+ All Categories
Home > Documents > Chap10 Analog Systems

Chap10 Analog Systems

Date post: 02-Apr-2018
Category:
Upload: manh-cuong-tran
View: 226 times
Download: 0 times
Share this document with a friend

of 39

Transcript
  • 7/27/2019 Chap10 Analog Systems

    1/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Chapter 10

    Analog Systems

    Microelectronic Circuit Design

    Richard C. Jaeger

    Travis N. Blalock

    Chap10 - 1

  • 7/27/2019 Chap10 Analog Systems

    2/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Chapter Goals

    Develop understanding of linear amplification concepts such as:

    Voltage gain, current gain, and power gain,

    Gain conversion to decibel representation,

    Input and output resistances,

    Transfer functions and Bode plots,

    Cutoff frequencies and bandwidth,

    Low-pass, high-pass, band-pass, and band-reject amplifiers,

    Biasing for linear amplification,

    Distortion in amplifiers, Two-port representations of amplifiers,

    g-, h-, y-, and z-parameters,

    Use of transfer function analysis in SPICE.

    Chap10 - 2

  • 7/27/2019 Chap10 Analog Systems

    3/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Example of Analog Electronic System:

    FM Stereo Receiver

    Linear functions: Radio and audio frequency amplification, frequency

    selection (tuning), impedance matching(75-W input, tailoring audio

    frequency response, local oscillator

    Nonlinear functions: DC power supply(rectification), frequency

    conversion (mixing), detection/demodulation

    Chap10 - 3

  • 7/27/2019 Chap10 Analog Systems

    4/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Amplification: Introduction

    A complex periodic signal can be represented as the sum of many

    individual sine waves. We consider only one component with

    amplitude VS=1 mV and frequency wSwith 0 phase (signal is used

    as reference):

    Amplifier output is sinusoidal with same frequency but different

    amplitude VO and phase :

    tssVsv wsin

    )(sin w tsoVov

    Chap10 - 4

  • 7/27/2019 Chap10 Analog Systems

    5/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Amplification: Introduction (contd.)

    Amplifier output power is:

    Here,PO = 100 W andRL=8 W

    Output power also requires output current which is:

    Input current is given by

    phase is zero because circuit is purely resistive.

    LR

    oVoP

    12

    2

    V40810022 L

    RoPoV

    )(sin w tsoIoi

    A58V40

    W

    LR

    oVoI

    A81082.1k50k5

    V3-10 WW

    in

    RsRsV

    sI

    Chap10 - 5

  • 7/27/2019 Chap10 Analog Systems

    6/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Amplification: Gain

    Voltage Gain:

    Magnitude and phase of voltage gain are given by

    and

    For our example,

    Current Gain:

    Magnitude of current gain is given by

    sVoV

    sVoV

    svov

    vA 0

    sVoV

    vA vA

    4104V310

    V40

    sVoV

    vA

    sIoI

    sIoI

    sioi

    iA

    0

    81075.2A8-101.82

    5A

    sIoI

    iA

    Chap10 - 6

  • 7/27/2019 Chap10 Analog Systems

    7/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Amplification: Gain (contd.)

    Power Gain:

    For our example,

    On decibel scale, i.e. in dB

    iAvA

    sIoI

    sVoV

    sIsV

    oIoV

    sPoP

    PA

    22

    22

    131010.181082.1310

    540

    P

    A

    PA

    PdBA log10

    vAvdBA log20

    iA

    idBA log20

    Chap10 - 7

  • 7/27/2019 Chap10 Analog Systems

    8/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Amplifier Biasing for Linear Operation

    iv

    IV

    Iv

    VI= dc value ofvI,

    vi = time-varying component

    For linear amplification- vImust be biased in desired region of outputcharacteristic by VI.

    ovOV

    Ov

    If slope of output characteristic is positive, input and output are in

    phase (amplifier is non-inverting).

    If slope of output characteristic is negative, input and output signals

    are 1800 out of phase (amplifier is inverting).

    Chap10 - 8

  • 7/27/2019 Chap10 Analog Systems

    9/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Amplifier Biasing for Linear Operation

    (contd.)

