+ All Categories
Home > Documents > Ch9 polarizability interacting egas.ppt

Ch9 polarizability interacting egas.ppt

Date post: 24-Feb-2022
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
15
1 CH. 9: LINEAR RESPONSE THEORY AND THE POLARIZABILITY 1. The general Kubo formula 2. Application: - Dielectric properties of charged systems - Polarizability of the interacting e-gas Ch. 5,6, and 8 Bruus and Flensberg 9.1. LINEAR RESPONSE THEORY We start discussing Kubo’s linear response theory Ch. 5,6, and 8 Bruus and Flensberg The linear response theory is based on the idea that the response of a system to a weak perturbation is proportional to the perturbation itself. We thus need a formula for the proportionality constant (cf. r ind,e = cf ext )
Transcript

1

CH. 9: LINEAR RESPONSE THEORYAND THE POLARIZABILITY

1. The general Kubo formula2. Application:

- Dielectric properties of charged systems- Polarizability of the interacting e-gas

Ch. 5,6, and 8 Bruus and Flensberg

9.1. LINEAR RESPONSE THEORY

We start discussing Kubo’s linear response theory

Ch. 5,6, and 8 Bruus and Flensberg

The linear response theory is based on the idea that the responseof a system to a weak perturbation is proportional to the perturbation itself. We thus need a formula for the proportionalityconstant (cf. rind,e = c fext)

2

HOW TO EVALUATE NON -EQUILIBRIUM AVERAGES ?

t0 t

Thermal equilibrium state Non-equilibrium state

External perturbation begins to actextH

The general question one needs to answer is thus: Given an external perturbation, (e.g. external electric or magnetic field), what is the expectation value of a given observable to linear order in ?

extHA A

extH

)()(ˆˆ)(ˆ0tttt ext0 HHH0HH ˆ)(ˆ t

?)(ˆˆ)(ˆ tAtA rTr 0ˆ1

00

ˆˆˆˆ HeAZAA r TrTr

THE GENERAL KUBO FORMULA

)()(ˆˆˆ0ttt ext0(t) HHH

Suppose now that at time t0 an external perturbation isapplied to the system, driving it out of equilibrium

?)(ˆˆ)(ˆ tAtA rTr

We consider as a weak perturbation, so that it isconvenient to work in deviations from equilibrium

extH

)ˆ()](ˆ,[)](,ˆ[)](ˆ),(ˆ[)(ˆ 02extext0 HHHH Ot

it

itt

it rrrr

)(ˆˆ)(ˆ 0 tt rrr Solve the Liouville-von Neumann Eq. for

3

THE GENERAL KUBO FORMULA II

0

)',('ˆ)(ˆ)(ˆ0 t

RA ttCdtAtAtA

extH

where

0

)'(ˆ),(ˆ)'()',( ttAtti

ttC IIRAHext ext,H

)(ˆ tA• The inherent non-equilibrium quantity is expressed asa retarded correlation function of the system in equilibrium

Kubo formula

/)'(ˆ

0/)'(ˆ

0

0

0 ˆ),'(ˆ')(ˆ ttit

t

tti etedti

t HH H rr ext

use cyclic invarianceof the trace

Comments:

• (t-t´)expresses the causality of the solution retarded correlation function

responsefunction

proof onnext page

THE GENERAL KUBO FORMULA III

)](ˆ,[1

)](ˆ,ˆ[1

)(ˆ 0 ttti ext0 HH rrr

The differential Eq. is solved by expressing the left hand side as

)](ˆ,[1

)(ˆ 0

ˆˆˆˆ0000

teetedt

die

ti

ti

ti

ti

extHHHHH

rr

or

)](ˆ,[1

)](ˆ,[1

)(ˆ ,0

ˆ

0

ˆˆˆ0000

teteetedt

di I

ti

ti

ti

ti

extext HHHHHH

rrr

)]'(ˆ,[')(ˆ)(ˆ 00

0

tdti

tt ,I

t

t

II extHrrr

Proof:

4

KUBO FORMULA IN FREQUENCY DOMAIN

)(ˆ)(ˆ tfBt extH

0

)'()'(ˆ),(ˆ'ˆ)(ˆ)(ˆ00 t II tftBtAdt

iAtAtA

Consider the case in which

B Time-independent operator

f(t) c-number

)(~

)(~

)(ˆ)(~ˆ fCtAedtA R

ABti

)'()'(ˆ),(ˆ)'()',(0

ttCtBtAtti

ttC RABII

RAB

with

It then follows, for cyclic invarianceof the trace

,0 t

COMPLEX FREQUENCIES

)()(~

tCedtC RAB

tiRAB

0

)'(ˆ),(ˆ)'()'( tBtAtti

ttC IIRAB

In order for the Fourier transform to be well defined, the integrand must decay for both plus and minus infinity.

We note that the usual definition of the Fourier transform (FT) is

For retarded functions as

which are zero at negative times, only can pose a problem.

It is then usual to define the FT as

,)()(~

tCeedtC RAB

ttiRAB

positive infinitesimal 0

5

POSITION DEPENDENT PERTURBATION

When the external perturbation is position dependent,

),()(ˆ)(ˆ trfrBrdt

extH

one readily finds

),(~

)(~

)(~ˆ

)( rfCrdA RrAB

9.2 APPLICATION OF KUBO FORMULA:DIELECTRIC PROPERTIES

When dealing with systems containing charged particles, ase.g. the interacting e-gas, one is often interested in dielectricproperties, and in particular in the linear response properties

i) When such a system is subjected to an externalelectromagnetic perturbation, the charge is redistributed,and the system gets polarized.

ii) This in turn affects the measurement, an effect known asscreening

6

KUBO FORMULA FOR THE DIELECTRIC FUNCTION

The (nonlocal) dielectric function or permittivityyields the proportionality between the external and total potential:

)',';,( trtr

)','()',';,(''),( trtrtrdtrdtr

totext

Our purpose is to find assuming linear response theory:

External perturbation )(ˆ),(ˆ rtrrd

eextext rH

Induced charge: 0ˆˆ eeinde, rrr

)','()',('' )'()(0

trttCdtrd Rrrt

extinde, eer rr

0,,)'()( )','(ˆ),,(ˆ)'()',( trtrtt

ittC II

Rrr

eeee

rrrr charge-charge correlation function

DIELECTRIC FUNCTION II

)','()',';,(''),(0

trtrtrdtrdtr R

t

extinde, cr

0,,)'()( )','(ˆ),,(ˆ)'()',()',';,( trtrtt

ittCtrtr II

Rrr

R

eeeerrc rr

),'()'('),( trrrrdtr

indeeind r u

Once the induced charge is known, the induced potential follows:

)',''()','';,'()'(''''),(),(0

trtrtrrrdtrdrdtrtr tR

t

exeeexttot c

u

)',';,''()''('')'()'()',';,(1 trtrrrrdttrrtrtr R c eeu

polarizability function

Coulomb interaction

S.I.unitsee '4

1)'(

0 rrrr

u

7

POLARIZABILITY OF TRANSLATIONAL INVARIANT SYSTEMS

)','()',';,( ttrrtrtr RR cc

Translational invariant systems in space and time

),(~),(~),(~ 1 qqq

exttot or ),(~),(~),(~ qqq

totext

with

),(~)(~1),(~ 1 c qqq R eeu

2ee

1

qq

0

)(~

u

POLARIZATION OF ELECTRON GAS

)','()',';,( ttrrtrtr RR ccE-gas:

')(

02,,

')'(

0

2,1,

0,,

)'(

2

2

21

21

)',(ˆ),,(ˆ)'(

)',(ˆ),,(ˆ)'(

)','(ˆ),,'(ˆ)'(

)'()'()',(~

rqqiII

q

rqirqirrqiII

qq

rqiII

rrqiRR

etqtqtti

eetqtqrdtti

etrtrrrdtti

errrrdttq

ee

ee2

ee

1

1

rr

rr

rr

cc

V

V

0,, )',(ˆ),,(ˆ)'()',(~ tqtqtt

ittq II

R

ee

1 rrcV

rrr

'

result must be independent of r´

8

POLARIZATION OF e-GAS II

0,, )',(ˆ),,(ˆ)'()',(~ tqtqtt

ittq II

R

ee

1 rrcV

),(~)(~1),(~ 1 c qqq R eeu

Hence, in general, for the e-gas in linear response to ext it holds:

Note that here refers to the Hamiltonian in the absence ofthe perturbation ext, but it can include e.g. the Coulombinteraction, if the interacting e-gas is considered.

0

DIELECTRIC LOSS FUNCTION

dielectric loss function

0,, )','(ˆ),,(ˆ)'()','( trtrtt

ittrr II

R

ee rrc

Note: A relation exists between the imaginary part of a correlation function and the excitations of the system.Explicitly seen using the Lehmann representation.

),(~Im)(~),(~Im 1 c qqq R eeu

9

9.3 POLARIZABILTIY OF FREE e-GAS

0,,0 )',(ˆ),,(ˆ)'()',(~ tqtqtt

ittq II

R

ee

1 rrcV

ti

qkk

kekk

kk

qkkeccetqcc)(

,,

,,,

,ˆˆ),(ˆˆˆˆ

r0H

c

,

)')((

')(

',',

)(

0',''',

0

)]()([)'(

ˆˆ,ˆˆ)'(

)',(~

''

k

tti

qkk

ti

kk

ti

qkkqkk

R

qkk

qkkqkk

effe

tti

eecccce

tti

ttq

V

V

2

2

','',''' ˆˆˆˆˆˆ,ˆˆ cccccccc )(ˆˆ

0 kkkfcc Fermi

function

For simplicity, we start to look to -1 to first order in uee, whichmeans that we evaluate for the non-interacting e-gas:

0 0~~ cc

POLARIZABILITY OF FREE e-GAS

c

,

)')((

0 )]()([)'()',(~

k

tti

qkk

R qkkeff

ett

ittq

V

2

c

,

,

)(

0

0

/)(

)]()([

)]()([),(~

k qkk

qkk

k

i

qkk

iR

i

ffe

eeffe

edi

q qkk

V

V2

2

Lindhard function

))/)(()]()([),(~Im,

0 c

qkk

kqkk

R ffe

qV

2

and

10

EXCITATIONS OF THE NON-INTERACTING e-GAS

))/)(()]()([),(~Im,

2

0 c

qkk

kqkk

R ffe

qV

yields informations about the excitations, i.e., we analyzefor which and isq

.0),(~Im c qR

Consider )()( kfk

F0 kT

0

0

0)()(

FF

FF

and

and

kk

kk

qkk

or

qkk

ifffqkk

i)

ii) ),(~Im),(~Im 00 cc qq RR Consider only > 0

EXCITATIONS OF THE NON-INTERACTING e-GAS II

iii) Hence:

FF

F

kqqvm

q

qvm

q

m

qk

m

q

2,2

22

0 2

min

2

max2

q/kF

/F

1

1 2

2hole

ejectedelectron

incomingphoton

, the range of possible excitations is

11

9.4 POLARIZABILITY WITHIN THE RPA

Dielectric properties of the interacting e-gascan only be described properly if one is able to treatinteraction effects to all orders in perturbation theory.

To this extent different approximation schemes have beendeveloped. Here we summarize some of the outcomes of thesecalculations:

• renormalization of the Coulomb interaction (screening)which removes the divergence at q=0.

