+ All Categories
Home > Documents > Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 –...

Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 –...

Date post: 14-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
30
Chap.1 Kinematics and dynamics of a stellar system Orbits of stars Orbits in spherical and non-spherical potentials Orbits in Stäckel potentials, Action integrals Kinematics of stars (U,V,W), LSR, solar motion, Galactic constants Galactic gravitational potential Distribution functions of stars Schwarzschild, modeling distribution functions Jeans equations Jeans theorem, spherical system, asymmetric drift Virial theorem 1
Transcript
Page 1: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

Chap.1 Kinematics and dynamics of a stellar system

• Orbits of stars– Orbits in spherical and non-spherical potentials– Orbits in Stäckel potentials, Action integrals

• Kinematics of stars– (U,V,W), LSR, solar motion, Galactic constants– Galactic gravitational potential

• Distribution functions of stars– Schwarzschild, modeling distribution functions

• Jeans equations– Jeans theorem, spherical system, asymmetric drift– Virial theorem 1

Page 2: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

1.1 Orbits of stars

• Spherical potential Φ(r)L=r×dr/dt=const. ⇒ confined to the orbital plane– E.g. Kepler potential (by a point mass: M)Φ(r) = -GM/r, L= r2dφ/dt: integral of motiona(1-e2)/r = 1+e cos(φ-φ0)

equation for an ellipse (orbit)a=L2/GM(1-e2): semi-major axis,e: eccentricity, φ-φ0: true anomaly

peri-center: rperi=a(1-e), apo-center: rapo=a(1+e)e=(rapo-rperi/(rapo+rperi)

a

b

ae

φ-φ0

2

Galaxy structure: superposition of many stellar orbits

Page 3: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

3

Δφ=2π over one period ofradial oscillation⇒closed orbit Δφ=π

closed orbit

Kepler motion(orbit in a point-mass potential)

Orbit inside a uniform sphere

M(<r) = 4πρr3/3F(r) = - GM(<r)/r2

∝ - rFx ∝ -x, Fy ∝-ySimple oscillator

π<Δφ<2πRosette orbit(non-closed)

Orbit in a gravitational potentialprovided bygeneral spherical mass distribution

Page 4: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

4

・2D axisymmetric Φ(R) ・2D non-axisymmetric Φ(x,y)(Bar potential)

loop orbits

loop orbits

box orbitsOrientation of a bar

Page 5: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

Box orbit Short-axis tube orbit

Outer long-axistube orbit

Inner long-axistube orbit

Orbits in a (nonrotating) triaxial potential

Statler 1987, ApJ, 321, 1135

Page 6: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

• Stäckel potential– Hamilton-Jacobi eq. is separable ⇒ eq. of motions is solvable

independently in each spatial coordinate– Integral of motion Ii(x,v) i=1,3

Only regular orbits exist (de Zeeuw 1985, MNRAS, 216, 273)explicit expressions for I1(x,v) (=E), I2(x,v), I3(x,v)

• Action integralsJi(E,I2,I3) i=1,3

– Adiabatic invariance– Ji ≥ 0 for bound orbits– Phase volume

Canonical transformation (q,p) → (θ,J)

( )∫ ∫ ∫===D D D

JdJddvxddV 333333 2πθ

∫= iii dqpJπ21

0, =∂∂

−==∂∂

=••

iii

ii

HJJH

θωθ qi

pi

6

Page 7: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

Action integrals for a Kepler motion

7

∫∫

==

−=−=

−=−=+−==

φφφ

φ

θ

θ

φθ

φπ

θθπ

ππ

pdpJ

JLdp

LJ

eLL

EGMdr

rGM

rLEdrpJ

r

r

r

rrr

21

sin1

11

122

21

max

min

max

min

max

min

2

22

22

2

L=|Jφ|+Jθ : adiabatic invariance⇒ Orbital eccentricity: e is an adiabatic invariance as well(a conserved quantity when the change of a gravitational potential is sufficiently slowcompared to its dynamical time scale)