    IV

    IvI

    vov

    vA

    Voltage gain depends on bias

    point.Eg: if amplifier is biased at VI=

    0.5 V, voltage gain will be +40

    for input signals satisfying

    If input exceeds this

    value, output is distorted due tochange in amplifier slope.

    V1.0i

    v

    Chap10 - 9

  • 7/27/2019 Chap10 Analog Systems

    10/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Amplifier Biasing for Linear Operation

    (contd.)

    Output signals for 1 kHZ sinusoidal

    input signal of amplitude 50 mV

    biased at VI= 0.3 V and 0.5V:V)2000sin05.03.0( t

    IAv

    ForVI=0.3V:

    V)2000sin14( tOA

    v

    ForVI=0.5V:

    Gain is 20, output variesabout dc level of 4 V.

    V)2000sin05.05.0( t

    IB

    v

    V)2000sin210( tOB

    v

    Gain is 40, output varies

    about dc level of 10 V.

    Chap10 - 10

  • 7/27/2019 Chap10 Analog Systems

    11/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Distortion in Amplifiers

    Different gains for positive and negative values of input cause

    distortion in output.

    Total Harmonic Distortion (THD) is a measure of signal distortion

    that compares undesired harmonic content of a signal to the desired

    component.

    Chap10 - 11

  • 7/27/2019 Chap10 Analog Systems

    12/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Total Harmonic Distortion

    ...)3

    sin3(3

    )2

    sin2(2

    )1

    (sin1

    )( www toVtoVtoVoVtv

    dc desired

    output

    2nd harmonic

    distortion

    3rd harmonic

    distortion

    1

    2

    %100 2

    V

    Vn

    THD

    Numerator= sum of rms amplitudes of distortion terms,

    Denominator= desired component

    Chap10 - 12

  • 7/27/2019 Chap10 Analog Systems

    13/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Two-port Models for Amplifiers

    Simplifies amplifier-behavior modeling in complex systems.

    Two-port models are linear network models, valid only under

    small-signal conditions.

    Represented byg-, h-, y- andz-parameters.

    (v1, i1) and (v2, i2) represent signal components of voltages and

    currents at the network ports.

    Chap10 - 13

  • 7/27/2019 Chap10 Analog Systems

    14/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    g-parameters

    Using open-circuit (i=0) and short-

    circuit (v=0) termination

    conditions,

    2

    i

    221

    v

    212

    v2i

    121v

    111i

    gg

    gg

    01v2

    i2

    v

    22

    02i1v

    2v

    21

    01v2

    i1i

    12

    02i1

    v1i

    11

    g

    g

    g

    g Open-circuit input

    conductance

    Reverse short-circuit

    current gain

    Forward open-circuit

    voltage gain

    Short-circuit output

    resistance

    Chap10 - 14

  • 7/27/2019 Chap10 Analog Systems

    15/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    g-parameters:Example

    Problem:Findg-parameters.

    Approach: Apply specified boundary

    conditions for eachg-parameter, use

    circuit analysis.

    Forg11 andg21: apply voltage v1 toinput port and open circuit output port.

    Forg12 andg22: apply current i2 to

    output port and short circuit input port.

    998.0)k200)(51(

    1102i1v

    2v

    21

    S81079.9

    )k200(514102

    1

    02i1

    v1i

    11

    W

    WW

    gg

    g

    0196.0k20

    391

    01

    v2i

    2v

    22

    391

    k20

    51

    k200

    11

    01

    v2i1i

    12

    W

    W

    W

    W

    W

    g

    g

    2i21091.3

    1v998.0

    2v

    2i21096.1

    1v81079.9

    1i

    Chap10 - 15

  • 7/27/2019 Chap10 Analog Systems

    16/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Hybrid orh-parameters

    Using open-circuit (i=0) and short-

    circuit (v=0) termination

    conditions,

    2

    v

    221

    i

    212

    i2

    v121

    i111

    v

    hh

    hh

    01i2

    v2i

    22

    02

    v1i

    2i

    21

    01i2

    v1v

    12

    02

    v1i1v

    11

    h

    h

    h

    h Short-circuit input

    resistance

    Reverse open-circuit

    voltage gain

    Forward short-circuit

    current gain

    Open-circuit output

    conductance

    Chap10 - 16

  • 7/27/2019 Chap10 Analog Systems

    17/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    h-parameters:Example

    Problem:Find h-parameters for the

    same network (used ing-parameters

    example).

