+ All Categories
Home > Documents > Cha ter - Universiteit Utrecht€¦ ·  · 2014-08-24... , Egl-10 and Pleckstrin domain; CNB,...

Cha ter - Universiteit Utrecht€¦ ·  · 2014-08-24... , Egl-10 and Pleckstrin domain; CNB,...

Date post: 12-Apr-2018
Category:
Upload: buituong
View: 216 times
Download: 0 times
Share this document with a friend
20
Cha�ter General introduction
Transcript

Cha�ter

�General introduction

Chapter 1

8

IntroductionThe �a�� ��u�er�a�il�� con��i��t�� o� a large grou� o� �ono�eric G �rotein�� �hich c��cle bet�een GDPboundinactiveandGTP-boundactivestate.ThisswitchfunctionofRas-likeproteinsi�� regulated b�� guanine nucleotide exchange �actor�� (G����) and GTPa��e�acti�ating �rotein�� (GAPs).GEFsinducethereleaseofG-proteinboundnucleotide,allowingrebindingofthecellularmoreabundantGTP.GTP-bindingchangestheconformationofthesmallG-proteinin the ���itch � and ���itch 2 region�� (���), �hich are in�ol�ed in nucleotide�binding and allows theassociationwith itseffectors.GTPaseactivatingproteins (GAPs)stimulate theintrinsicGTPaseactivityoftheG-protein,whichresultsinthehydrolysisofGTPtoGDPandtherebyterminatessignallingoftheG-protein.

Rap family Rap family proteins were first identified in a screen for Ras homologous genes (4) andcompriseofRap1A,Rap1B,Rap2A,Rap2BandRap2C.Independently,Rap1wasidentifiedasasuppressoroftheK-Rastransformationphenotype(5),andthisfindinginvokedattentionstoRap proteins and the signalling pathways theymight be involved in.Due to the high��i�ilarit�� bet�een the e��ector region�� o� �a� and �a��, �a� �a�� h���othe��i�ed to antagoni�e RassignallingbytrappingRaseffectorproteinsinaninactivecomplex.Indeed,RapbindstoRaseffectorswithsimilaraffinities(6-8).Moreover,overexpressionofactiveRapinterfereswithERKactivationinfibroblasts(9).However,itwasshownthatRapmightalsobeabletoactivateRaseffectorproteinsandinduceoncogenictransformationofSwiss3T3fibroblasts(10,11). Although overexpression of Rap may interfere in Ras signalling, endogenousRap1isunlikelyabletoefficientlytitrateRaseffectormolecules(12,13).ThisindicatesasignallingfunctionofRap,whichisindependentofRas.Indeed,RapwasfoundtoregulateintegrinmediatedcelladhesioninlymphocyteTcells(14).Subsequentstudiesdemonstratea crucial role �or �a�� in the regulation o� in��ide�out ��ignalling to integrin��, �hich �ill be discussedinmoredetaillater.MorerecentlyRap1hasbeenimplicatedinE-cadherin(15,16)

Fig. 1 Regulation of the Rap1 GTPase. �a� acti�it�� i�� u�regulated b�� a nu�ber o� �a�G���� and do�nregulated b�� RapGAPs.Rap1GEFsarecontrolledby��econd �e����enger�� or �rotein t��ro��ine kinases.PTK:proteintyrosinekinase.

Rap1

GDP

GEF GAP

GTP

Inactive

Active

RapGAP Spa

cAMP EpacPTK C3G ? PDZ-GEFcalcium/DAG CalDAG-GEF

Rap1

General introduction

andVE-cadherin-mediatedjunctionformation(17-20).InthiscontextRapwasfirstshowntopositivelyregulatetheadhesionofcellstoE-cadherin(16).Asubsequentreportshowedthat C�G, a guanine nucleotide exchange �actor (G��) �or �a��, regulate�� the ��ignalling mediatedbyE-cadherinandnectininepithelialcells(15,21).Inhu�an u�bilical �a��cular endothelial cell�� (HUV�C), the ��ac��a�� �ath�a�� regulate�� V��cadherin��ediated cell�cellcontacts(17-20).

Activation of Rap by guanine nucleotide exchange factorsAvarietyofGEF-proteinsareable tocatalysenucleotideexchangeofRap (Fig.1).Likeother GEF proteins for G-proteins of the Ras family, they contain a CDC25-homologydo�ain and a �a�� exchanger �otif (REM)domain.TheCDC25-homologydomain is thecatalyticdomain.Studiesrevealedthattheisolateddomainissufficienttoinducenucleotideexchange (22,23).REMdomainsalwaysoccur togetherwithCDC25-holomolgydomains(24) and ha�e a �ainl�� ��tructural �unction b�� ��hielding the h��dro�hobic ��ur�ace area o� theCDC25-homologydomain(25).Exceptforthesecommonelements,RapGEFsvaryindomaincompositionaswillbedescribedinthefollowingsections.EpacThe ob��er�ation that c�MP induce�� �a� acti�ation inde�endent o� �rotein kina��e � (PK�) encourageddeRooij andco-workers to search the sequencedatabase forgenesencoding�rotein�� that contain both a c��clic nucleotide binding(CNB)domainandaCDC25homologydomain.Thisresultedintheidentificationofthe�xchange �rotein directl�� acti�ated b�� c�MP (��ac) and indeed ��ac �a�� ��ho�n to be directl�� acti�ated b�� c�MP in vivo and in vitro(26).In an independent screen,Epacwas identifiedas aproteindifferentially expressed in thebrainandcontainingaputativesecondmessengerbindingdomain(27).TheEpacproteinfamilyconsistsof3members:Epac1,Epac2andRepac(RelatedtoEpac)(Fig.2).Epac1is

Fig. 2 Domain structure of Epac and PDZ-GEF. DomainorganizationofEpac1,Epac2,Repac,PDZ-GEF1andPDZ-GEF2areshown.DEP,Disheveled,Egl-10andPleckstrindomain;CNB,cyclicnucleotidebindingdomain;REM,Rasexchangermotif;RA,Rasassociationdomain;CDC25-HD,CDC25-homologydomain;aCNB,atypicalcyclicnucleotidebindingdomain;PDZ,PSD-95,Dlg,ZO-1domain.

RAEpac2 REMDEP

RAREMDEP CDC25-HDEpac1 CNB

CNB-BCNB-A

RAPDZ-GEF2 REM CDC25-HDaCNB aCNB PDZ

CDC25-HD

RAPDZ-GEF1 REM CDC25-HDaCNB PDZ

regulatory region catalytic region

RAREM CDC25-HDRepac

Chapter 1

�0

widelyexpressedwithhighexpressionlevelsinkidney,ovary,brainandskeletalmuscles,�herea�� ��ac2 ex�re����ion i�� �ainl�� re��tricted to the brain, li�er, adrenal gland, �ituitar�� and β-cells of the pancreas (27-30). Epac consists of a regulatory and a catalytic region(Fig.2).ThemajordifferencebetweenEpac1andEpac2isanadditionalN-terminalCNBdomaininEpac2.ThisCNBdomainhasaloweraffinityforcAMPthanthesecondCNBdomainandisnotrequiredtokeepEpac2intheauto-inhibitedstate(28,31).BothEpac1and��ac2 contain a Di��he�elled, �gl��0 and Pleckstrin (DEP)domain,which isnot required�or the regulation o� ��ac b�� c�MP but �ediate�� it�� locali��ation at the �la���a �e�brane (28,32).Anubiquitin-likefolded�a�� a����ociation (��) do�ain i�� in��erted bet�een the ��M domainandtheCDC25-homologydomain,whichforEpac2wasshowntobindH-Ras((33),addendum1ofthisthesis).The anal����i�� o� ��ac��ediated e��ect�� �a�� �acilitated b�� the de�elo��ent o� the ��ac ��electi�e c�MP analogue 8��CPT�2’�O�Me�c�MP (007), �hich i�� not able to bind to or activatePKA.With theuseof007,Epac1was linked to integrin-mediatedandcadherin-mediatedadhesion(16,34).Epac2wasshowntofulfilapredominateroleinthepotentiationof insulin secretion and the regulation of neurotransmitter release (35,36).The effects ofEpaconinsulinsecretionweresuggestedtobepartiallyRapindependent.UnlikeEpac1 andEpac2,Repac lacks a regulatory region and is therefore constitutivelyactive(28).ItiscurrentlyunclearwhetherRepacisregulatedbytheinteractionwithotherproteins,whichcouldtakeoverthefunctionoftheregulatoryregion.C3GC3GisubiquitouslyexpressedandwasoriginallyidentifiedasaproteinboundtotheSH3domainofc-Crk(37).C3GcanactonRap-1,Rap-2,andR-RasviaitsC-terminalcatalyticregion(37-40).TheCrk-C3Gcomplexisrecruitedtotheplasmamembraneuponactivationof receptor tyrosine kinases by several growth factors and cytokines. In epithelial cellsC�G interact�� �ith the c��to�la���ic do�ain o� ��Cadherin, �hich i�� re���on��ible �or �a�� activationduringcell-cellcontactformation(15,41).PDZ-GEFTwoisoformsofPDZ-GEF,PDZ-GEF1and2,existinmammalians(Fig.2).Bothproteinscontain a PSD-95, Dlg, ZO-1 (PDZ) domain, a putative RA domain, a REM-domain, aCDC25-homologydomainandanatypicalCNB(aCNB)domain,whichisnotabletobindcAMP(42,43).PDZ-GEFshavebeenreportedtobeRapspecificexchangefactors(42,43),however,thisspecificitywaschallengedbythesuggestionthatPDZ-GEF1canalsoactivateRas (44). It is currently unclear, howPDZ-GEFs are regulated.Recently the function ofPDZ-GEFwasanalysedgenetically inC.elegans and Drosophila. In C.elegans, thePDZ-G�� (pxf-1)/Rappathwayisrequiredforthemaintenanceofepithelialintegrity(45)andinDrosophilaPDZ-GEF(Dizzy) i�� in�ol�ed in �a���ediated integrin�de�endent cell adhe��ion duringcellmigrationinembryonicdevelopment(46).