Page 8: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

8

B S

O I

loop

box

dvpJ

dupJ

va

ur

=

=

π

π

21

21

・2D non-axisymmetric Φ(x,y)⇒Φ(u,v) ・3D triaxial Φ(λ,µ,ν)

Page 9: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

• Observed kinematics– Line of sight velocity: Vrad,– Distance: D (pc) = 1 / π (arcsec)

or D (kpc) = 1 / π (mas, milli-arcsec) – Proper motion: μ= [(μαcosδ)2+(μδ)2]1/2

[unit: arcsec (″) /yror mas (milli-arcsec: 10-3″) /yr]

With Distance:D given,tangential velocity:Vtan=4.74 D(pc) μ(arcsec/yr)

= 4.74 D(kpc) μ(mas/yr)– (α,δ),D,Vrad,(μα,μδ)

→3d position+3d velocity

1.2 Kinematics of stars

9

north pole

Description of stellar kinematics observed from the Sun

Page 10: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

10

Hipparcos Gaia Magnitude limit 12 mag 20 mag Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V = 15 250 million to V = 18 1000 million to V = 20 Effective distance

1 kpc 50 kpc

Quasars 1 (3C 273) 500,000

Galaxies None 1,000,000 Accuracy 1 milliarcsec 7 µarcsec at V = 10 10 – 25 µarcsec at V = 15 300 µarcsec at V = 20 Photometry

2-colour (B and V) Low-res. spectra to V = 20

Radial velocity None 15 km s-1 to V = 17 Observing

Pre-selected Complete and unbiased

1989~1993 2013~2021

Astrometry Satellites

Page 11: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

11Gaia: 10µas = 10% error @distance 10kpc, 10µas/yr = 1km/s @20kpcHipparcos: 1mas = 10% error @distance 100pc, 1mas/yr = 5km/s @ 1kpc

Page 12: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

• Description of 3d velocity– Velocity component of a star: (Π,Θ,Z)

in rectangular coordinates at the Sun– The Local Standard of Rest (LSR) (a circular orbit around the GC)

(Π,Θ,Z)=(0,Θ0,0)– Full space motion of a star : = LSR

+ motion relative to LSR (U,V,W)(U,V,W) = (Π,Θ-Θ0,Z) Θ0:given (~220km/s)

+ solar motion (Usun,Vsun,Wsun) (deviation from a circular orbit)(Usun,Vsun,Wsun) = (Πsun, Θsun-Θ0,Zsun)

– Actually observed motion (heliocentric)(u,v,w) = (U-Usun, V-Vsun, W-Wsun)

Galactic constants: Θ0, R0 & (Usun,Vsun,Wsun) 12

Galactic plane

Galactic center

Sun

Π

Θ

Ζ

Page 13: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

• Determination of (Usun, Vsun, Wsun)<U>=0, <W>=0 by definition, <V>≠0 (<Vφ>≠Θ0)⇒ using many stars,(<u>,<v>,<w>) = ( - Usun, <V> - Vsun, - Wsun ) is estimatedUsun= -<u>, Wsun= -<w>, Vsun= -<v> in the limit of <V>=0V’sun≡ -<v> = Vsun-<V> = Vsun + cS2 (S2: velocity dispersion)

S2 → 0: Vsun is determined* Delhaye 1965 using A stars, K giants, M dwarfs

(Usun, Vsun, Wsun) = (-9, 12, 7) km/s, (l,b)=(53,25)* Feast & Whitelock 1997 using 227 Cepheids (HIP)

(-9.3, 11.2, 7.6) km/s* Dehnen & Binney 1998 using 11865 single MS stars (HIP)

(-10.0, 5.3, 7.2) km/s* More recent result (Schönrich +10, Coşkunoğglu+11)

(-11.10, 12.24, 7.25) km/s

VU

WVelocity relative to the LSR

13

Page 14: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

(velocity dispersion)

Local stellar kinematics from Hipparcos data

Dehnen & Binney 1998, MN, 298, 387

-

14

Page 15: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

Distance from the SunD<4kpc

-0.8<[Fe/H]≤-0.6

[Fe/H]≤-1.7× -1.7<[Fe/H]≤-0.8

(U,V) velocities for nearby stars

15

Page 16: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

σU σV σW <V>[Fe/H]≤-1.7 150 km/s 110 km/s 100 km/s -200 km/s-0.8<[Fe/H]≤-0.6 60 km/s 60 km/s 40 km/s -30 km/s

