2(sol. limit at T room )

    L

    L: C o wt% Sn

    : C o wt% Sn

    Chapter 9 - 20

    C o = C E Result: Eutectic microstructure (lamellar structure)

    --alternating layers (lamellae) of and crystals.

    Adapted from Fig. 9.13,Callister 7e.

    Microstructuresin Eutectic Systems: III

    Adapted from Fig. 9.14, Callister 7e.160 m

    Micrograph of Pb-Sneutectic

    microstructurePb-Snsystem

    L +

    +

    200

    T (C)

    C , wt% Sn

    20 60 80 1000

    300

    100

    L

    L+183 C

    40

    T E

    18.3

    : 18.3 wt%Sn

    97.8

    : 97.8 wt% Sn

    C E 61.9

    L: C o wt% Sn

  • 8/6/2019 Ch09 Lecture Note

    11/1811

    Chapter 9 - 21

    Lamellar Eutectic Structure

    Adapted from Figs. 9.14 & 9.15, Callister 7e.

    Chapter 9 - 22

    18.3 wt% Sn < C o < 61.9 wt% Sn Result: crystals and a eutectic microstructure

    Microstructuresin Eutectic Systems: IV

    18.3 61.9

    S R

    97.8

    S R

    primary eutectic

    eutectic

    W L = (1- W ) = 50 wt%

    C = 18.3 wt% Sn

    C L = 61.9 wt% SnS

    R + S W = = 50 wt%

    Just above T E :

    Just below T E :C = 18.3 wt% SnC = 97.8 wt% Sn

    S R + S

    W = = 73 wt%

    W = 27 wt%Adapted from Fig. 9.16,Callister 7e.

    Pb-Snsystem

    L+200

    T (C)

    C o , wt% Sn

    20 60 80 1000

    300

    100

    L

    L+

    40

    +

    T E

    L: C o wt% Sn LL

  • 8/6/2019 Ch09 Lecture Note

    12/1812

    Chapter 9 - 23

    L+ L+

    +

    200

    C o , wt% Sn20 60 80 1000

    300

    100

    L

    T E

    40

    (Pb-SnSystem)

    Hypo eutectic & Hyper eutectic

    Adapted from Fig. 9.8,Callister 7e. (Fig. 9.8adapted from Binary Phase Diagrams , 2nd ed., Vol. 3,T.B. Massalski (Editor-in-Chief), ASM International,Materials Park, OH, 1990.)

    160 meutectic micro-constituent

    Adapted from Fig. 9.14,Callister 7e.

    hypereutectic: (illustration only)

    Adapted from Fig. 9.17,Callister 7e. (Illustrationonly)

    (Figs. 9.14 and 9.17from Metals Handbook , 9th ed.,Vol. 9,Metallography and

    Microstructures ,American Society forMetals, MaterialsPark, OH, 1985.)

    175 m

    hypoeutectic: C o = 50 wt% Sn

    Adapted fromFig. 9.17, Callister 7e.

    T (C)

    61.9eutectic

    eutectic: C o =61.9wt% Sn

    Chapter 9 - 24

    Intermetallic Compounds

    Mg2Pb

    Note: intermetallic compound forms a line - not an area -because stoichiometry (i.e. composition) is exact.

    Adapted fromFig. 9.20, Callister 7e.

  • 8/6/2019 Ch09 Lecture Note

    13/1813

    Chapter 9 - 25

    Eutectoid & Peritectic Eutectic( ) - liquid in equilibrium with two solids

    L + coolheat

    intermetallic compound- cementite

    coolheat

    Eutectoid( ) - solid phase in equation with twosolid phasesS 2 S 1+S 3

    + Fe 3C (727C)

    coolheat

    Peritectic( ) - liquid + solid 1 solid 2 (Fig 9.21)

    S 1 + L S 2 + L (1493C)

    Chapter 9 - 26

    Eutectoid & Peritectic

    Cu-Zn Phase diagram

    Adapted fromFig. 9.21, Callister 7e.

    Eutectoid transition +

    Peritectic transition + L

  • 8/6/2019 Ch09 Lecture Note

    14/1814

    Chapter 9 - 27

    Iron-Carbon (Fe-C) Phase Diagram 2 important

    points

    -Eutectoid ( B ): + Fe 3C

    -Eutectic ( A):L + Fe 3C

    Adapted from Fig. 9.24, Callister 7e .

    F e 3

    C ( c e m e n

    t i t e )

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe 3C

    +Fe 3C

    +

    L+Fe 3C

    (Fe) C o , wt% C

    1148 C

    T (C)

    727 C = T eutectoid

    AS R

    4.30Result: Pearlite =alternating layers of and Fe 3C phases

    120 m

    (Adapted from Fig. 9.27, Callister 7e .)

    R S

    0.76

    C e u

    t e c t o i

    d

    B

    Fe 3C (cementite-hard) (ferrite-soft)

    Chapter 9 - 28

    Hypo eutectoid Steel

    Adapted from Figs. 9.24and 9.29, Callister 7e .(Fig. 9.24 adapted fromBinary Alloy Phase Diagrams , 2nd ed., Vol.1, T.B. Massalski (Ed.-in-Chief), ASM International,Materials Park, OH,1990.)