General introduction

��

CalDAG-GEFTheCalDAG-GEFs(orRasguaninenucleotidereleasingproteins,RasGRPs)areregulatedby the second messengers diacylglycerol and calcium. They differ in their specificitiestowardsG-proteins.CalDAG-GEF1actsonRapproteins(47,48),CalDAG-GEF2onH-RasandK-RasbutnotonRap(48-50)andCalDAG-GEF3onbothRapandRasproteins(48,51).CalDAG-GEF4hasnotbeenstudiedextensively,butitshowsspecificityforRas(52).

Inactivation of Rap by GTPase activating proteinsThe intrin��ic GTPa��e acti�it�� o� �a� �rotein�� i�� �er�� lo� and there�ore ra�id inacti�ation ofRaponlyoccurswith theaidof specificGAPproteins (Fig.1).Membersof theSPA-� (��ignal�induced �roli�eration a����ociated gene��) �a�il�� contain a catal��tic do�ain called G�P�related domain (GRD), which is responsible for stimulating the intrinsic GTPaseactivityofRapproteinsbyseveralordersofmagnitude.Originall�� SP��� �a�� �ound a�� a �itogen�inducible nuclear �rotein (4�) and �a�� later �ound tobeaprincipalRap1-specificGAPinthelymphohematopoietictissues(53).Thestructurallyrelated �rotein�� o� SP���, �6TP� (�6�targeted �rotein �), SP�� (���ine�a����ociated �a�G�P),

Fig. 3 Domain structure of AF6, afadin, Canoe and Ce-AF6. DomainstructureofthethreehumanAF6isoforms(AF6i1,AF6i1 andAF6i3), the two its rat homologue afadin (long l-afadin and short s-afadin), itsDrosophilahomologueCanoeanditsC.eleganshomologueCe-AF6areshown.Therelativepositionsofindividualdomainsareshown.RA1,2,Ras-associatingdomain1and2;FHA,forkhead-associateddomain;DIL,adilutedomain;PDZ,PSD-95,Dlg,ZO-1domain;pro,proline-richregion,ABS,actin-bindingsite.

RA1,2 FHA DIL PDZ Pro Pro16

11

AF6i1

1816

AF6i2

1743

AF6i2

Pro

ABS

1663

s-afadin

1829

l-afadin ABS

37 910

804

491

425

350

1632

1666

1376

1349

1077

991

canoe

2051

1658

Ce-AF6

hu

man

Rat

C.elegans

Drosophila

Chapter 1

�2

andseveralSPA-1-likeproteins(SPA-Ls)makeuptheSPAfamily,butallshowauniquecellulardistribution invarious tissues (53-56).Spa-1was reported tobe regulatedby therecruitmentofAF6andsubsequentdownregulateRapmediatedadhesion(57).Rap1GAP,aproteinwithamolecularweightof73KDa,wasthefirstidentifiedGAPforRap(58).ItexistsasthetwosplicevariantsRap1GAPIandRap1GAPII,withthelattercontainsanadditionalN-terminalregion.Theα-subunitoftheGi-familyproteinsbindsspecificallyto �a��G�PII and recruit�� it to the �e�brane, �hich re��ult�� in the attenuation o� �a�� activation(59).Morerecently,Rap1GAP2,whichexhibits50%similaritywithRap1GAPIwasidentifiedinhumanplatelet(60).

The Rap binding protein AF6��� a re��ult o� chro�o��o�e tran��location, the �LL�� (�cute L����hobla��tic Leukemia)geneisfusedtoothergenesonpartnerchromosomes,whichresultsinchimericproteins.Originallyidentifiedasan�LL�� �u��ion �artner on chro�o��o�e 6 (6�), ��6 i�� a �rotein con��er�ed �ro� humantonematodeandfly,althoughitisknownundervariousnamesindifferentspecies(Fig.3).AF6containstwoRAdomains,a�orkhead�a����ociated (�H�) do�ain, a dilute do�ain (DIL),aPDZdomain,andaproline-richregion.ThetwoRAdomainsmediatetheinteractionofAF6withtheGTP-boundformsofRapandRas(62,63).ThePDZdomainwasshowntobeinvolvedintheassociationwithnectinandSpa-1(57,64,65).RecentlyanewhumanAF6isoformwascloned(66),namelyAF6isoform3(AF6i3).AF6i3differsfromAF6isoform� (��6i�), �hich �a�� the onl�� hu�an i��o�or� being ��tudied, b�� an additional C�ter�inal F-actin-bindingregion.Thisactin-bindingregionofAF6i3shareshighsimilaritywiththeC-terminusfromoneofitsRathomologs,l-afadin.Theactin-bindingwassuggestedtofacilitateAF6i3topositivelyregulateadhesion(66).EventhoughAF6caninteractwithbothRapandRas,mostofitsbiologicaleffectswereassignedtoRapsignalling.Canoe, the Drosophila ortholog o� ��6, �unction�� a�� an e��ector o� �a�� during e�br��onic de�elo��ent and it i�� requiredfortheproperdorsalclosureprocess(67).Inaddition,Canoe act�� do�n��trea� o� the ��ider�al Gro�th �actor (�G�) rece�tor and �a�� b�� controlling o��atidal rotation during �lanar cell �olarit�� (PCP) e��tabli��h�ent in the Drosophilaeye(68).At subcellular levelAF6 is localized at epithelia adherens junction. It binds to severaljunction �rotein��, including Zona Occluden�� �(ZO-1)(69),Junctional �dhe��ion Molecule (JAM)(70),profilin(62)andNectin(71).SeveralstudiessuggestthatAF6isimportantfortheformationand/orstabilityofcellularadherensjunctions.InthecontextofE-cadherin-mediatedadhesion,thePDZdomainofAF6hasbeenshowntointeractwithC-terminusofnectinandthisinteractionfacilitatesE-cadherin-dependentcell-celladhesion(64,65).Takaiandco-workershaveshownthattheRap/AF6complexpromotestheinteractionbetweenE-cadherin and ��20�catenin in a �a���de�endent �anner and ��tabili��e�� ��cadherin��ediated adhesion (71). By contrast, recent study shows thatAF6i3 is associated with the actin

General introduction

��

cytoskeletonandisrequiredforthestabilizationofE-cadherin-dependentadhesioninaRas/Rap independentmanner (66). Interestingly, in thecontextof integrin-mediatedadhesion,AF6 plays a role as a negative regulator ((57) and chapter 2). In humanfibroblastsAF6enhancestheinhibitionofSpa-1onRap1inducedcelladhesion(57).Theoppositeeffectso� ��6 on ��cadherin� and integrin��ediated adhe��ion indicate a �otential role �or ��6 a�� abalancekeeperbetweenthecell-celladhesionandcell-matrixadhesion.ItseemspossiblethatAF6playsasignificantroleincadherin-mediatedcell-celladhesionbykeepingRap1awayfromintegrinmediatedcell-matrixadhesion.

