+ All Categories
Home > Documents > Chap2 Mos Transistor Theory

Chap2 Mos Transistor Theory

Date post: 25-Feb-2018
Category:
Upload: hemant-saraswat
View: 248 times
Download: 0 times
Share this document with a friend

of 40

Transcript
  • 7/25/2019 Chap2 Mos Transistor Theory

    1/40

    Introduction to

    CMOS VLSIDesign

    Lecture 3:CMOS Transistor Theory

    David Harris

    Harvey Mudd College

    Spring 2004

  • 7/25/2019 Chap2 Mos Transistor Theory

    2/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 2

    Outline

    Introduction MOS Capacitor nMOS I-V Characteristics

    pMOS I-V Characteristics Gate and Diusion Capacitance !ass "ransistors #C Delay Models

  • 7/25/2019 Chap2 Mos Transistor Theory

    3/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 3

    Introduction

    So ar$ %e have treated transistors as ideal s%itches &n O' transistor passes a inite a(ount o current

    ) Depends on ter(inal voltages

    ) Derive current-voltage *I-V+ relationships "ransistor gate$ source$ drain all have capacitance

    ) I , C *Vt+ -. t , *CI+ V) Capacitance and current deter(ine speed

    &lso e/plore %hat a degraded level1 really (eans

  • 7/25/2019 Chap2 Mos Transistor Theory

    4/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 4

    MOS Capacitor

    Gate and ody or( MOS capacitor Operating (odes

    )&ccu(ulation

    ) Depletion) Inversion

    polysilicon gate

    *a+

    silicon dio/ide insulator

    p-type ody3-

    Vg4 0

    *+

    3-

    0 4 Vg4 Vtdepletion region

    *c+

    3-

    Vg. Vt

    depletion region

    inversion region

  • 7/25/2019 Chap2 Mos Transistor Theory

    5/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 5

    Terminal Voltages

    Mode o operation depends on Vg$ Vd$ Vs) Vgs, Vg) Vs) Vgd, Vg) Vd) Vds, Vd) Vs, Vgs- Vgd

    Source and drain are sy((etric diusion ter(inals) 5y convention$ source is ter(inal at lo%er voltage

    ) Hence Vds0 nMOS ody is grounded6 7irst assu(e source is 0 too6

    "hree regions o operation) Cutoff

    ) Linear

    ) Saturation

    Vg

    Vs Vd

    VgdVgs

    Vds3-

    3

    -

    3

    -

  • 7/25/2019 Chap2 Mos Transistor Theory

    6/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 6

    nMOS Cutoff

    'o channel

    Ids, 0

    3-

    Vgs, 0

    n3 n3

    3-

    Vgd

    p-type ody

    g

    s d

  • 7/25/2019 Chap2 Mos Transistor Theory

    7/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 7

    nMOS Linear

    Channel or(s Current lo%s ro( d to s

    ) e-ro( s to d

    Idsincreases %ith Vds Si(ilar to linear resistor

    3-

    Vgs. Vt

    n3 n3

    3-

    Vgd, Vgs

    3

    -

    Vgs. Vt

    n3 n3

    3

    -

    Vgs. Vgd. Vt

    Vds, 0

    0 4 Vds4 Vgs-Vt

    p-type ody

    p-type ody

    g

    s d

    g

    s dIds

  • 7/25/2019 Chap2 Mos Transistor Theory

    8/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 8

    nMOS Saturation

    Channel pinches o

    Idsindependent o Vds 8e say current saturates

    Si(ilar to current source

    3-

    Vgs. Vt

    n3 n3

    3-

    Vgd4 Vt

    Vds. Vgs-Vtp-type ody

    g

    s d Ids

  • 7/25/2019 Chap2 Mos Transistor Theory

    9/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide

    I-V Characteristics

    In 9inear region$ Idsdepends on

    ) Ho% (uch charge is in the channel:

    ) Ho% ast is the charge (oving:

  • 7/25/2019 Chap2 Mos Transistor Theory

    10/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide !"

    Channel Charge

    MOS structure loo;s li;e parallel plate capacitor%hile operating in inversion

    ) Gate ) o/ide ) channel

    +

    polysilicongate

  • 7/25/2019 Chap2 Mos Transistor Theory

    11/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide !!

