+ All Categories
Home > Documents > Chap 2 Erickson Fundamentals of Power Electronics.pdf

Chap 2 Erickson Fundamentals of Power Electronics.pdf

Date post: 02-Jun-2018
Category:
Upload: henrypatriciomunoz1
View: 240 times
Download: 0 times
Share this document with a friend

of 45

Transcript
  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    1/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis1

    Chapter 2 Principles of Steady-State Converter Analysis

    2.1. Introduction

    2.2. Inductor volt-second balance, capacitor chargebalance, and the small ripple approximation

    2.3. Boost converter example

    2.4. Cuk converter example

    2.5. Estimating the ripple in converters containing two-pole low-pass filters

    2.6. Summary of key points

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    2/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis2

    2.1 Introduction

    Buck converter

    SPDT switch changes dc component

    Switch output voltage waveform

    complement D : D = 1 - D

    Duty cycle D: 0 D 1

    + R

    +

    v(t )

    1

    2

    +

    vs(t )

    V g

    vs(t ) V g

    DT s D 'T s

    0t 0 DT s T s

    Switch position: 1 2 1

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    3/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis3

    Dc component of switch output voltage

    vs = 1T s

    vs(t ) dt 0

    T s

    vs = 1T s( DT sV g) = DV g

    Fourier analysis: Dc component = average value

    vs(t ) V g

    0

    t 0 DT s T s

    vs = DV garea = DT sV g

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    4/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis4

    Insertion of low-pass filter to remove switchingharmonics and pass only dc component

    v vs = DV

    g

    +

    L

    C R

    +

    v(t )

    1

    2+

    vs(t )

    V g

    V g

    00 D

    V

    1

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    5/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis5

    Three basic dc-dc converters

    Buck

    Boost

    Buck-boost

    M ( D )

    D

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1

    M ( D )

    D

    0

    1

    2

    3

    4

    5

    0 0.2 0.4 0.6 0.8 1

    M ( D )

    D

    5

    4

    3

    2

    1

    00 0.2 0.4 0.6 0.8 1

    (a)

    (b)

    (c)

    +

    L

    C R

    +

    v

    1

    2

    +

    L

    C R

    +

    v

    1

    2

    + L

    C R

    +

    v

    1 2

    M ( D) = D

    M ( D) = 11 D

    M ( D) = D1 D

    i L (t )

    V g

    i L (t )

    V g

    i L (t )V g

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    6/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis6

    Objectives of this chapter

    Develop techniques for easily determining outputvoltage of an arbitrary converter circuitDerive the principles of inductor volt-second balance and capacitor charge (amp-second) balance Introduce the key small ripple approximation Develop simple methods for selecting filter elementvalues

    Illustrate via examples

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    7/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis7

    2.2. Inductor volt-second balance, capacitor charge

    balance, and the small ripple approximation

    Buck converter containing practical low-pass filter

    Actual output voltage waveform

    v(t ) = V + vripple (t )

    Actual output voltage waveform, buck converter

    +

    L

    C R

    +

    v(t )

    1

    2

    i L(t )

    + v L(t ) iC (t )

    V g

    v(t )

    t 0

    V

    Actual waveformv(t ) = V + vripple (t )

    dc component V

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    8/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis8

    The small ripple approximation

    In a well-designed converter, the output voltage ripple is small. Hence,the waveforms can be easily determined by ignoring the ripple:

    v(t ) V

    v(t ) = V + vripple (t )

    v(t )

    t

    0

    V

    Actual waveformv(t ) = V + vripple (t )

    dc component V

    vripple < V

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    9/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis9

    Buck converter analysis:

    inductor current waveform

    original converter

    switch in position 2 switch in position 1

    +

    L

    C R

    +

    v(t )

    1

    2

    i L(t )

    + v L

    (t ) iC (t )

    V g

    L

    C R

    +

    v(t )

    i L(t )

    + v L(t ) iC (t )

    + V g

    L

    C R

    +

    v(t )

    i L(t )

    + v L(t ) iC (t )

    + V g

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    10/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis10

    Inductor voltage and currentSubinterval 1: switch in position 1

    v L = V g v(t )