Rap in T cellsLymphocytes are blood cells that are responsible for the adaptive immune response. In�a��al�� t�o cla����e�� o� l����hoc��te��, the B cell�� and T cell�� account �or the antibod�� response and cell mediated immune responses, respectively. T cells derive their namesbecausetheydevelopinthethymus.Incell-mediatedimmuneresponses,activatedTcellsrecogni��e �oreign antigen�� that are �re��ented b�� the Major Hi��toco��atibilit�� Co��lex (MHC)proteinsonthecellsurfaces.Tcellsaredividedintotwomainclasses:thecytotoxicTcellsandhelperTcells.Onceactivatedbybinding to theMHCcomplexofanantigenpresentingtargetcell,cytotoxicTcellsinduceapoptosisofthetargetcell.Insteadofkillingthetargetcellsdirectly,helperTcellsactivatemacrophages,BcellsandcytotoxicTcells.Inactivelymphocytescirculatecontinuouslybetweenthelymphandblood.Inresponseto��ti�uli, l����hoc��te�� ���itch ra�idl�� �ro� a non�adherent ��tate to an adherent ��tate and thi�� processrequiresinside-outsignallingmediatedbyintegrins.Rap in T-cell adhesionStimulationofcelladhesionisoneofthebest-studiedeffectorpathwaysofRap1(14)(Fig.4).In l����hoc��te��, ��ti�ulation o� the T cell rece�tor (TC�) i�� �ollo�ed b�� ra�id �a� acti�ation (72).WorkfromdifferentgroupssuggestedthatRapiscrucialforthecontrolof integrin-mediatedcelladhesion(14,73,74).“Inside-out”signallingistheregulatedintegrin-mediatedadhesion by intracellular signals. It has been proposed thatRap1 couples diverse stimulisuchasTCR(75),phorbolester (76),CD31(14),CD98 ligation (77)andSDF-1 (78,79)tointegrinactivationthrough“inside-out”signalling.OntheotherhandRapisatargetof��ignal�� generated in re���on��e to the binding o� integrin�� to their extracellular ligand��, ter�ed “outside-in”signalling(80).Thissuggestsapotentialpositivefeedbackloopthatcanfurtherenhanceintegrinfunction.Inagreementwiththestudiesintissueculturecells,lymphocytesfromRap-/-miceshowimpairedcelladhesion(81).Rap in T-cell migrationThe l����hoc��te tran���igration �ro� �e����el�� into ��urrounding ti����ue�� i�� controlled b�� adhesive interactionwith thevascularendothelium.Chemokinesandadhesionmolecules,suchasintegrins,mediatetheadhesiveinteractionsandsubsequentlyinfluencetherolling,

Chapter 1

�4

firmadhesionandtransmigrationprocesses.DuringlymphocyteemigrationRapisactivatedupon chemokines stimulation within seconds and triggers rapid integrin activation (78).�n acti�e �a� �utant can tran���or� l����hoc��te�� into �olari�ed cell�� and ��ti�ulate cell migrationovertheadhesionmoleculesICAM-1andVCAM-1.Rapactivationwasshowntobecriticalforfirmattachmentoflymphocytesandthesubsequenttransmigrationthroughthevascularendothelium.ApivotalroleofRap1wassuggestedinregulationofchemokine-inducedlymphocyteextravasation(82).

ROS suppression�eacti�e Ox��gen S�ecie�� (�OS) re�re��ent a heterogeneou�� grou� that include�� ox��gen anion�� and radicals or hydrogenperoxide (83).Diverse stimuli increase the intracellular oxygenradical�� and �ro�ote cellular e�ent��, ��uch a�� �roli�eration, gene acti�ation, cell c��cle arre��t andapoptosis(84).InTlymphocytes,transientproductionofROSmodulatestranscriptionaland proliferative responses to TCR signalling (85). In contrast, chronic oxidative stressresults ina reducedproliferative responseandanenhanced transcriptionof inflammatorygeneproducts.Ras/Ralsignallingpathwayhasbeenshowntoberequiredandsufficienttomediatephorbolester-inducedROSproduction(85).Rap1isalsoactivatedinTlymphocytesuponTCRstimulation.Inaphosphatidylinositol3’-kinase(PI3K)-dependentmanner,Rap1suppressesagonist-andRas/Ral-inducedROSproduction,whereasithasnoeffectonbasalROSproduction(85).AlthoughthePI3K-dependentROSsuppressionwasdemonstratedbyu��ing a PI�K inhibitor (LY2�4002), no direct a����ociation bet�een �a�� and PI�K in T cell�� hasbeenobserved.ThissuggestsaninvolvementofaPI3K-dependentunknownRapeffectorforROSsuppressioninTlymphocytes.Rap1 effectors in T-cellsRAPL�egulator o� �dhe��ion and cell Polari�ation enriched in L����hoid ti����ue�� (��PL) �a�� i��olated inayeasttwo-hybridscreenfromahumanleukocytecDNAlibraryusingRap1A-G12V,aconstitutivelyactiveformofRap,asabait(86).RAPLencodesa256aminoacidsproteinthat con��i��t�� o� a �a�� binding domain(RBD)andaC-terminalcoiled-coildomain.RAPLwasfirstidentifiedasanalternativespliceproductoftheRassF5genethatispredominantly

Fig. 4 Rap1 downstream signaling effects in T cells. �I�M and ��PL ha�e been re�orted to inter�actwithRapandfunctionaseffectorsonadhesion.Requirement for Rap1 activity in several cellular�roce����e�� ha�� been re�orted ��uch a�� �eacti�e Ox���gen S�ecie�� (�OS) ��u��re����ion, cell adhe��ion and cellmigration.

RAPLRIAM

Adhesion

Rap1-GTP

?

Migration ROS production

Ras-GTP

RAL

General introduction

��

expressedinlymphoidtissues(87).InTcells,uponRap1activationRAPLformsacomplex�ith L���� and re�locali��e�� together �ith it�� e��ector M��t�� to the leading edge o� �olari�ed T cells(88).PlasmamembranelocalisedMst-1increasestheadhesivenessoftheTcellintegrinLFA-1toICAM-1.ARAPLmutantthatisdeficientinRap1-bindingblocksRap1-,TCR-,and chemokine-dependent adhesion. In agreementwith the results obtained from studiesbasedonoverexpressionofRAPL,lymphocytesderivedfromRAPLknock-outmiceshowreduced adhe��ion, de�on��trating the e����ential role �or ��PL in integrin��ediated adhe��ion (89).Inadditiontointegrinactivation,RAPLwasalsoreportedtobecapableofinducingcell�olari�ation o� l����hoc��te�� and enhancing �a��de�endent �igration o� �a��cular endothelial cells (90). Interestingly, the restricted expression of RAPL indicates that it is unlikelyresponsibleforRap1inducedadhesioninnon-haematopoieticcells.RIAM�a���Interacting �da�tor Molecule (RIAM) was identified in a yeast two-hybrid screenusinganotherconstitutivelyactivateformofRap,Rap1A-Q63E,asabaittoscreenaJurkatcDNAlibrary(91).RIAMcontainsanRAdomain,apleckstrinhomology(PH)domainandseveralproline-richsequences.InJurkatcells,over-expressedRIAMinducesRap-inducedintegrin-mediatedadhesion.ThisadhesionwasabolishedbytheknockdownofRIAMwithsiRNA.InterestinglyRIAMalsointeractswithprofilinandEna/VASPproteins,whicharemodulatorsofactindynamics.InRIAMknockdowncellsthecontentofpolymerizedactinisreducedandRap1isnotrecruitedtotheactincytoskeletonatthesitesofadhesionanymore,indicatingaroleforRIAMinactindynamics.Insights from mouse modelsTo study the Rap effects on lymphocytes in living organisms, Rap1 knockout mice ortransgenicmiceoverexpressingconstitutivelyactiveRap1mutantsweregenerated.StudiesusingRap1A-G12VtransgenicorRap1AknockoutmicedemonstratedthatRapaugmentsTcellactivationviatheenhancementofintegrin-dependentadhesion(74,81).TlymphocytesfrommicethatconstitutivelyexpressRap1A-G12VshowanenhancedTCRresponse(74).InRap1Adeficientmicenosignificantdefectsinlymphoidcellsdifferentiationormaturationwere observed (81). Intriguingly, studies on tissue culture T cells from either SPA-1-deficientorRap1A-Q63E transgeneticmicemodels suggested thatRap1 is involved inTcell�� unre���on��i�ene���� and anerg��, a ��tate in �hich T cell�� beco�e re�ractor�� to ��ti�ulation (92,93).SPA-1deficientmicedevelopedanage-dependentTcelldysfunctionprecedingthemyeloiddisorders(92).HelperTcellsfrommicethatexpressRap1A-Q63EshowanincreaseofCD4+CD103+regulatoryTcellsfraction.These T cells exhibit a potent inhibition of T cellsThe��e T cell�� exhibit a �otent inhibition o� T cell�� proliferation and IL-2production (93-95).Together, these evidences suggested that Rap1Together, the��e e�idence�� ��ugge��ted that �a�� playsaroleasanegativeregulatorofTcellsfunction.Thediscrepancyfromdifferentmice�odel�� could be due to di��erent T cell�� u��ed (�6), e��ect�� �ro� di��erent �a� �utant�� (��) or differenttransgeneticsystemsusedineachstudy(96).