    Approach: Apply specified boundary

    conditions for each h-parameter, usecircuit analysis.

    Forh11 and h21: apply current i1 to input

    port and short circuit output port.

    Forh12 and h22: apply voltage v2 to

    output port and open circuit input port.

    51

    02

    v1i2i

    21

    4102

    02

    v1i1

    v

    11

    W

    h

    h

    S6105k200

    1

    01i2

    v2i

    22

    10

    1i2

    v1

    v

    12

    W

    h

    h

    2v6105

    1i51

    2i

    2v

    1i4102

    1v

    Chap10 - 17

  • 7/27/2019 Chap10 Analog Systems

    18/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Admittance ory-parameters

    Using open-circuit (i=0) and short-

    circuit (v=0) termination

    conditions,

    2

    v

    221

    v

    212

    i2

    v121

    v111

    i

    yy

    yy

    01v2

    v2i

    22

    02

    v1v

    2i

    21

    01v2

    v1i

    12

    0

    2

    v1v1i

    11

    y

    y

    y

    y Short-circuit input

    conductance

    Reverse short-circuit

    transconductance

    Forward short-circuit

    transconductance

    Short-circuit output

    conductance

    Chap10 - 18

  • 7/27/2019 Chap10 Analog Systems

    19/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    y-parameters:Example

    Problem:Findy-parameters for the

    same network (used ing-parameters

    example).

    Approach: Apply specified boundary

    conditions for eachy-parameter, use

    circuit analysis.

    Fory11 andy21: apply voltage v1 to input

    port and short circuit output port.

    Fory12 andy22: apply voltage v2 to

    output port and short circuit input port.

    S31055.2k20

    51

    02

    v1v2i

    21

    S5105k20

    1

    02

    v1v1i

    11

    W

    W

    y

    y

    S31056.2391

    1

    01i2

    v1i

    22

    S5105k20

    1

    01

    v2v1i

    12

    W

    W

    y

    y

    2v31056.2

    1v31055.2

    2i

    2v5105

    1v5105

    1i

    Chap10 - 19

  • 7/27/2019 Chap10 Analog Systems

    20/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Impedance orz-parameters

    Using open-circuit (i=0) and short-

    circuit (v=0) termination

    conditions,

    2

    i

    221

    i

    212

    v2i

    121i

    111v

    zz

    zz

    01i2

    i2

    v

    22

    02i1i

    2v

    21

    01i2

    i1v

    12

    0

    2

    i1i1v

    11

    z

    z

    z

    z Open-circuit input

    resistance

    Reverse open-circuit

    transresistance

    Forward open-circuit

    transresistance

    Open-circuit output

    resistance

    Chap10 - 20

  • 7/27/2019 Chap10 Analog Systems

    21/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    z-parameters:Example

    Problem:Findz-parameters for the

    same network (used ing-parameters

    example).

    Approach: Apply specified

    boundary conditions for eachz-

    parameter, use circuit analysis.

    Forz11 andz21: apply current i1 to

    input port and open circuit output

    port. Forz12 andz22: apply current i2

    to output port and open circuit inputport.

    W

    WWW

    M2.10

    0

    2

    i1i2

    v

    21

    M2.10)k200(51k20

    02i1

    i1v

    11

    z

    z

    W

    W

    k200

    01i2

    i2

    v

    22

    k200

    01i2

    i1

    v

    12

    z

    z

    2i51000.2

    1i71002.1

    2v

    2i51000.2

    1i71002.1

    1v

    Chap10 - 21

  • 7/27/2019 Chap10 Analog Systems

    22/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Mismatched Source and Load

    Resistances: Voltage Amplifier

    LR

    outR

    LR

    inRsR

    inR

    A

    sVoV

    vA

    inRsR

    inR

    LR

    outR

    LR

    A

    sv1v

    1vov

    IfRin >>Rs andRout

  • 7/27/2019 Chap10 Analog Systems

    23/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Mismatched Source and Load

    Resistances: Current Amplifier

    h-parameter representation (h12=0) with Norton equivalent of input source:

    LR

    outR

    outR

    inRsRsR

    sIoI

    iA

    inRsRsR

    LR

    outR

    outR

    si1i

    1ioi

    IfRs >>Rin andRout>> RL,

    i

    A

    In an ideal current amplifier,andRin=0

    outR

    Chap10 - 23

  • 7/27/2019 Chap10 Analog Systems

    24/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Amplifier Transfer Functions

    ssV

    soVsvA

    Av(s)=Frequency-dependent voltage gain

    Vo(s) and Vs(s) = Laplace Transforms of input and output voltages of

    amplifier, w js

    3...