    Inductor voltage

    Small ripple approximation:

    v L V g V

    Knowing the inductor voltage, we can now find the inductor current via

    v L(t ) = L di L(t )

    dt

    Solve for the slope: di L(t )

    dt = v L

    (t ) L

    g L

    The inductor current changes with an essentially constant slope

    L

    C R

    +

    v(t )

    i L(t )

    + v L(t ) iC (t )

    + V g

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    11/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis11

    Inductor voltage and currentSubinterval 2: switch in position 2

    Inductor voltage

    Small ripple approximation:

    Knowing the inductor voltage, we can again find the inductor current via

    v L(t ) = L di L(t )

    dt

    Solve for the slope:

    The inductor current changes with an essentially constant slope

    v L(t ) = v(t )

    v L(t ) V

    di L(t )dt

    V L

    L

    C R

    +

    v(t )

    i L(t )

    + v L(t ) iC (t )

    + V g

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    12/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis12

    Inductor voltage and current waveforms

    v L(t ) = L di L(t )

    dt

    v L(t )

    V g V

    t V

    D 'T s DT s

    Switch position: 1 2 1

    V L

    V g V L

    i L(t )

    t 0 DT s T s

    I i L(0)

    i L( DT s) i

    L

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    13/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis13

    Determination of inductor current ripple magnitude

    (change in i L) = ( slope )( length of subinterval )

    2 i L =V g V

    L DT s

    i L =V g V

    2 L DT s L =

    V g V 2 i L

    DT s

    V L

    V g V L

    i L(t )

    t 0 DT s T s

    I i L(0)

    i L( DT s) i L

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    14/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis14

    Inductor current waveformduring turn-on transient

    When the converter operates in equilibrium:

    i L((n + 1) T s) = i L(nT s)

    i L(t )

    t 0 DT s T si L(0) = 0

    i L(nT s)

    i L(T s)

    2T s nT s (n + 1) T s

    i L((n + 1) T s)

    V g v(t ) L

    v(t ) L

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    15/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis15

    The principle of inductor volt-second balance:Derivation

    Inductor defining relation:

    Integrate over one complete switching period:

    In periodic steady state, the net change in inductor current is zero:

    Hence, the total area (or volt-seconds) under the inductor voltage waveform is zero whenever the converter operates in steady state.An equivalent form:

    The average inductor voltage is zero in steady state.

    v L(t ) = L di L(t )dt

    i L(T s) i L(0) = 1 L v L(t ) dt 0

    T s

    0 = v L(t ) dt 0

    T s

    0 = 1T sv L(t ) dt

    0

    T s

    = v L

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    16/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis16

    Inductor volt-second balance:Buck converter example

    Inductor voltage waveform,previously derived:

    Integral of voltage waveform is area of rectangles:

    = v L(t ) dt 0

    T s

    = ( V g V )( DT s) + ( V )( D 'T s)

    Average voltage is

    v L = T s= D (V g V ) + D '( V )

    Equate to zero and solve for V:

    0 = DV g ( D + D ')V = DV g V V = DV g

    v L(t ) V g V

    t

    V

    DT s

    Total area

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    17/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis17

    The principle of capacitor charge balance:Derivation

    Capacitor defining relation:

    Integrate over one complete switching period:

    In periodic steady state, the net change in capacitor voltage is zero:

    Hence, the total area (or charge) under the capacitor current waveform is zero whenever the converter operates in steady state.The average capacitor current is then zero.

    iC (t ) = C dv C (t )dt

    vC (T s) vC (0) = 1C i C

    (t ) dt 0

    T s

    0 = 1T siC (t ) dt

    0

    T s

    = i C

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    18/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis18

    2.3 Boost converter example

    Boost converter with ideal switch

    Realization using power MOSFET

    and diode

    +

    L

    C R

    +

    v

    1

    2

    i L(t )

    V g

    iC (t )+ v L(t )

    +

    L

    C R

    +

    v

    i L(t )

    V g

    iC (t )+ v L(t )

    D 1

    Q1

    DT s T s

    +

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    19/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis19

    Boost converter analysis

    original converter

    switch in position 2 switch in position 1

    +

    L

    C R

    +

    v

    1

    2

    i L(t )