Chapter 1

�6

ERM proteins The ERM family consists of three closely related proteins, Ezrin, Radixin andMoesin.Radixinwasoriginallyisolatedasaconstituentofadherencejunctionsinratliver(97);Ezrinwasoriginally identifiedasacomponentof intestinalmicrovilli (98,99);andMoesinwasidentifiedas aheparin-bindingprotein inbovineuterus smoothmuscle cells (100). ��M proteins belong to the erythrocyte protein 4.1 super-family,which are characterized by acon��er�ed N�ter�inal �our��oint one, ��rin, �adixin, Moesin(FERM)domain.Theglobular���M do�ain, �hich ha�� been re�orted to bind �rotein�� and li�id�� (�0�), contain�� three ��ub�domains(F1,F2andF3)(Fig.5).F1adoptsanubiquitin-likefold,F2isstructurallysimilartotheacyl-CoAbindingproteinandF3showsstructuralhomologytoPHdomains.InERM�rotein��, the ���M do�ain i�� �ollo�ed b�� an al�ha�helical and a charged C�ter�inal region withafilamentousactin(F-actin)bindingsite.Bio�h����ical and ��tructural anal����i�� ha�e ��ho�n that the C�ter�inal region o� ��M �rotein�� caninteractwiththeN-terminalFERMdomain(102-105).Thisinternalinteractionresultsinaclosedconformationreferredtoas“inactive”.DisruptionofthisinteractionswitchstheERMproteinstoanopenor“active”state.TheopenconformationallowsERMproteinstointeractwithotherproteinsandtofunctionasscaffolds(Fig.6).Theequilibriumbetweentheopenandtheclosedconformationisinfluencedbyseveralregulatorysignals.Regulation of ERM proteinsPhosphorylationofthreonine558ofMoesinwasfirstnotedduringthrombinactivationofplatelets (106).Thephosphorylationof thecorrespondingresidues,T564forRadixinandT�67 �or ��rin, �ere �ound to reduce the interaction bet�een the ���M�do�ain and the C-terminalregion.IndeedT558islocalisedwithintheinteractionsurfacebetweenthetwohalves of the protein.Overexpression of phosphorylation-mimickingmutants induces theformationofcellsurfacestructures(107).Rhokinase(ROCK)(108,109),thetwoisoformsofproteinkinaseC(PKC),PKCa (��0) and PKCq (111),andProteinkinaseB(PKB)(112),ha�e been ��ho�n to �ho���hor��late thi�� con��er�ed threonine and ��tabili�e ��M in the o�en form.The ���M do�ain bind�� �ho���hatid��lino��itol 4, ��bi���ho���hoate (PIP2), �hich i�� in�ol�ed intheactivationofERMproteins(113,114).Itiscurrentlyunclearwhetherthis“activation”

Fig. 5 Domain structure of ERM proteins. ��M �rotein�� contain a ���M do�ain on the N-terminus followed by an α-helix anda C�ter�inu�� tail do�ain (CTT), �hich can associate with the FERM domain. The last~�0 re��idue�� in the CTT are in�ol�ed in actin�binding. FERM, Four-point one, Ezrin, Ra�dixin,Moesin.F1,F2andF3aresub-domainso� the ���M do�ain and the�� are ��tructurall�� similar to an ubiquitin-like fold, acyl-CoAbindingproteinandPHdomain,respectively.

CTTFERMABRF1 F2 F3

310

494

554

584

helical

General introduction

�7

i�� due to the induction o� the o�en con�or�ation or due to a PIP2 induced tran��location o� ��M �rotein�� to PIP2enrichedmembranecompartments.Forexample,evidenceexiststhatthe ���M do�ain can bind PIP2 e�en though it i�� bound to the C�ter�inal actin binding domain.(113).ComparedtotheactivationofERMproteins,littleisknownabouttheirinactivation.Myosinlight chain �ho���hata��e ha�� been ��ho�n to bind to Moe��in and de�ho���hor��late the critical carboxy-terminalthreonine(115).Inaddition,apoptosisinducesdephosphorylationofEzrin (116). Besides dephosphorylation it has been shown that Ezrin is sensitive to calpain, aproteaseregulatedbyintracellularcalcium(117).MorerecentstudieshaveshownthatinTcellsstimulationbychemokinessuchasstromalderivedfactor1alpha(SDFa�) or ��econdar�� lymphoidtissuecytokineresultinthedephosphorylationofERMandalossofmicrovilliinaRac1dependentmanner(118,119).Biological function of ERM proteinsThelocalizationofERMproteinshasbeenanalyzedinvarioustissuesandculturedcelllines.In �o��t cell�� all three �a�il�� �e�ber�� o� ��M �rotein�� are co�locali��ed at actin�rich ��ur�ace structures suchasmicrovilli, lopodia andmembrane ruffles (120,121). It is interesting tonotice that �adixin i�� al��o locali��ed to adherent junction and �ocal contact ��ite��, �here ��rin andMoesinareabsent(122).TheexpressionpatternofERMproteinsvariesamongtissues.��rin i�� �ound �ri�aril�� in e�ithelial and �e��othelial cell�� in inte��tine, ��to�ach, lung and kidney.Moesinisenrichedinendothelialandhomatopoieticcellsandfoundonhighlevelsinlungandspleen.Radixinishighlyexpressedinliverandintestine(122).

Fig. 6 A working model for the activation and function of ERM proteins. �ollo�ing activation to unmask binding sites, FERMdo�ain and the C�ter�inu�� region are a�ail�able to bind to �e�brane �rotein�� or actin, respectively.A,Throughscaffoldmolecules��uch a�� �BP�0 and ��K��P, ��M �rotein�� linkmembranetoactincytoskeleton.B,Ac�ti�ated ��M �rotein�� can al��o direct �ro�ide alinkagebetweenactinandtransmembraneproteins. NHE, Na+/H+ exchanger; PIP2,Phosphatidylinositol 4, 5-bisphosphoate;CFTR, cystic fibrosis transmembrane con�ductanceregulator;C,carboxy-terminaldo�main.Modifiedfrom(138).

Multiple pass membrane proteini.e. NHE3, CFTR

Single pass membrane proteini.e. NHE1, CD44,ICAM2

FERM

C

EB

P50 Plasma membrane

Actin filaments

C

FERM

FERM

C

FERM

C

Activation signalsi.e. PIP2 binding and phosphorylation

A B

Chapter 1

�8

Insight from genomic and geneticsKnockdownoftheindividualERMproteinsinculturedcellsinducesnosignificantphenotypicchangesonmicrovilli,cell-cellcontactsorcell-substratecontacts.Furthermore,micethataredeficientinoneoftheERMproteinsdonothaveanydiscernablephenotype(123).Theseresults indicate similar or redundant functions between the ERM familymembers. ERMproteins are conservedduringevolution.HumanEzrin,Radixin andMoesin share ahighdegree o� a�ino acid identit�� to the ��ingle �or� o� ��M �rotein�� in Drosophila(Dmoesin)and C.elegans (ERM-1) (124,125). Without the influence from functional redundancy,C.elegans and Drosophila ha�e been u��ed a�� alternati�e ������te��� �or the genetic ��tud�� o� ��M proteins.InC.elegans,ERM-1isrequiredforapicaljunctionremodellingandtubulogenesisintheintestine(125).InDrosophila,Dmoesinisinvolvedindevelopmentalprocessessuchaspolaritycontrol,cytoskeletalorganizationandadhesion(124).Cytoskeleton-membrane linkingERMproteinswereoriginallyproposedtobecytoskeleton-membranelinkingproteinsbecauseoftheirenrichmentincell-surfacestructuresandactin-bindingability.TheinteractionbetweenERMproteinsandtheactincytoskeletonhasbeenoriginallystudiedwithEzrin(117,126,127).Subsequently,theF-actinbindingsitewithinthecarboxy-terminal30residueswasidentifiedtobeacommonfeatureofERMproteins(108,128-130).Ontheamino-terminusofERMproteins,FERMdomainisresponsibleforthemembranebinding.Bothdirectassociationof���M do�ain �ith the c��to�la���ic tail�� o� tran���e�brane �rotein�� and indirect a����ociation with transmembraneproteins throughadaptorproteinshavebeenreported.ManyproteinsthatinteractwithERMproteinsareadhesionreceptors.Forexample,EzrininteractswiththeIntercellular �dhe��ion Molecule�2 (IC�M�2) and thi�� interaction �acilitate�� the recruit�ent ofICAM-2intouropod,thecellrearofmigratingleukocytes(131,132).Inadditiontothedirect a����ociation �ith the c��to�la���ic tail�� o� �e�brane �rotein��, ��M �rotein�� can al��o interactwithmembraneproteinsindirectlyviawithEBP50/NHEandE3KARP,whichwillbediscussedlater.ERM proteins participate in Rho signallingERM proteins play a crucial role in the cellular cytoskeletal response to Rho-pathwayactivation. It was first observed that in response to Rho activation, the soluble pool ofc��to�la���ic ��M �rotein�� redi��tribute to the �la���a �e�brane and induce �icro�illu�� formation (133-135).The activation of ERM proteins can be achieved by a rise of PIP2

concentration.PIP2��roducing �ho���hatid��lino��itol 4��ho���hate � kina��e (PI4P�K) i�� a direct Rhoeffector(136).IthasbeensuggestedthatRhoactivationactivatesPI4P5Kandincreasesthe PIP2concentration.Moreover,theinteractionbetween�ho GDPDi����ociation Inhibitor (RhoGDI),apotentsequesteringfactorofRho,andERMproteinswasshown(105).ThisinteractionsuppressestheGDIactivityandreleasesinactiveRhofromRhoGDI,allowingRhotobecomeactivatedbyitsexchangefactors.Inaddition,ERMproteinspromoteRho