    21

    ...21

    pspsps

    mzszszsKsvA

    (-z1, -z2,-zm)=zeros (frequencies for which transfer function is zero)

    (-p1, -p2,-pm)=poles (frequencies for which transfer function is infinite)

    www jvAjvAjvA

    Bode plots display magnitude of the transfer function in dB and the

    phase in degrees (or radians) on a logarithmic frequency scale..

    (In factorized form)

    (In polar form)

    Chap10 - 24

  • 7/27/2019 Chap10 Analog Systems

    25/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Low-pass Amplifier: Description

    Amplifies signals over a range of frequencies including dc.

    Most operational amplifiers are designed as low pass amplifiers.

    Simplest (single-pole) low-pass amplifier is described by

    Ao = low-frequency gain or mid-band gain

    wH= upper cutoff frequency or upper half-power point of

    amplifier.

    H

    soA

    Hs

    HoA

    svA

    ww

    w

    1

    Chap10 - 25

  • 7/27/2019 Chap10 Analog Systems

    26/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Low-pass Amplifier: Magnitude Response

    ForwwH:

    ForwwH:

    Gain is unity (0 dB) atwAowH , called gain-bandwidth product

    Bandwidth (frequency range with constant amplification )= wH (rad/s)

    22log20log20dB

    22

    HHoAjvA

    H

    HoA

    Hj

    HoA

    jvA

    wwww

    ww

    w

    ww

    w

    w

    dB)log20( oAoAjvA w

    dBlog20log20

    HoA

    HoA

    jvAw

    w

    w

    w

    w

    dB3)log20(2

    oA

    oAjvA w

    Chap10 - 26

  • 7/27/2019 Chap10 Analog Systems

    27/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    Low-pass Amplifier: Phase Response

    IfAo

    positive: phase angle = 00

    IfAo negative: phase angle = 1800

    At wC: phase =450

    One decade below wC: phase =5.70

    One decade above wC: phase =84.30

    Two decades below wC: phase =00

    Two decades above wC: phase =900

    H

    oA

    H

    j

    oAjvA ww

    w

    ww1tan

    1

    Chap10 - 27

  • 7/27/2019 Chap10 Analog Systems

    28/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    RC Low-pass Filter

    Problem: Find voltage transfer

    function

    Approach: Impedance of the where

    capacitor is 1/sC, use voltage

    division

    H

    sRR

    R

    sVoV

    sCR

    sCRR

    sCR

    sCR

    sVoV

    w1

    1

    21

    2

    /12

    /2

    1

    /12

    /2

    CRRH

    21

    1w

    Chap10 - 28

  • 7/27/2019 Chap10 Analog Systems

    29/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    High-pass Amplifier: Description

    True high-pass characteristic impossible to obtain as it requires

    infinite bandwidth.

    Combines a single pole with a zero at origin.

    Simplest high-pass amplifier is described by

    wH= lower cutoff frequency or lower half-power point of amplifier.

    Ls

    soAsvAw

    Chap10 - 29

  • 7/27/2019 Chap10 Analog Systems

    30/39

    Jaeger/Blalock7/1/03

    Microelectronic Circuit DesignMcGraw-Hill

    High-pass Amplifier: Magnitude and

    Phase Response

    Forw>>wL :

    Forw

  • 7/27/2019 Chap10 Analog Systems

    31/39

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    RC High-pass Filter

    Problem: Find voltage transfer

    function

    Approach: Impedance of the where

    capacitor is 1/sC, use voltage

    division

    Ls

    s

    RR

    R

    sVoV

    RsC

    R

    R

    sVoV

    w21

    2

    2

    1

    1

    2

    CRRL

    21

    1w

    Chap10 - 31

  • 7/27/2019 Chap10 Analog Systems

    32/39

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Band-pass Amplifier: Description

    Band-pass characteristic obtained by combining highpass and

    low-pass characteristics.