    V g

    iC (t )

    + v L(t )

    C R

    +

    v

    iC (t )

    +

    L

    i L(t )

    V g

    + v L(t )

    C R

    +

    v

    iC (t )

    +

    L

    i L(t )

    V g

    + v L(t )

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    20/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis20

    Subinterval 1: switch in position 1

    Inductor voltage and capacitor current

    Small ripple approximation:

    v L = V giC = v / R

    v L = V giC = V / R

    C R

    +

    v

    iC (t )

    +

    L

    i L(t )

    V g

    + v L(t )

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    21/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis21

    Subinterval 2: switch in position 2

    Inductor voltage and capacitor current

    Small ripple approximation:

    v L = V g viC = i L v / R

    v L = V g V iC = I V / R

    C R

    +

    v

    iC (t )

    +

    L

    i L(t )

    V g

    + v L(t )

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    22/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis22

    Inductor voltage and capacitor current waveforms

    v L(t )

    V g V

    t

    DT s

    V g

    D 'T s

    iC (t )

    V/R

    t

    DT s

    I V/R

    D 'T s

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    23/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis23

    Inductor volt-second balance

    Net volt-seconds applied to inductorover one switching period:

    v L(t ) dt 0

    T s

    = ( V g) DT s + ( V g V ) D 'T s

    Equate to zero and collect terms:V g ( D + D ') V D ' = 0

    Solve for V:

    V = V g D '

    The voltage conversion ratio is therefore

    M ( D ) = V V g= 1

    D '= 1

    1 D

    v L(t )

    V g V

    t

    DT s

    V g

    D 'T s

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    24/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis24

    Conversion ratio M(D) of the boost converter

    M ( D )

    D

    0

    1

    2

    3

    4

    5

    0 0.2 0.4 0.6 0.8 1

    M ( D ) = D ' = 1 D

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    25/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis25

    Determination of inductor current dc component

    Capacitor charge balance:

    iC (t ) dt 0

    T s

    = ( V R ) DT s + ( I V R ) D 'T s

    Collect terms and equate to zero: R ( D + D ') + I D ' = 0

    Solve for I :

    I = D ' R

    I = g D ' 2 R

    Eliminate V to express in terms of V g :

    iC (t )

    V/R

    t DT s

    I V/R

    D 'T s

    D

    0

    2

    4

    6

    8

    0 0.2 0.4 0.6 0.8 1

    I V g / R

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    26/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis26

    Determination of inductor current ripple

    Inductor current slope during

    subinterval 1:

    di L(t )dt

    = v L(t )

    L = g

    L

    Inductor current slope duringsubinterval 2:

    2 i L = g

    L DT s

    di L(t )dt

    = v L(t )

    L = g

    L

    Change in inductor current during subinterval 1 is (slope) (length of subinterval):

    Solve for peak ripple:

    i L =V g2 L DT s

    Choose L such that desired ripple magnitudeis obtained

    V g V L

    V g L

    i L(t )

    t 0 DT s T s

    I i L

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    27/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis27

    Determination of capacitor voltage ripple

    Capacitor voltage slope during

    subinterval 1:

    Capacitor voltage slope duringsubinterval 2:

    Change in capacitor voltage during subinterval 1 is (slope) (length of subinterval):

    Solve for peak ripple: Choose C such that desired voltage ripplemagnitude is obtained

    In practice, capacitor equivalent series

    resistance (esr) leads to increased voltage ripple

    dvC (t )dt

    = i C (t )

    C = V

    RC

    dvC (t )dt

    = i C (t )

    C = I C

    V RC

    2 v = V RC DT s

    v = V 2 RC DT s

    v(t )

    t 0 DT

    s T

    s

    V v

    C

    RC RC

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    28/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis28

    2.4 Cuk converter example

    +

    L1

    C 2 R

    +

    v2

    C 1 L2

    1 2

    + v1 i1 i2

    V g

    +

    L1

    C 2 R

    +

    v2

    C 1 L2

    + v1 i1 i2

    D 1Q1V g

    Cuk converter,with ideal switch

    Cuk converter: practical realization using MOSFET and diode

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    29/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis29