General introduction

��

activation through interactionwith the tumour suppressorhamartin (137).Together, thesefindings suggested that ERM proteins participate in the activation of Rho, which againactivatesERMproteinsasapositive feedbacksystem.Therefore,ERMproteinsarebothdownstreamandupstreamofRho.Involvement of ERM in Na+/H+ exchanger function and membrane traffickingActivatedEzrin,RadixinandMoesinhavebeenshowntoconnectactinfilamentstomembranechannelsandreceptors(138,139).Na+/H+ exchanger�� (NH���) are Na+ channel�� that �la�� a crucial role in Na+absorption,acid-basehomeostasisandcellvolumeregulation(140).NHEtype3kinaseAregulatoryprotein(E3KARP),��rin binding �ho���ho�rotein (�BP�0) and it�� rabbit ho�olog Na+/H+exchangerregulatoryfactor(NHE-RF)arePDZdomaincontainingproteins,whichbindthroughthePDZdomaindirectlytotheFERMdomainofERMproteins(104,138).TheyfunctiontherebyasscaffoldproteinsandprovidealinkbetweenNHE3andEzrin.EzrincanalsointeractwithPKA(141).ItwassuggestedthatEzrinrecruitsPKAinthe �icinit�� o� the c��to�la���ic do�ain o� NH�� �here PK� �ho���hor��late�� and inhibit�� NHE3actively(142).Recently,anothermechanismwassuggested, inwhichP38 triggersthe �ho���hor��lation o� PKB through M�PK��cti�ated Protein Kinase-2 (MAPKAPK-2).Thi�� re��ult�� in a PKB�de�endent �ho���hor��lation o� ��rin on T�67 and the acti�ated ��rin facilitatesitsmembranetranslocationandtheactivationofNHE3(112,143).Interestingly,inde�endent o� it�� �unction a�� an ion exchanger, NH�� ha�� been re�orted to directl�� interact with ERM proteins and regulate cortical cytoskeleton and PKB-dependent cell survival(144,145).Be��ide�� the in�ol�e�ent in the regulation o� the Na+/H+ exchanger, ��rin �a�� recentl�� connectedtoadrenergicreceptorrecycling(146).ThedirectinteractionbetweenEzrinandadrenergicreceptorcontributestoreceptorrecyclingtotheplasmamembrane.Adhesion The functionofERMproteinsonadhesionwasfirstnotedby theadhesiondeficiencyofepithelialcellsthatweredepletedofERMproteins(147).Moreover,overexpressionofERMproteins enhances cell adhesion (148). ERM proteins can regulate cell adhesion throughdifferentmechanisms.Asmentionedbefore,ERMproteinsareinvolvedintheregulationofRhosignalling,whichcontrolstheactincytoskeletonremodelling.ThephosphorylationofEzrinbyROCKisrequiredforRho-dependentfocaladhesionassembly(109).Furthermore,the binding bet�een the TSC� tu�our ��u��re����or ha�artin and acti�ated ��M �rotein�� i�� requiredforfocaladhesionformationuponRhoactivationsignal(137).ERMproteinscanalsointeractwiththecytoplasmictailsofadhesionmoleculessuchasCD44,ICAM-1andICAM-2(131,149)andrecruitthemtothecellmembrane.ERM proteins and human diseaseRadixinknockoutmicedisplayabreakdownofhepatocyteapicalmicrovilli,whichleadstoamildliverinjury(150).HamartinhasbeenlinkedtoERMproteinsincelladhesionregulation

Chapter 1

20

andhamartomadevelopment(137).RecentlyEzrinwasidentifiedasacrucialmoleculeinthedisseminationoftwopediatriccancermetastasis(151,152).Ezrinexpressionlevelishigherin metastatic cells compared to non-metastatic control cells (153,154). OverexpressionofEzrin in low-metastatic cells significantly enhanced themetastatic capacity.Moreover,knockdownofEzrinbyRNAidemonstratesthatahighlevelofEzrinexpressionissufficientformetastaticprogression(151,152).AlthoughtheimportanceforEzrinintumourmetastasisisunambiguouslydemonstrated,theunderlyingmechanismsareunknown.Furthermore,thisfeatureisnotsharedbytheothertwoERMfamilymembers.RadixinandMoesinwerefoundto be do�n�regulated in lung adenocarcino�a��, ��ugge��ting a tu�our ��u��re����or �unction o� thesetwomolecules(155).

Scope of this thesisThe ���all G��rotein �a� centrall�� regulate�� integrin �ediated cell adhe��ion and the �or�ation ofE-cadherinbasedcell-celljunctions.Tothisend,Rapintegratestheinputofavarietyofsignals,which activateRap viaRap specific guanine nucleotide exchange factors.TheseGEFsareinpartregulatedbysecondmessengersandarepartofaprotein-proteinnetwork,whichregulatestheirtemporalandspatialactivities.SeveraldownstreameffectorsofRapmediatethecellularfunctionofthissmallG-protein.TheworkdescribedinthisthesisdealswiththeanalysisoftheRapsignallingnetwork.Chapter2andchapter3focusonthedownstreameffectsofRap.Inchapter2therelationbetweenAF6andRapisanalysed.AF6wasreportedtobeaneffectorofRapduetoitsabilitytobindspecificallyto theactiveGTP-boundformofRap.Herewedemonstrate thatAF6�unction�� to bu��er GTP��a� in re��ting cell��, �aintaining it in a non��roducti�e co��lex and therebynegativelyregulatesRapfunctioninT-cells.Inchapter3theanalysisofthreeRap-likepseudogenes(mRap1A-retro1,mRap1A-retro2andhRap1B-retro)inmouseandhumangenomeisdescribed.Allthreeretrogenesareexpressedandencodefunctionalproteins.Theseproteinshavean increasedGTP/GDPbindingratiocomparedtowildtypeRap1.Moreinterestinglytheyexhibitcleardifferencesintheirabilitytoinducecelladhesionandspreading.To gain more insight in the protein interaction network, which controls the spatial andtemporalorganisationofRapspecificGEFsweperformedyeasttwo-hybridscreensusingEpacandPDZ-GEFasbaits.Addendum1givesageneraloverviewoftheresultsobtainedfromthisapproach.RadixinandEzrinbelongtotheproteinsthatwereidentifiedtointeractwithEpac1inthetwo-hybrid.This interaction is characterised in detail in chapter 4,which focuses on theinteractionbetweenEpacandEzrin.AshortRadixin/Ezrinbindingregionwasidentifiedinthe N�ter�inu�� o� ��ac� and it �a�� ��ho�n that ��ac can onl�� interact �ith the o�en, acti�e conformationofEzrin.Furthermore,we show thatEzrin couples the activationof the β-

General introduction

2�

adrenergicreceptortoRap1signallingviatherecruitmentofEpac1.Chapter5focusesontheinteractionbetweenEpacandRadixin.AnovelRadixinmutantischaracterized.ThisRadixinmutant fulfils the classicalbiophysical criteriaofbeing in anactivestate.

References1. Marais,R.,andMarshall,C.J.(1996)Cancer Surv 27, �0���2�2. Pai,E.F.,Kabsch,W.,Krengel,U.,Holmes,K.C.,John,J.,andWittinghofer,A.(1989)Nature 341(62��),

20��2�43. Pai,E.F.,Krengel,U.,Petsko,G.A.,Goody,R.S.,Kabsch,W.,andWittinghofer,A.(1990)Embo J 9(8),

2����2���4. Pizon,V.,Lerosey,I.,Chardin,P.,andTavitian,A.(1988)Nucleic Acids Res 16(��), 77��5. Kitayama,H.,Sugimoto,Y.,Matsuzaki,T.,Ikawa,Y.,andNoda,M.(1989)Cell 56(�), 77�846. Herrmann,C.,Horn,G.,Spaargaren,M.,andWittinghofer,A.(1996)J Biol Chem 271(�2), 67�4�68007. Spaargaren,M.,andBischoff,J.R.(1994)Proc Natl Acad Sci U S A 91(26), �260���26��8. Wolthuis, R.M., Bauer, B., van ‘tVeer, L. J., deVries-Smits,A.M., Cool, R.H., Spaargaren,M.,

Wittinghofer,A.,Burgering,B.M.,andBos,J.L.(1996)Oncogene 13(2), �����629. Cook,S.J.,Rubinfeld,B.,Albert,I.,andMcCormick,F.(1993)Embo J 12(�), �47���48�10. Altschuler,D.L.,andRibeiro-Neto,F.(1998)Proc Natl Acad Sci U S A 95(��), 747��747�11. Zwartkruis,F.J.,Wolthuis,R.M.,Nabben,N.M.,Franke,B.,andBos,J.L.(1998)Embo J 17(20), ��0��

���212. Arai,A.,Nosaka,Y.,Kohsaka,H.,Miyasaka,N.,andMiura,O.(1999)Blood 93(��), �7����72213. Enserink,J.M.,Christensen,A.E.,deRooij,J.,vanTriest,M.,Schwede,F.,Genieser,H.G.,Doskeland,

S.O.,Blank,J.L.,andBos,J.L.(2002)Nat Cell Biol 4(��), �0���0614. Reedquist,K.A.,Ross,E.,Koop,E.A.,Wolthuis,R.M.,Zwartkruis,F.J.,vanKooyk,Y.,Salmon,M.,

Buckley,C.D.,andBos,J.L.(2000)J Cell Biol 148(6), ��������815. Hogan, C., Serpente, N., Cogram, P., Hosking, C. R., Bialucha, C.U., Feller, S.M., Braga,V.M.,

Birchmeier,W.,andFujita,Y.(2004)Mol Cell Biol 24(��), 66�0�670016. Price,L.S.,Hajdo-Milasinovic,A.,Zhao,J.,Zwartkruis,F.J.,Collard,J.G.,andBos,J.L.(2004)J Biol