16

Page 17: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

Determination of Galactic Constants• Rotational velocity of the LSR: Θ0

– Oort constants (A,B) → R0→ Θ0=R0(A-B)– Motion relative to Pop II system, <Θ>=0 is assumed– Proper motion of Sgr A* → R0→ Θ0

if Sgr A* is fixed at the center and the LSR has Θ0=220km/s, then Θ0=4.74Dμl→ proper motion along Galactic long.: μl ~ 5.8 mas/yr

• Solar position: R0– The center of halo tracer populations (GCs, RR Lyr, Mira variables

in the bulge)– Parallax of Sgr A*: p(mas) = (D/kpc)-1 = 0.1 mas– Stellar motions near Sgr A* (“binary method”) Salim & Gould 1999

• Kerr & Lynden-Bell (1986, MN, 221, 1023)Θ0=220 km/s, R0=8.5 kpc (IAU standards)

• Recent trend:Θ0 > 220 km/s, R0 ~ 8 kpc

17

Page 18: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

Determination of the rotation curve

Θ

−≡

Θ

−Θ

+=

+==

0

0

0

0

0

0

tan

21

21

74.42cos

)2cos(2sin

R

R

l

rad

dRd

RB

dRd

RA

BlABlADV

lADV

µ )(

/

0

000

BAdRd

BAR

R

+−=

Θ

−=Θ=Ω

⇒<<⇒Ω−Ω−Ω=

Ω−Ω=−==−

=+=Θ−Θ=Θ−Θ=

1/cos)(sin)(

cossin)90cos(/cos/)90sin(/sin

cossinsincos

0

00tan

00

0

00

0tan

0

DRDlRV

lRVDlRRR

RRRllVlV

rad

rad

αααα

αα

α

lRDlDRRDR

DRDVrad

coscos2

0//

0

020

22

=⇒−+=

=∂∂⇒∂∂

Page 19: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

19

220個のセファイド星の銀経 l 方向の銀経依存性(Feast & Whitelock 1997)

μ ∝ Vtan/D = Acos 2l +B ⇒ A, B 決定

Page 20: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

20

Rotation curve of the Milky Way

See also, Gunn, Knapp, Tremaine 1979, AJ, 84, 1181; Fich & Tremaine 1991, ARAA, 29, 409

Sofue et al. 2009, PASJ, 61, 227

Scaled with R0=8kpc, Θ0=200km/s

Page 21: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

Feast & Whitelock 1997, MN, 291, 683

Galactic kinematics of Cepheidsfrom HIPPARCOS proper motions

Eisenhauer et al. 2003, ApJ, 597, L121

A Geometric Determination of theDistance to the Galactic Center

orbital eclipse vs. angular sep. → R0

B

A

μl

R0 =7.94±0.42kpc

21

Page 22: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

22

Gillesen et al. 2009:16 years of monitoringthe orbits of 28 starsR0 = 8.33±0.35 kpc

Reid & Brunthaler 2004:µl(SgrA*)=6.379±0.026mas/yr

⇒(Θ0+Vsun)/R0=30.24 km/s/kpcThen if R0=8.3 kpc & Vsun=12.24 km/s⇒Θ0=239 km/s

Recent results

Page 23: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

1.3 Distribution function of stars

• Schwarzschild (1907) model

( )22

23

23

22

22

21

21

3212/3

321321321 222exp

)2(),,(

iii vv

vvvdvdvdvdvdvdvvvvf

−≡

++−=

σ

σσσσσσπ

σ1

σ3

σ2Velocity ellipsoid

σi does not necessary match the direction of (U,V,W)

U

VVertex deviation

23

Page 24: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

Modeling distribution functions

( )[ ]