    Cuk converter circuitwith switch in positions 1 and 2

    +

    L1

    C 2 R

    +

    v2

    C 1

    L2

    i1

    i2

    v1

    +

    iC 1 iC 2+ v L2 + v L1

    V g

    +

    L1

    C 2 R

    +

    v2

    C 1

    L2i1 i2

    +

    v1

    iC 1iC 2

    + v L2 + v L1

    V g

    Switch in position 1:MOSFET conducts

    Capacitor C 1 releasesenergy to output

    Switch in position 2:diode conducts

    Capacitor C 1 ischarged from input

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    30/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis30

    Waveforms during subinterval 1MOSFET conduction interval

    +

    L1

    C 2 R

    +

    v2

    C 1

    L2

    i1

    i2

    v1

    +

    iC 1 iC 2+

    v L2 +

    v L1

    V gv L1 = V gv L2 = v1 v2iC 1 = i 2

    iC 2=

    i 2

    v2 R

    Inductor voltages andcapacitor currents:

    Small ripple approximation for subinterval 1:

    v L1 = V gv

    L2 = V 1 V 2

    iC 1 = I 2

    iC 2 = I 2 V 2 R

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    31/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis31

    Waveforms during subinterval 2Diode conduction interval

    Inductor voltages andcapacitor currents:

    Small ripple approximation for subinterval 2:

    +

    L1

    C 2 R

    +

    v2

    C 1

    L2i1 i2

    +

    v1

    iC 1

    iC 2+ v

    L2 + v

    L1

    V gv L1 = V g v1v L2 = v2iC 1 = i1

    iC 2 = i2 v2

    R

    v L1 = V g V 1v L2 = V 2iC 1 = I 1

    iC 2 = I 2 V 2 R

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    32/45

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    33/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis33

    Equate average values to zero

    v L

    2(t)

    V 1 V 2 t

    DT s

    V 2

    D'T s

    iC 1(t)

    I 2 t

    DT s

    I 1

    D'T s

    Inductor L 2 voltage

    Capacitor C 1 current v L2 = D( V 1 V 2) + D '( V 2) = 0

    iC 1 = DI 2 + D ' I 1 = 0

    Average the waveforms:

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    34/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis34

    Equate average values to zero

    iC 2(t)

    I 2 V 2 / R (= 0)

    t DT s D'T s

    Capacitor current i C 2(t ) waveform

    Note: during both subintervals, thecapacitor current i C 2 is equal to thedifference between the inductor currenti2 and the load current V 2/ R. When

    ripple is neglected, i C 2 is constant andequal to zero.

    iC 2 = I 2 V 2 R

    = 0

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    35/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis35

    Cuk converter conversion ratio M

    =V

    /V g

    M ( D )

    D

    -5-4

    -3

    -2

    -1

    00 0.2 0.4 0.6 0.8 1

    M ( D ) = V 2V g

    = D1 D

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    36/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis36

    Inductor current waveforms

    di 1(t )dt

    = v L1(t )

    L 1=

    V g L 1

    di 2(t )dt

    = v L2(t )

    L 2=

    V 1 V 2 L 2

    Interval 1 slopes, using smallripple approximation:

    Interval 2 slopes:

    di 1(t )dt

    = v L1(t )

    L 1=

    V g V 1 L 1

    di 2(t )dt

    = v L2(t ) L 2= V 2 L 2

    i1(t )

    t DT s T s

    I 1 i1V g V 1

    L 1

    V g L 1

    V 2 L 2

    V 1 V 2 L 2

    i2(t )

    t DT s T s

    I 2 i2

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    37/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis37

    Capacitor C1 waveform

    dv1(t )dt

    = i C 1(t )C 1

    = I 2C 1

    Subinterval 1:

    Subinterval 2:

    dv1(t )dt

    = iC 1(t )

    C 1=

    I 1C 1

    I 1C 1

    I 2C 1

    v1(t )

    t DT s T s

    V 1 v1

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    38/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis38

    Ripple magnitudes

    i1 =V g DT s

    2 L 1 i2 =

    V 1 + V 2

    2 L 2 DT s

    v1 = I 2 DT s

    2C 1

    Use dc converter solution to simplify:

    i1 =V g DT s

    2 L 1

    i2 =V g DT s

    2 L 2

    v1 =V g D

    2T s2 D ' RC 1

    Analysis results

    Q: How large is the output voltage ripple?