Chem 279(�4), ���27�����217. Cullere,X.,Shaw,S.K.,Andersson,L.,Hirahashi, J.,Luscinskas,F.W.,andMayadas,T.N. (2005)

Blood 105(�), ���0�����18. Fukuhara,S.,Sakurai,A.,Sano,H.,Yamagishi,A.,Somekawa,S.,Takakura,N.,Saito,Y.,Kangawa,K.,

andMochizuki,N.(2005)Mol Cell Biol 25(�), ��6��4619. Kooistra,M.R.,Corada,M.,Dejana,E.,andBos,J.L.(2005)FEBS Lett 579(22), 4�66�4�7220. Wittchen,E.S.,Worthylake,R.A.,Kelly,P.,Casey,P.J.,Quilliam,L.A.,andBurridge,K.(2005)J Biol

Chem 280(�2), ��67����68221. Fukuyama,T.,Ogita,H.,Kawakatsu,T.,Fukuhara,T.,Yamada,T.,Sato,T.,Shimizu,K.,Nakamura,T.,

Matsuda,M.,andTakai,Y.(2005)J Biol Chem 280(�), 8���82�22. Coccetti,P.,Mauri,I.,Alberghina,L.,Martegani,E.,andParmeggiani,A.(1995)Biochem Biophys Res

Commun 206(�), 2���2��23. Lenzen,C.,Cool,R.H.,Prinz,H.,Kuhlmann,J.,andWittinghofer,A.(1998)Biochemistry 37(20), 7420�

74�024. Quilliam,L.A.,Rebhun,J.F.,andCastro,A.F.(2002)Prog Nucleic Acid Res Mol Biol 71, ����44425. Boriack-Sjodin,P.A.,Margarit,S.M.,Bar-Sagi,D.,andKuriyan,J.(1998)Nature 394(66��), ��7��4�26. deRooij,J.,Zwartkruis,F.J.,Verheijen,M.H.,Cool,R.H.,Nijman,S.M.,Wittinghofer,A.,andBos,J.

L.(1998)Nature 396(67�0), 474�47727. Kawasaki,H.,Springett,G.M.,Mochizuki,N.,Toki,S.,Nakaya,M.,Matsuda,M.,Housman,D.E.,and

Graybiel,A.M.(1998)Science 282(���7), 227��227�28. deRooij,J.,Rehmann,H.,vanTriest,M.,Cool,R.H.,Wittinghofer,A.,andBos,J.L.(2000)J Biol

Chem 275(27), 2082��208�629. Holz,G.G.(2004)Diabetes 53(�), ����30. Ueno,H.,Shibasaki,T., Iwanaga,T.,Takahashi,K.,Yokoyama,Y.,Liu,L.M.,Yokoi,N.,Ozaki,N.,

Matsukura,S.,Yano,H.,andSeino,S.(2001)Genomics 78(��2), ����831. Qiao,J.,Mei,F.C.,Popov,V.L.,Vergara,L.A.,andCheng,X.(2002)J Biol Chem 277(2�), 26�8��

26�86

Chapter 1

22

32. Ponsioen,B.,Zhao,J.,Riedl,J.,Zwartkruis,F.,vanderKrogt,G.,Zaccolo,M.,Moolenaar,W.H.,Bos,J.L.,andJalink,K.(2004)EMBO Rep 5(�2), ��76���80

33. Li,Y.,Asuri,S.,Rebhun,J.F.,Castro,A.F.,Paranavitana,N.C.,andQuilliam,L.A.(2006)J Biol Chem 281(�), 2�06�2��4

34. Bos,J.L.,deBruyn,K.,Enserink,J.,Kuiperij,B.,Rangarajan,S.,Rehmann,H.,Riedl,J.,deRooij,J.,vanMansfeld,F.,andZwartkruis,F.(2003)Biochem Soc Trans 31(Pt �), 8��86

35. Kang,G.,Joseph,J.W.,Chepurny,O.G.,Monaco,M.,Wheeler,M.B.,Bos,J.L.,Schwede,F.,Genieser,H.G.,andHolz,G.G.(2003)J Biol Chem 278(�0), 827��828�

36. Ozaki,N.,Shibasaki,T.,Kashima,Y.,Miki,T.,Takahashi,K.,Ueno,H.,Sunaga,Y.,Yano,H.,Matsuura,Y.,Iwanaga,T.,Takai,Y.,andSeino,S.(2000)Nat Cell Biol 2(��), 80��8��

37. Knudsen,B.S.,Feller,S.M.,andHanafusa,H.(1994)J Biol Chem 269(�2), �278���278738. Gotoh,T.,Hattori,S.,Nakamura,S.,Kitayama,H.,Noda,M.,Takai,Y.,Kaibuchi,K.,Matsui,H.,Hatase,

O.,Takahashi,H.,andetal.(1995)Mol Cell Biol 15(�2), 6746�67��39. Tanaka,S.,Morishita,T.,Hashimoto,Y.,Hattori,S.,Nakamura,S.,Shibuya,M.,Matuoka,K.,Takenawa,

T.,Kurata,T.,Nagashima,K.,andetal.(1994)Proc Natl Acad Sci U S A 91(8), �44���44740. Ohba,Y.,Mochizuki,N.,Matsuo,K.,Yamashita,S.,Nakaya,M.,Hashimoto,Y.,Hamaguchi,M.,Kurata,

T.,Nagashima,K.,andMatsuda,M.(2000)Mol Cell Biol 20(�6), 6074�608�41. Hattori,M.,Tsukamoto,N.,Nur-e-Kamal,M.S.,Rubinfeld,B.,Iwai,K.,Kubota,H.,Maruta,H.,and

Minato,N.(1995)Mol Cell Biol 15(�), ��2��6042. deRooij,J.,Boenink,N.M.,vanTriest,M.,Cool,R.H.,Wittinghofer,A.,andBos,J.L.(1999)J Biol

Chem 274(��), �8�2���8��043. Kuiperij,H.B.,deRooij,J.,Rehmann,H.,vanTriest,M.,Wittinghofer,A.,Bos,J.L.,andZwartkruis,F.

J.(2003)Biochim Biophys Acta 1593(2��), �4���4�44. Pham,N.,Cheglakov,I.,Koch,C.A.,deHoog,C.L.,Moran,M.F.,andRotin,D.(2000)Curr Biol

10(�), ������845. Pellis-vanBerkel,W.,Verheijen,M.H.,Cuppen,E.,Asahina,M.,deRooij,J.,Jansen,G.,Plasterk,R.

H.,Bos,J.L.,andZwartkruis,F.J.(2005)Mol Biol Cell 16(�), �06���646. Huelsmann,S.,Hepper,C.,Marchese,D.,Knoll,C.,andReuter,R.(2006)Development 133(��), 2����

2�2447. Kawasaki,H.,Springett,G.M.,Toki,S.,Canales,J.J.,Harlan,P.,Blumenstiel,J.P.,Chen,E.J.,Bany,I.

A.,Mochizuki,N.,Ashbacher,A.,Matsuda,M.,Housman,D.E.,andGraybiel,A.M.(1998)Proc Natl Acad Sci U S A 95(22), ��278���28�

48. Ohba,Y.,Mochizuki,N.,Yamashita,S.,Chan,A.M.,Schrader,J.W.,Hattori,S.,Nagashima,K.,andMatsuda,M.(2000)J Biol Chem 275(26), 20020�20026

49. Ebinu,J.O.,Stang,S.L.,Teixeira,C.,Bottorff,D.A.,Hooton,J.,Blumberg,P.M.,Barry,M.,Bleakley,R.C.,Ostergaard,H.L.,andStone,J.C.(2000)Blood 95(�0), ������20�

50. Tognon,C.E.,Kirk,H.E.,Passmore,L.A.,Whitehead,I.P.,Der,C.J.,andKay,R.J.(1998)Mol Cell Biol 18(�2), 6����7008

51. Yamashita,S.,Mochizuki,N.,Ohba,Y.,Tobiume,M.,Okada,Y.,Sawa,H.,Nagashima,K.,andMatsuda,M.(2000)J Biol Chem 275(��), 2�488�2�4��

52. Reuther,G.W.,Lambert,Q.T.,Rebhun,J.F.,Caligiuri,M.A.,Quilliam,L.A.,andDer,C.J.(2002)J Biol Chem 277(�4), �0�08��0��4

53. Kurachi,H.,Wada,Y.,Tsukamoto,N.,Maeda,M.,Kubota,H.,Hattori,M.,Iwai,K.,andMinato,N.(���7) J Biol Chem 272(44), 2808��28088

54. Gao,Q.,Srinivasan,S.,Boyer,S.N.,Wazer,D.E.,andBand,V.(1999)Mol Cell Biol 19(�), 7���74455. Pak,D.T.,Yang,S.,Rudolph-Correia,S.,Kim,E.,andSheng,M.(2001)Neuron 31(2), 28���0�56. Roy,B.C.,Kohu,K.,Matsuura,K.,Yanai,H.,andAkiyama,T.(2002)Genes Cells 7(6), 607�6�757. Su,L.,Hattori,M.,Moriyama,M.,Murata,N.,Harazaki,M.,Kaibuchi,K.,andMinato,N.(2003)J Biol

Chem 278(�7), ��2�2���2�858. Rubinfeld,B.,Munemitsu,S.,Clark,R.,Conroy,L.,Watt,K.,Crosier,W.J.,McCormick,F.,andPolakis,

P.(1991)Cell 65(6), �0����04259. Mochizuki,N.,Ohba,Y.,Kiyokawa,E.,Kurata,T.,Murakami,T.,Ozaki,T.,Kitabatake,A.,Nagashima,

K.,andMatsuda,M.(1999)Nature 400(6747), 8���8�460. Schultess,J.,Danielewski,O.,andSmolenski,A.P.(2005)Blood 105(8), ��8�����261. Prasad,R.,Gu,Y.,Alder,H.,Nakamura,T.,Canaani,O.,Saito,H.,Huebner,K.,Gale,R.P.,Nowell,P.