( )( ) ( )222

333

32

33

,

1,1,)(

),(),,(,,),(

iiijijijjiiij

jijiii

vvvvvvvvvv

vfdvvn

vvvfdvn

vvfdxn

vxIvxIvxEvxddvxf

−=−=−−=

=== ∫ ∫ ∫σσ

(x,v) phase space

Integrals of motions

f(E,I2,I3) Jeans Theorem f(J1,J2,J3)

24

Page 25: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

Some simple cases

• f(E) isotropic velocity distribution• f(E,Lz) Lz=Rvφ in axisymmetric Φ(R,z)

– σR2=σz

2 (but ≠σφ2) anisotropic

– but σR2≠σz

2 near the Sun → presence of I3(σU,σV,σW) ≈ (150,110,100) km/s for halo stars

• f(E,L) L: total angular momentum– vr=vcosη, vθ=vsinηcosψ, vφ=vsinηsinψ– vt

2=vθ2+vφ2=v2sin2η, L=|rvt|=|rvsinη|

– σθ2=σφ

2≠σr2 anisotropic

– β(r)=1- σθ2/σr

2, β≤1β>0: radially anisotropicβ<0: tangentially anisotropic 25

rGCβ>0 β<0

Page 26: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

BHB stars as tracers of halo velocity fieldSommer-Larsen et al. 1997, ApJ, 481, 775

Line of sight velocitydistributionat four directions

26

Page 27: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

Velocity anisotropy vs. radius

Sommer-Larsen et al. 1997, ApJ, 481, 775

22φθ σσσ +=t

β> 0radiallyanisotropic

β< 0tangentially anisotropic

Sun

27

recent resultsK12: Kafle et al. 2012

(using 4664 BHBs from SDSS)Red cross: Deason et al. 2013

(halo stars with HST proper motions)

Page 28: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

1.4 Jeans equations ( )

( ) ( )

( )

( )( ) jijijjiiij

i i

ij

ji i

ji

j

jijijj

i jji

i

j

ii

i

vvvvvvvv

xxxv

vtv

vfdvvvvvfdvv

xvv

xtv

vxt

−=−−≡

∂−

∂Φ∂

−=∂

∂+

==

=∂Φ∂

+∂∂

+∂

=∂∂

+∂∂

∑∑

∫ ∫

2

2

33 1,1

0

0

σ

νσννν

νν

ννν

νν

0=∂

∂⋅Φ∇−∇⋅=

∂+∇=

vIIv

dtvd

vI

dtxdI

dtdI I is a solution to steady-state

collisionless Boltzmann eq.

f(I(x,v)): a solution to steady-state collisionless Boltzmann eq.

28

0=∂

∂⋅Φ∇−∇⋅+

∂∂

vffv

tf

Boltzmann equation

Jeans equations

Jeans theorem

Page 29: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

• Strong Jeans theoremPotential Φ allowing only regular orbits(no resonance among 3 orbital frequencies)→3 isolating integrals→DF depends only these 3 integralsf(I1,I2,I3) I1=E f(J1,J2,J3) Ji(Ii)

I1

I3

I2

J1

J3

J2

29

Page 30: Chap.1 Kinematics and dynamics of a stellar systemchiba/lecture/Nagoya2017/...Completeness 7.3 – 9.0 mag 20 mag Bright limit 0 mag 6 mag Number of objects 120,000 26 million to V

• Spherical system

• Asymmetric drift

( )

∫∞

−=⇒=

−=Φ

−=+

rr

rr

drrr

rGMrvconst

rrGM

drd

rv

drvd

ββ ννβ

βνν

22

22

2

22

)(.

)(21

( ) ( )( ) ( )

222

2

2

2

2222

222

lnln1

0

Rc

zR

R

R

RRc

RzRR

vvV

zvv

vR

Rv

vvvV

RRvv

vvz

vR

∝−⇒

∂∂

−∂

∂−−=−

=∂Φ∂

+−

+∂∂

+∂∂

φ

φφ

φ

νσ

νννν 2Rv2Rv

φvVc >

φvVc ≈

is large (old stars)

is small (young stars)

Application to the MW andexternal galaxies (later…)

Simplified cases for Jeans equations

30


Recommended