    Channel Charge

    MOS structure loo;s li;e parallel plate capacitor%hile operating in inversion

    ) Gate ) o/ide ) channel

    +

    polysilicon

    gate

  • 7/25/2019 Chap2 Mos Transistor Theory

    12/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide !2

    Channel Charge

    MOS structure loo;s li;e parallel plate capacitor%hile operating in inversion

    ) Gate ) o/ide ) channel

    +

    polysilicon

    gate

    Co/, o/ to/

  • 7/25/2019 Chap2 Mos Transistor Theory

    13/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide !3

    Channel Charge

    MOS structure loo;s li;e parallel plate capacitor%hile operating in inversion

    ) Gate ) o/ide ) channel

    +

    polysilicon

    gate

    Co/, o/ to/o/ is per(ittivity

    Vgc= (Vgs + Vgd)/2

    Vgc= Vgs Vds/2

    &vg6 gate to channelpotential

  • 7/25/2019 Chap2 Mos Transistor Theory

    14/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide !4

    Carrier elocity

    Charge is carried y e- Carrier velocity vproportional to lateral ?-ield

    et%een source and drain

    v,

  • 7/25/2019 Chap2 Mos Transistor Theory

    15/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide !5

    Carrier elocity

    Charge is carried y e- Carrier velocity vproportional to lateral ?-ield

    et%een source and drain

    v, ? called (oility ? ,

  • 7/25/2019 Chap2 Mos Transistor Theory

    16/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide !6

    Carrier elocity

    Charge is carried y e- Carrier velocity vproportional to lateral ?-ield

    et%een source and drain

    v, ? called (oility ? , Vds9

    "i(e or carrier to cross channel@

    ) t,

  • 7/25/2019 Chap2 Mos Transistor Theory

    17/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide !7

    Carrier elocity

    Charge is carried y e- Carrier velocity vproportional to lateral ?-ield

    et%een source and drain

    v, ? called (oility ? , Vds9

    "i(e or carrier to cross channel@

    ) t, 9 v

  • 7/25/2019 Chap2 Mos Transistor Theory

    18/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide !8

    nMOS Linear I-V

    'o% %e ;no%) Ho% (uch charge

  • 7/25/2019 Chap2 Mos Transistor Theory

    19/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide !

    nMOS Linear I-V

    'o% %e ;no%) Ho% (uch charge

  • 7/25/2019 Chap2 Mos Transistor Theory

    20/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 2"

    nMOS Linear I-V

    'o% %e ;no%) Ho% (uch charge

  • 7/25/2019 Chap2 Mos Transistor Theory

    21/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 2!

    nMOS Saturation I-V

    I Vgd Vt$ channel pinches o near drain

    ) 8hen Vds. Vdsat, Vgs) Vt 'o% drain voltage no longer increases current

    dsI =

  • 7/25/2019 Chap2 Mos Transistor Theory

    22/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 22

    nMOS Saturation I-V

    I Vgd Vt$ channel pinches o near drain

    ) 8hen Vds. Vdsat, Vgs) Vt 'o% drain voltage no longer increases current

    2dsat

    ds gs t dsat

    VI V V V =

  • 7/25/2019 Chap2 Mos Transistor Theory

    23/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 23

    nMOS Saturation I-V

    I Vgd Vt$ channel pinches o near drain

    ) 8hen Vds. Vdsat, Vgs) Vt 'o% drain voltage no longer increases current

    ( )2

    2

    2

    dsatds gs t dsat

    gs t

    VI V V V

    V V

    =

    = Substitute

    Vdsat= Vgs Vtinto equation.

  • 7/25/2019 Chap2 Mos Transistor Theory

    24/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 24

    nMOS I-V Summary

    ( ) 2

    cutoff

    linear

    saturatio

    0

    2

    2n

    gs t

    dsds gs t ds ds dsat

    gs t ds dsat

    V V

    VI V V V V V

    V V V V

  • 7/25/2019 Chap2 Mos Transistor Theory

    25/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 25

    !"ample

    8e %ill e using a 06B ( process or your proect) 7ro( &MI Se(iconductor

    ) to/, A00

    ) , =E0 c(2

    VFs) Vt, 06 V

    !lot Idsvs6 Vds) Vgs, 0$ A$ 2$ =$ 4$ E

    ) se 89 , 42

    ( )1

    2

    !

    ".# !.!$ 10"$0 120 /

    100 10ox

    W W WC A V

    L L L

    = = =

    0 1 2 3 4 50

    0.5

    1

    1.5

    2

    2.5

    Vds

    Ids

    *(&+

    Vgs, E

    Vgs, 4

    Vgs, =

    Vgs, 2

    Vgs, A

  • 7/25/2019 Chap2 Mos Transistor Theory

    26/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 26

    pMOS I-V

    &ll dopings and voltages are inverted or pMOS Moility pis deter(ined y holes

    ) "ypically 2-=/ lo%er than that o electrons n

    ) A20 c(2

    VFs in &MI 06B ( process "hus pMOS (ust e %ider to provide sa(e current

    ) In this class$ assu(e n p, 2

    ) FFF plot I-V here

  • 7/25/2019 Chap2 Mos Transistor Theory

    27/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 27

    Capacitance

    &ny t%o conductors separated y an insulator havecapacitance

    Gate to channel capacitor is very i(portant

    ) Creates channel charge necessary or operation Source and drain have capacitance to ody