C.,andKuriyama,K.(1993)Cancer Res 53(2�), �624��62862. Boettner,B.,Govek,E.E.,Cross,J.,andVanAelst,L.(2000)Proc Natl Acad Sci U S A 97(�6), �064�

�06�63. Kuriyama,M.,Harada,N.,Kuroda, S.,Yamamoto,T.,Nakafuku,M., Iwamatsu,A.,Yamamoto,D.,

General introduction

2�

Prasad,R.,Croce,C.,Canaani,E.,andKaibuchi,K.(1996)J Biol Chem 271(2), 607�6�064. Miyahara,M.,Nakanishi,H.,Takahashi,K.,Satoh-Horikawa,K.,Tachibana,K.,andTakai,Y.(2000)J

Biol Chem 275(�), 6���6�865. Takahashi,K.,Nakanishi,H.,Miyahara,M.,Mandai,K.,Satoh,K.,Satoh,A.,Nishioka,H.,Aoki,J.,

Nomoto,A.,Mizoguchi,A.,andTakai,Y.(1999)J Cell Biol 145(�), �����4�66. Lorger,M.,andMoelling,K.(2006)J Cell Sci 119(Pt �6), ��8�����867. Boettner,B.,Harjes,P.,Ishimaru,S.,Heke,M.,Fan,H.Q.,Qin,Y.,VanAelst,L.,andGaul,U.(2003)

Genetics 165(�), �����6�68. Gaengel,K.,andMlodzik,M.(2003)Development 130(22), �4����42�69. Yamamoto,T.,Harada,N.,Kano,K.,Taya,S.,Canaani,E.,Matsuura,Y.,Mizoguchi,A.,Ide,C.,and

Kaibuchi,K.(1997)J Cell Biol 139(�), 78��7��70. Ebnet,K.,Schulz,C.U.,MeyerZuBrickwedde,M.K.,Pendl,G.G.,andVestweber,D.(2000)J Biol

Chem 275(�6), 27�7��27�8871. Hoshino,T.,Sakisaka,T.,Baba,T.,Yamada,T.,Kimura,T.,andTakai,Y.(2005)J Biol Chem 280(2�),

240���24�0�72. Reedquist,K.A.,andBos,J.L.(1998)J Biol Chem 273(�), 4�44�4�4�73. Katagiri,K.,Hattori,M.,Minato,N.,Irie,S.,Takatsu,K.,andKinashi,T.(2000)Mol Cell Biol 20(6),

���6���6�74. Sebzda,E.,Bracke,M.,Tugal,T.,Hogg,N.,andCantrell,D.A.(2002)Nat Immunol 3(�), 2���2�875. Katagiri,K.,Hattori,M.,Minato,N.,andKinashi,T.(2002)Mol Cell Biol 22(4), �00���0��76. McLeod,S.J.,Ingham,R.J.,Bos,J.L.,Kurosaki,T.,andGold,M.R.(1998)J Biol Chem 273(44),

2�2�8�2�22�77. Suga,K.,Katagiri,K.,Kinashi,T.,Harazaki,M.,Iizuka,T.,Hattori,M.,andMinato,N.(2001)FEBS

Lett 489(2��), 24��2��78. Shimonaka,M.,Katagiri,K.,Nakayama,T.,Fujita,N.,Tsuruo,T.,Yoshie,O.,andKinashi,T.(2003)J

Cell Biol 161(2), 4�7�42779. Tohyama,Y.,Katagiri,K.,Pardi,R.,Lu,C.,Springer,T.A.,andKinashi,T.(2003)Mol Biol Cell 14(6),

2�70�2�8280. Shattil,S.J.,Kashiwagi,H.,andPampori,N.(1998)Blood 91(8), 264��26�781. Duchniewicz,M., Zemojtel,T.,Kolanczyk,M.,Grossmann, S., Scheele, J. S., andZwartkruis, F. J.

(2006) Mol Cell Biol 26(2), 64��6��82. Wittchen,E.S.,vanBuul,J.D.,Burridge,K.,andWorthylake,R.A.(2005)Curr Opin Hematol 12(�),

�4�2�83. Droge,W.(2002)Physiol Rev 82(�), 47���84. Adler,V.,Yin,Z.,Tew,K.D.,andRonai,Z.(1999)Oncogene 18(4�), 6�04�6���85. Remans, P.H.,Gringhuis, S. I., vanLaar, J.M., Sanders,M.E., Papendrecht-van derVoort, E.A.,

Zwartkruis,F.J.,Levarht,E.W.,Rosas,M.,Coffer,P.J.,Breedveld,F.C.,Bos,J.L.,Tak,P.P.,Verweij,C.L.,andReedquist,K.A.(2004)J Immunol 173(2), �20����

86. Katagiri,K.,Maeda,A.,Shimonaka,M.,andKinashi,T.(2003)Nat Immunol 4(8), 74��74887. Vavvas,D.,Li,X.,Avruch,J.,andZhang,X.F.(1998)J Biol Chem 273(�0), �4����44288. Katagiri,K.,Imamura,M.,andKinashi,T.(2006)Nat Immunol 7(�), �����2889. Katagiri,K.,Ohnishi,N.,Kabashima,K.,Iyoda,T.,Takeda,N.,Shinkai,Y.,Inaba,K.,andKinashi,T.

(2004) Nat Immunol 5(�0), �04���0��90. Fujita, H., Fukuhara, S., Sakurai, A., Yamagishi, A., Kamioka, Y., Nakaoka, Y., Masuda, M., and

Mochizuki,N.(2005)J Biol Chem 280(6), �022��0��91. Lafuente,E.M.,vanPuijenbroek,A.A.,Krause,M.,Carman,C.V.,Freeman,G.J.,Berezovskaya,A.,

Constantine,E.,Springer,T.A.,Gertler,F.B.,andBoussiotis,V.A.(2004)Dev Cell 7(4), �8�����92. Ishida,D.,Yang,H.,Masuda,K.,Uesugi,K.,Kawamoto,H.,Hattori,M.,andMinato,N.(2003)Proc

Natl Acad Sci U S A 100(��), �0�����0�2493. Li,L.,Greenwald,R.J.,Lafuente,E.M.,Tzachanis,D.,Berezovskaya,A.,Freeman,G.J.,Sharpe,A.

H.,andBoussiotis,V.A.(2005)J Immunol 175(�), ���������94. Huehn,J.,Siegmund,K.,Lehmann,J.C.,Siewert,C.,Haubold,U.,Feuerer,M.,Debes,G.F.,Lauber,J.,

Frey,O.,Przybylski,G.K.,Niesner,U.,delaRosa,M.,Schmidt,C.A.,Brauer,R.,Buer,J.,Scheffold,A.,andHamann,A.(2004)J Exp Med 199(�), �0�����

95. Lehmann,J.,Huehn,J.,delaRosa,M.,Maszyna,F.,Kretschmer,U.,Krenn,V.,Brunner,M.,Scheffold,A.,andHamann,A.(2002)Proc Natl Acad Sci U S A 99(20), ��0�����0�6

96. Dillon,T.J.,Carey,K.D.,Wetzel,S.A.,Parker,D.C.,andStork,P.J.(2005)Mol Cell Biol 25(�0), 4��7�4�28

97. Tsukita,S.,Itoh,M.,andTsukita,S.(1989)J Cell Biol 109(6 Pt �), 2�0��2���

Chapter 1

24

98. Bretscher,A.(1983)J Cell Biol 97(2), 42��4�299. Pakkanen,R.,Hedman,K.,Turunen,O.,Wahlstrom,T.,andVaheri,A.(1987)J Histochem Cytochem

35(8), 80��8�6100. Lankes,W.T.,andFurthmayr,H.(1991)Proc Natl Acad Sci U S A 88(��), 82�7�8�0�101. Chishti,A.H.,Kim,A.C.,Marfatia,S.M.,Lutchman,M.,Hanspal,M.,Jindal,H.,Liu,S.C.,Low,P.