    F e 3

    C ( c e m e n t

    i t e )

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    + Fe 3C

    + Fe 3C

    L+Fe 3C

    (Fe) C o , wt% C

    1148 C

    T (C)

    727 C

    (Fe-CSystem)

    C 0 0

    . 7 6

    Adapted from Fig. 9.30, Callister 7e .proeutectoid ferritepearlite

    100 m Hypoeutectoidsteel

    R S

    w =S /(R +S )w Fe 3C =(1- w )

    w pearlite = w pearlite

    r s

    w =s /(r +s )w =(1- w )

  • 8/6/2019 Ch09 Lecture Note

    15/1815

    Chapter 9 - 29

    Hyper eutectoid Steel

    F e 3

    C ( c e m e n t

    i t e )

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe 3C

    +Fe 3C

    L+Fe 3C

    (Fe) C o , wt%C

    1148 C

    T (C)

    Adapted from Figs. 9.24and 9.32, Callister 7e .(Fig. 9.24 adapted fromBinary Alloy Phase Diagrams , 2nd ed., Vol.1, T.B. Massalski (Ed.-in-Chief), ASM International,Materials Park, OH,1990.)

    (Fe-CSystem)

    0 . 7 6 C o

    Adapted from Fig. 9.33, Callister 7e .

    proeutectoid Fe 3C

    60 mHypereutectoidsteel

    pearlite

    R S

    w =S /(R +S )w Fe 3C =(1- w )

    w pearlite = w pearlite

    s r

    w Fe 3C =r /( r +s )w =(1- w Fe 3C )

    Fe 3C

    Chapter 9 - 30

    Example: Phase Equilibria

    For a 99.6 wt% Fe-0.40 wt% C at a temperature just below the eutectoid, determine thefollowing

    a) composition of Fe 3C and ferrite ( )b) the amount of carbide (cementite) in grams

    that forms per 100 g of steelc) the amount of pearlite and proeutectoid

    ferrite ( )

  • 8/6/2019 Ch09 Lecture Note

    16/1816

    Chapter 9 - 31

    Chapter 9 Phase EquilibriaSolution:

    g3.94g5.7CFe

    g7.5100022.07.6022.04.0

    100xCFe

    CFe

    3

    CFe3

    3

    3

    =

    =

    =

    =

    =+

    x

    C C C C o

    b) the amount of carbide(cementite) in grams thatforms per 100 g of steel

    a) composition of Fe 3C and ferrite ( )C O = 0.40 wt% CC = 0.022 wt% CC Fe C = 6.70 wt% C3

    F e 3

    C ( c e m e n

    t i t e )

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    + Fe 3C

    + Fe 3C

    L+Fe 3C

    C o , wt% C

    1148 CT (C)

    727C

    C O

    R S

    C Fe C3C

    Chapter 9 - 32

    Chapter 9 Phase Equilibriac. the amount of pearlite and proeutectoid ferrite ( )

    note: amount of pearlite = amount of just above T E

    C o = 0.40 wt% CC = 0.022 wt% CC

    pearlite= C

    = 0.76 wt% C

    +

    =C o C C C

    x 100 = 51.2 g

    pearlite = 51.2 gproeutectoid = 48.8 g

    F e 3

    C ( c e m e n

    t i t e )

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    + Fe 3C

    + Fe 3C

    L+Fe 3C

    C o , wt% C

    1148 CT (C)

    727 C

    C O

    R S

    C

    C

  • 8/6/2019 Ch09 Lecture Note

    17/1817

    Chapter 9 - 33

    Alloying Steel with More Elements

    T eutectoid changes: C eutectoid changes:

    Adapted from Fig. 9.34, Callister 7e . (Fig. 9.34from Edgar C. Bain, Functions of the Alloying Elements in Steel , American Society for Metals,1939, p. 127.)

    Adapted from Fig. 9.35, Callister 7e . (Fig. 9.35from Edgar C. Bain, Functions of the Alloying Elements in Steel , American Society for Metals,1939, p. 127.)

    T E u t e c

    t o i d ( C )

    wt. % of alloying elements

    Ti

    Ni

    Mo Si W

    Cr

    Mn

    wt. % of alloying elements

    C e u

    t e c t o i

    d ( w t % C )

    Ni

    Ti

    Cr

    SiMn

    WMo

    Chapter 9 - 34

    Phase diagrams are useful tools to determine:--the number and types of phases,--the wt% of each phase,--and the composition of each phase

    for a given T and composition of the system. Alloying to produce a solid solution usually

    --increases the tensile strength ( TS )--decreases the ductility.

    Binary eutectics and binary eutectoids allow fora range of microstructures.

    Summary

  • 8/6/2019 Ch09 Lecture Note

    18/18

    Chapter 9 - 35

    Core Problems:

    Self-help Problems:

    ANNOUNCEMENTSReading:


Recommended