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    39/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis39

    2.5 Estimating ripple in converters

    containing two-pole low-pass filters

    Buck converter example: Determine output voltage ripple

    Inductor current

    waveform.What is the capacitor current?

    +

    L

    C R

    +

    vC (t )

    1

    2iC (t ) i R(t )

    i L(t )

    V g

    V L

    V g V L

    i L(t )

    t 0 DT s T s

    I i L(0)

    i L( DT s) i L

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    40/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis40

    Capacitor current and voltage, buck example

    Must not neglect inductor current ripple!

    If the capacitor voltage ripple is small, then essentially all of the ac component of inductor current flows through the capacitor.

    iC (t )

    vC (t )

    t

    t

    Total chargeq

    DT s D 'T s

    T s /2

    V

    i L

    v v

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    41/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis41

    Estimating capacitor voltage ripple v

    q = C (2 v)

    Current iC (t) is positive for halfof the switching period. Thispositive current causes thecapacitor voltage vC (t) toincrease between its minimumand maximum extrema.

    During this time, the totalcharge q is deposited on thecapacitor plates, where

    (change in charge ) =C (change in voltage )

    iC (t )

    vC (t )

    t

    t

    Total chargeq

    DT s D 'T s

    T s /2

    V

    i L

    vv

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    42/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis42

    Estimating capacitor voltage ripple v

    The total charge q is the areaof the triangle, as shown:

    q = 12 i LT s2

    Eliminate q and solve for v :

    v = i L T s8 C

    Note: in practice, capacitorequivalent series resistance(esr) further increases v .

    iC (t )

    vC (t )

    t

    t

    Total chargeq

    DT s D 'T s

    T s /2

    V

    i L

    vv

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    43/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis43

    Inductor current ripple in two-pole filters

    Example:problem 2.9

    can use similar arguments, with = L (2 i )

    = inductor flux linkages

    = inductor volt-seconds

    R

    +

    v

    + C 2

    L2 L1

    C 1

    +

    vC 1

    i1

    iT

    i2

    D 1

    Q1

    V g

    v L(t )

    i L(t )

    t

    t

    Total flux linkage

    DT s D 'T s

    T s /2

    I

    v

    i i

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    44/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis44

    2.6 Summary of Key Points

    1. The dc component of a converter waveform is given by its averagevalue, or the integral over one switching period, divided by theswitching period. Solution of a dc-dc converter to find its dc, or steady-state, voltages and currents therefore involves averaging thewaveforms.

    2. The linear ripple approximation greatly simplifies the analysis. In a well-designed converter, the switching ripples in the inductor currents andcapacitor voltages are small compared to the respective dccomponents, and can be neglected.

    3. The principle of inductor volt-second balance allows determination of thedc voltage components in any switching converter. In steady-state, theaverage voltage applied to an inductor must be zero.

  • 8/10/2019 Chap 2 Erickson Fundamentals of Power Electronics.pdf

    45/45

    Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis45

    Summary of Chapter 2

    4. The principle of capacitor charge balance allows determination of the dccomponents of the inductor currents in a switching converter. In steady-state, the average current applied to a capacitor must be zero.

    5. By knowledge of the slopes of the inductor current and capacitor voltagewaveforms, the ac switching ripple magnitudes may be computed.Inductance and capacitance values can then be chosen to obtaindesired ripple magnitudes.

    6. In converters containing multiple-pole filters, continuous (nonpulsating)voltages and currents are applied to one or more of the inductors orcapacitors. Computation of the ac switching ripple in these elementscan be done using capacitor charge and/or inductor flux-linkagearguments, without use of the small-ripple approximation.

    7. Converters capable of increasing (boost), decreasing (buck), andinverting the voltage polarity (buck-boost and Cuk) have beendescribed. Converter circuits are explored more fully in a later chapter.


Recommended