S.,Rouleau,G.A.,Mohandas,N.,Chasis,J.A.,Conboy,J.G.,Gascard,P.,Takakuwa,Y.,Huang,S.C.,Benz,E.J.,Jr.,Bretscher,A.,Fehon,R.G.,Gusella,J.F.,Ramesh,V.,Solomon,F.,Marchesi,V.T.,Tsukita,S.,Tsukita,S.,Hoover,K.B.,andetal.(1998)Trends Biochem Sci 23(8), 28��282

102. Gary,R.,andBretscher,A.(1995)Mol Biol Cell 6(8), �06���07�103. Pearson,M.A.,Reczek,D.,Bretscher,A.,andKarplus,P.A.(2000)Cell 101(�), 2���270104. Reczek,D.,Berryman,M.,andBretscher,A.(1997)J Cell Biol 139(�), �6���7�105. Takahashi,K.,Sasaki,T.,Mammoto,A.,Takaishi,K.,Kameyama,T.,Tsukita,S.,andTakai,Y.(1997)J

Biol Chem 272(�7), 2��7��2��7�106. Nakamura,F.,Amieva,M.R.,andFurthmayr,H.(1995)J Biol Chem 270(�2), ���77����8�107. Gautreau,A.,Louvard,D.,andArpin,M.(2000)J Cell Biol 150(�), ����20�108. Matsui,T.,Maeda,M.,Doi,Y.,Yonemura,S.,Amano,M.,Kaibuchi,K.,Tsukita,S.,andTsukita,S.

(���8) J Cell Biol 140(�), 647�6�7109. TranQuang,C.,Gautreau,A.,Arpin,M.,andTreisman,R.(2000)Embo J 19(�7), 4�6��4�76110. Ng,T.,Parsons,M.,Hughes,W.E.,Monypenny,J.,Zicha,D.,Gautreau,A.,Arpin,M.,Gschmeissner,

S.,Verveer,P.J.,Bastiaens,P.I.,andParker,P.J.(2001)Embo J 20(��), 272��274�111. Pietromonaco,S.F.,Simons,P.C.,Altman,A.,andElias,L.(1998)J Biol Chem 273(��), 7��4�760�112. Shiue,H.,Musch,M.W.,Wang,Y.,Chang,E.B.,andTurner,J.R.(2005)J Biol Chem 280(2), �688�

�6��113. Niggli,V.,Andreoli,C.,Roy,C.,andMangeat,P.(1995)FEBS Lett 376(�), �72��76114. Yonemura,S.,Matsui,T.,Tsukita,S.,andTsukita,S.(2002)J Cell Sci 115(Pt �2), 2�6��2�80115. Fukata,Y.,Kimura,K.,Oshiro,N.,Saya,H.,Matsuura,Y.,andKaibuchi,K.(1998)J Cell Biol 141(2),

40��4�8116. Kondo,T.,Takeuchi,K.,Doi,Y.,Yonemura,S.,Nagata,S.,andTsukita,S.(1997)J Cell Biol 139(�),

74��7�8117. Yao,X.,Cheng,L.,andForte,J.G.(1996)J Biol Chem 271(�2), 7224�722�118. Brown,M.J.,Nijhara,R.,Hallam,J.A.,Gignac,M.,Yamada,K.M.,Erlandsen,S.L.,Delon,J.,Kruhlak,

M.,andShaw,S.(2003)Blood 102(�2), �8�0��8��119. Nijhara,R.,vanHennik,P.B.,Gignac,M.L.,Kruhlak,M.J.,Hordijk,P.L.,Delon,J.,andShaw,S.

(2004) J Immunol 173(8), 4�8��4���120. Amieva,M.R.,andFurthmayr,H.(1995)Exp Cell Res 219(�), �80���6121. Franck,Z.,Gary,R.,andBretscher,A.(1993)J Cell Sci 105 ( Pt 1), 2���2��122. Louvet-Vallee,S.(2000)Biol Cell 92(�), �0����6123. Charrin,S.,andAlcover,A.(2006)Front Biosci 11, ��87����7124. Polesello,C.,andPayre,F.(2004)Trends Cell Biol 14(6), 2�4��02125. VanFurden,D.,Johnson,K.,Segbert,C.,andBossinger,O.(2004)Dev Biol 272(�), 262�276126. Shuster,C.B.,andHerman,I.M.(1995)J Cell Biol 128(�), 8�7�848127. Roy,C.,Martin,M.,andMangeat,P.(1997)J Biol Chem 272(�2), 20088�200��128. Berryman,M.,andBretscher,A.(2000)Mol Biol Cell 11(�), ��0����2�129. Pestonjamasp,K.,Amieva,M.R.,Strassel,C.P.,Nauseef,W.M.,Furthmayr,H.,andLuna,E.J.(1995)

Mol Biol Cell 6(�), 247�2��130. Turunen,O.,Wahlstrom,T.,andVaheri,A.(1994)J Cell Biol 126(6), �44���4��131. Heiska,L.,Alfthan,K.,Gronholm,M.,Vilja,P.,Vaheri,A.,andCarpen,O.(1998)J Biol Chem 273(�4),

2�8���2��00132. Yonemura,S.,Hirao,M.,Doi,Y.,Takahashi,N.,Kondo,T.,Tsukita,S.,andTsukita,S.(1998)J Cell Biol

140(4), 88��8��133. Mackay,D.J.,Esch,F.,Furthmayr,H.,andHall,A.(1997)J Cell Biol 138(4), �27���8134. Matsui,T.,Yonemura,S.,Tsukita,S.,andTsukita,S.(1999)Curr Biol 9(2�), �2����262135. Shaw,R.J.,Henry,M.,Solomon,F.,andJacks,T.(1998)Mol Biol Cell 9(2), 40��4��136. Ren,X.D.,andSchwartz,M.A.(1998)Curr Opin Genet Dev 8(�), 6��67137. Lamb,R.F.,Roy,C.,Diefenbach,T.J.,Vinters,H.V.,Johnson,M.W.,Jay,D.G.,andHall,A.(2000)

Nat Cell Biol 2(�), 28��287138. Bretscher,A.,Edwards,K.,andFehon,R.G.(2002)Nat Rev Mol Cell Biol 3(8), �86����139. Tsukita,S.,andYonemura,S.(1999)J Biol Chem 274(4�), �4�07��4��0140. Orlowski,J.,andGrinstein,S.(1997)J Biol Chem 272(�6), 22�7��22�76

General introduction

2�

141. Dransfield,D.T.,Bradford,A.J.,Smith,J.,Martin,M.,Roy,C.,Mangeat,P.H.,andGoldenring,J.R.(���7) Embo J 16(�), ���4�

142. Yun,C.H.,Lamprecht,G.,Forster,D.V.,andSidor,A.(1998)J Biol Chem 273(40), 2�8�6�2�86�143. Hu,Z.,Wang,Y.,Graham,W.V.,Su,L.,Musch,M.W.,andTurner,J.R.(2006)J Biol Chem 281(�4),

24247�242��144. Denker,S.P.,Huang,D.C.,Orlowski,J.,Furthmayr,H.,andBarber,D.L.(2000)Mol Cell 6(6), �42��

�4�6145. Wu,K.L.,Khan,S.,Lakhe-Reddy,S.,Jarad,G.,Mukherjee,A.,Obejero-Paz,C.A.,Konieczkowski,M.,

Sedor,J.R.,andSchelling,J.R.(2004)J Biol Chem 279(2�), 26280�26286146. Stanasila,L.,Abuin,L.,Diviani,D.,andCotecchia,S.(2006)J Biol Chem 281(7), 4��4�4�6�147. Takeuchi, K., Sato, N., Kasahara, H., Funayama, N., Nagafuchi,A.,Yonemura, S., Tsukita, S., and

Tsukita,S.(1994)J Cell Biol 125(6), ��7����84148. Martin,M.,Andreoli,C.,Sahuquet,A.,Montcourrier,P.,Algrain,M.,andMangeat,P.(1995)J Cell Biol

128(6), �08���0��149. Tsukita,S.,Oishi,K.,Sato,N.,Sagara,J.,Kawai,A.,andTsukita,S.(1994)J Cell Biol 126(2), ����

40�150. Kikuchi,S.,Hata,M.,Fukumoto,K.,Yamane,Y.,Matsui,T.,Tamura,A.,Yonemura,S.,Yamagishi,H.,

Keppler,D.,Tsukita,S.,andTsukita,S.(2002)Nat Genet 31(�), �20��2�151. Khanna,C.,Wan,X.,Bose,S.,Cassaday,R.,Olomu,O.,Mendoza,A.,Yeung,C.,Gorlick,R.,Hewitt,S.

M.,andHelman,L.J.(2004)Nat Med 10(2), �82��86152. Yu,Y.,Khan,J.,Khanna,C.,Helman,L.,Meltzer,P.S.,andMerlino,G.(2004)Nat Med 10(2), �7��

�8�153. Akisawa,N.,Nishimori,I.,Iwamura,T.,Onishi,S.,andHollingsworth,M.A.(1999)Biochem Biophys

Res Commun 258(2), ����400154. Ohtani,K.,Sakamoto,H.,Rutherford,T.,Chen,Z.,Satoh,K.,andNaftolin,F.(1999)Cancer Lett 147(��

2), ����8155. Tokunou,M.,Niki,T., Saitoh,Y., Imamura,H., Sakamoto,M., andHirohashi, S. (2000)Lab Invest

80(��), �64���6�0


Recommended