    )&cross reverse-iased diodes

    ) Called diusion capacitance ecause it is

    associated %ith sourcedrain diusion

  • 7/25/2019 Chap2 Mos Transistor Theory

    28/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 28

    #ate Capacitance

    &ppro/i(ate channel as connected to source Cgs, o/89to/, Co/89 , Cper(icron8 Cper(icronis typically aout 2 7(

    n3 n3

    p-type ody

    8

    9to/

    SiO2gate o/ide

    *good insulator$ o/, =6>0+

    polysilicon

    gate

  • 7/25/2019 Chap2 Mos Transistor Theory

    29/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 2

    Diffusion Capacitance

    Cs$ Cd ndesirale$ called parasiticcapacitance Capacitance depends on area and peri(eter

    ) se s(all diusion nodes) Co(parale to Cg

    or contacted di

    ) Cgor uncontacted

    ) Varies %ith process

  • 7/25/2019 Chap2 Mos Transistor Theory

    30/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 3"

    $ass Transistors

    8e have assu(ed source is grounded 8hat i source . 0:

    ) e6g6 pass transistor passing VDDV

    DD

    VDD

  • 7/25/2019 Chap2 Mos Transistor Theory

    31/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 3!

    $ass Transistors

    8e have assu(ed source is grounded 8hat i source . 0:

    ) e6g6 pass transistor passing VDD

    Vg, VDD) I Vs. VDD-Vt$ Vgs Vt) Hence transistor %ould turn itsel o

    nMOS pass transistors pull no higher than VDD-Vtn

    ) Called a degraded A1)&pproach degraded value slo%ly *lo% Ids+

    pMOS pass transistors pull no lo%er than Vtp

    VDD

    VDD

  • 7/25/2019 Chap2 Mos Transistor Theory

    32/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 32

    $ass Transistor C%ts

    VDD

    VDD

    VSS

    VDD

    VDD

    VDD

    VDD

    VDD

    VDD

  • 7/25/2019 Chap2 Mos Transistor Theory

    33/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 33

    $ass Transistor C%ts

    VDD

    VDD V

    s

    , VDD

    -Vtn

    VSS

    Vs, JV

    tpJ

    VDD

    VDD-Vtn VDD-VtnV

    DD-V

    tn

    VDD

    VDD

    VDD

    VDD

    VDD

    VDD

    -Vtn

    VDD-2Vtn

  • 7/25/2019 Chap2 Mos Transistor Theory

    34/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 34

    !ffectie &esistance

    Shoc;ley (odels have li(ited value) 'ot accurate enough or (odern transistors

    ) "oo co(plicated or (uch hand analysis Si(pliication@ treat transistor as resistor

    ) #eplace Ids*Vds$ Vgs+ %ith eective resistance #

    K Ids, Vds#

    ) # averaged across s%itching o digital gate

    "oo inaccurate to predict current at any given ti(e) 5ut good enough to predict #C delay

  • 7/25/2019 Chap2 Mos Transistor Theory

    35/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 35

    &C Delay Model

    se eLuivalent circuits or MOS transistors) Ideal s%itch 3 capacitance and O' resistance

    ) nit nMOS has resistance #$ capacitance C

    ) nit pMOS has resistance 2#$ capacitance C

    Capacitance proportional to %idth #esistance inversely proportional to %idth

    ;g

    s

    d

    g

    s

    d

    ;C;C

    ;C

    #;

    ;g

    s

    d

    g

    s

    d

    ;C

    ;C

    ;C

    2#;

  • 7/25/2019 Chap2 Mos Transistor Theory

    36/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 36

    &C Values

    Capacitance) C , Cg, Cs, Cd, 2 7( o gate %idth) Values si(ilar across (any processes

    #esistance) # B F( in 06Bu( process) I(proves %ith shorter channel lengths

    nit transistors

    ) May reer to (ini(u( contacted device *42 +) Or (aye A ( %ide device) DoesnNt (atter as long as you are consistent

  • 7/25/2019 Chap2 Mos Transistor Theory

    37/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 37

    Inerter Delay !stimate

    ?sti(ate the delay o a anout-o-A inverter

    2

    A&

    2

    A

  • 7/25/2019 Chap2 Mos Transistor Theory

    38/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 38

    Inerter Delay !stimate

    ?sti(ate the delay o a anout-o-A inverter

    C

    C#

    2C

    2C

    #

    2

    A&

    C

    2C

    2

    A

  • 7/25/2019 Chap2 Mos Transistor Theory

    39/40

    CMOS VLSI Design3: CMOS Transistor Theory Slide 3

    Inerter Delay !stimate

    ?sti(ate the delay o a anout-o-A inverter

    C

    C#

    2C

    2C

    #

    2

    A&

    C

    2C

    C

    2C

    C

    2C

    #

    2

    A

  • 7/25/2019 Chap2 Mos Transistor Theory

    40/40

    CMOS VLSI D i3 CMOS T i t Th Slid 4"

    Inerter Delay !stimate

    ?sti(ate the delay o a anout-o-A inverter

    C

    C#

    2C

    2C

    #

    2

    A&

    C

    2C

    C

    2C

    C

    2C

    #

    2

    A

    d , B#C


Recommended