• converging expression for the ground state energy• screening of external potentials• collective excitations (plasmons)

PREDICTION OF THE RANDOM PHASEAPPROXIMATION

One non-perturbative approximation scheme is the random phase approximation (RPA), which enables to select an infinite ensemble of relevant processes for the interacting e-gas in the high-density limit rs 0

),(~)(~),(~)(~),(~

)(~),(00

0

ccc

qqqq

qqq

RR

R

eeee

ee1

RPA 1

1

11

uuu

),(~ c qR RPA

• The expression for shows that it is a solution of a Dyson eq. with self-energy

• To first order in , the previous result for -1 is reproduced

• Poles of the denominator provide new excitations beside the e-h ones !!!

ee )(~ qu

),(~ c qR RPA

ee )(~ qu

12

EVALUATION OF POLARIZATION

),(~0 c qR

Evaluation of

i) Start from the Lindhard form

c

i

ffdk

dke

i

ffeq

qkk

qkk

k qkk

qkkR

/)(

)]()([)2(

)2(

2

/)(

)]()([),(~

0

1

1

23

2

,

2

0 V

Low temperature limit FBTk

• Low T: )()( kfk

Fk

qkqmqkkqkk

22

22

cos

and observe

REAL PART

),(~Re 0 c qR ii) Focus on

• Define dimensionless frequencies, momenta:FF

xk

qx

4,

2 0

• Use standard logarithmic integrals

c

mkqqmkqqfdk

dke

q

k

k

R

F

2/)2(

1

2/)2(

1)(

2

),(~Re

220

1

1

22

2

0

P

])ln()[(1

)ln();ln(11

axbaxbaxa

baxdxbaxabax

dx

x

xxfxxfeq F

R

8

),(),(

2

1)(2),(~Re 002

0 c D

with0

20

22

00 ln1),(

xxx

xxxx

x

xxxf

13

IMAGINARY PART

)/)(()]()([)2()2(

),(~Im

0

1

1

23

0

c

qkkqkk

R

ffdkdke

q22

0,0

0,2

,18

)(

0

20

0

20

2

2

0

x

xxxx

x

xxxxxxx

x

x

F

other for

for

for

D

FF

xk

qx

4,

2 0

DIELECTRIC FUNCTION IN RPA

),(~)(~1),( 0 c qqq RRPA

eeu

Let us investigate the frequency dependent dielectric function

We look at:

FB

F

F

Tk

xkq

xxq

)1(

)(v 0

or

or high frequencies

long wavelength

low temperatures

,0),(~Im 0 c qR 2

2

2

2

0

v

5

31),(~Re e

qq

mq FR

c en

0

22

2

2

,v

5

311),(

m

eqq p

Fp eRPA

n

plasmafrequency

no dispersion

14

PLASMA OSCILLATIONS AND PLASMONS

The plasma frequency is an important parameterof the interacting e-gas lying in the ultraviolet range:

F

F

kq

qv

,

0

22

2

2

,v

5

311),(

m

eqq p

Fp eRPA

n

• Example: Aluminum

p Metal becomes transparent to radiation when

p • Incoming radiation with is reflected

p 162.27 10 Hz

• Plasma frequency is related to collective charge density oscillations, called plasmons. They are solution of the eq.

0),( q

RPA

PLASMA OSCILLATIONS AND PLASMONS II

22F

2

222 v

10

3)(

v

5

310),( qq

qq

pp

p

Fp

RPA

• Plasmons are solution of the equation 0),( q

RPA

Meaning, due to , that thesystem can sustain a finite tot even for vanishing small ext

),(~),(~),(~ 1 qqq

exttot

F

x

40

Fk

qx

2

1

plasmons

q/kF1 2

2

dampedplasmon

electron-holecontinuum

propagatingplasmon

0~Im 0 Rc

15

SUMMARY FOR INTERACTING e-GAS

),(

),(~~;

),(

)(~

),(~)(~1

)(~),(~

RPARPA0

c

k

k

k

k

kku

k k

R

extRPAtot,

ee

ee

eeRPA

uuu

1. Screening Renormalization of i) Coulomb interaction,ii) external potential

• static screening

• dynamic screening

0

2

002

)(1

)0,0(~,1)0,(

c eqk

q

kq F

R D2

TF

2TF

RPA

2. Collective (plasmons) + particle-hole excitations3. Lowering of ground state energy due to interactions

0

22

2

2

2

,v

5

311)v,(

m

eqqq p

FpF

eRPA

n


Recommended