    Transfer function of a band-pass amplifier is given by

    Ac-coupled amplifier has a band-pass characteristic:

    Capacitors added to circuit cause low frequency roll-off Inherent frequency limitations of solid-state devices cause

    high-frequency roll-off.

    1

    1)())((

    H

    sLs

    soA

    Hs

    Ls

    HsoAsvA

    wwww

    w

    Chap10 - 32

  • 7/27/2019 Chap10 Analog Systems

    33/39

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Band-pass Amplifier: Magnitude and

    Phase Response

    The frequency response shows a wide band of operation.

    Mid-band range of frequencies given by , whereHLwww oAjvA )( w

    )22)(22())((

    HL

    HoA

    Hj

    Lj

    HjoAjvA

    wwww

    ww

    wwww

    ww

    w

    Chap10 - 33

  • 7/27/2019 Chap10 Analog Systems

    34/39

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Band-pass Amplifier: Magnitude and

    Phase Response (contd.)

    At both wHand wL, assumingwL

  • 7/27/2019 Chap10 Analog Systems

    35/39

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Narrow-band or High-Q Band-pass

    Amplifiers

    Gain maximum at center frequency woand

    decreases rapidly by 3 dB at wHand wL.

    Bandwidth defined aswH - wL, is a small

    fraction ofwowith width determined by:

    For high Q, poles will be complex and

    Phase response is given by:

    BWo

    f

    Lf

    Hf

    of

    LHoQ ww

    w

    22

    oQo

    ss

    Qos

    oAsvA

    w

    w

    w

    2211tan090

    ww

    www

    o

    oQo

    AjvA

    Chap10 - 35

  • 7/27/2019 Chap10 Analog Systems

    36/39

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Band-Rejection Amplifier or Notch

    Filter

    Gain maximum at frequencies far from wo

    and exhibits a sharp null at wo.

    To achieve sharp null, transfer function has

    a pair of zeros onjwaxis at notch frequency

    wo , and poles are complex.

    Phase response is given by:

    22

    22

    oQ

    oss

    osoAsvA

    www

    2211tan22

    ww

    wwwww

    o

    oQoo

    AjvA

    Chap10 - 36

  • 7/27/2019 Chap10 Analog Systems

    37/39

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    All-pass Function

    Uniform magnitude response at all frequencies.

    Can be used to tailor phase characteristics of a signal

    Transfer function is given by:

    For positive Ao,

    osos

    oAsvA ww

    o

    jvA

    oAjvA

    www

    w

    1tan2

    Chap10 - 37

  • 7/27/2019 Chap10 Analog Systems

    38/39

    Jaeger/Blalock7/1/03 Microelectronic Circuit DesignMcGraw-Hill

    Complex Transfer Functions

    1

    5

    1

    431

    2mid

    5431

    2

    wwww

    w

    wwww

    w

    ssss

    ssA

    ssss

    sKssvA

    Amplifier has 2 frequency ranges withconstant gain. Midband region is

    always defined as region of highest

    gain and cutoff frequencies are

    defined in terms of midband gain.

    2

    midA

    HjvAL

    jvA ww

    ww

    2 3434BW

    ff

    Since wH= w4and wL = w3,

    Chap10 - 38

  • 7/27/2019 Chap10 Analog Systems

    39/39

    J /Bl l k Mi l t i Ci it D i

    Bandwidth Shrinkage

    If critical frequencies arent widely spaced, the poles and zeros

    interact and cutoff frequency determination becomes

    complicated.

    Example : for which ,Av(0) =Ao

    Upper cutoff frequency is defined by or

    2)1

    (

    2

    1w

    w

    s

    oA

    svA

    2oA

    HjvA w 222

    1

    1

    Ao

    H

    Ao

    w

    w

    Solving forwHyields wH=0.644w1.The cutoff frequency of

    two-pole function is only 64% that of a single-pole function.

    This is known as bandwidth shrinkage.

    Ch 10 39


Recommended