+ All Categories
Home > Documents > Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5...

Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5...

Date post: 26-Jun-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
106
Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers 5.3 Glass transition of polymers 5.2 Viscous flow of polymers , , , , , 1
Transcript
Page 1: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Chapt. 5 Amorphous State of Polymers

5.1 Molecular motions of polymers

5.3 Glass transition of polymers

5.2 Viscous flow of polymers

,

, ,

, ,

1

Page 2: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

5.1

1.

/

x

t

/0

tx x e: relaxation time

(1)

(2)

a.

b. WLF (Tg )

(3)

/0

E RTe

2

Page 3: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Time Dependent Behavior – Example: Silly Putty

3

Page 4: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

4

Page 5: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Stress relaxation

ddt t

tt0tt0

1

0

00

exp /t

E t E t

E

5

Page 6: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Creep

E

t0 tt0 t/

0

1 ttD t D e /tt e

6

Page 7: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Relaxation Time Originates fromViscoelastic Properties of Polymers

Elasticity and viscosityHooke’s law describes the behavior of a linear elastic solid andNewton’s law that of a linear viscous liquid:

Spring as a model:Modulus:

Hooke’s law: = E

Dashpot as a model:Viscosity ( ):

: stress ( ); : strain ( )

Newton’s law: = (d dt)

7

Page 8: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Phenomenological models for linear viscoelasticity

= E = (d dt)

=+ Viscoelasticity ?

Elasticity Viscosity

Model I - Maxwell model Combining the spring and dashpot in series

Model II -Voigt-Kelvin model Combining the spring and dashpot in parallel

Model III – Burger’s Model Combining the Maxwell and Voigt elements in series

….8

Page 9: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Elasticity + Viscosity = Viscoelasticity ?

1

m m

d ddt E dt

dtEd

m

m

0 exp m

m

Et t

0 exp tt

For stress relaxation, d /dt = 0,

At time t = 0, = 0,

Relaxation time: = m/Em:

Model I: Maxwell Model

2

m

ddt

1 1

m

d ddt E dt

1 2

1 2

9

1 = Em 1

2 = m(d 2 dt)

/0

0

ttE t E e

Page 10: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Maxwell Model fails to describe Creep

10

1

m m

d ddt E dt

For creep, = 0,0 0 01

m m m

dddt E dt

the “creep” behavior of viscous liquids.

Page 11: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Model II - Voigt-Kelvin model

1

1

Em

2

2

m

1 1mE

22 m

ddt

Total stress: = 1 + 2;strain: = 1 = 2

1 2 m mdEdt

For stress relaxation, d /dt = 0, 0mEIt fails to describe the stress relaxation behavior.

For creep, = 0, 0 m mdEdt

At time t = 0, = , /0 1 m m t

m

Et eE

Relaxation time:Retardation time = m/Em:

/0 1 t

m

t eE

11

Page 12: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Model II - Voigt-Kelvin model

/1 tD t D e

/00 0/ / 1 t

m

t eECreep compliance

For creep recovery, = , 0 m mdEdt

/tt e

12

Page 13: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Model III – Burger’s Model

E1, 1

E2, 22, 2

3, 3

01

23

3

/

1

002( ) 1 t

Ett e

E

2

2

E

For creep, = 0:

where

1

1

3

2

2

3

13

Page 14: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

-

14

= m/Em

Page 15: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Dynamical Mechanics Analysis

t

0 sin t

0 sin t

= (d /dt)= 0/ sin( t- /2)

0 0 sinW t d t

15

hysteresis and mechanics loss

Page 16: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Complex Modulus: As “Solid”

0 sin t0 0sin cos s ncos it tt

0 sin t

synchronization asynchronism

Modulus ofsynchronization part

Modulus ofasynchronism part

0

0

' cosE 0

0

" sinE

E’

E”"'E EE

' " "'*E EE iEE E

'an "t

EE

or

0

0

* iE e

16

Page 17: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Complex Viscosity: As “Liquid”

0 0sin cos s ncos it tt0 sin t

0 cosd tdt

synchronizationasynchronism

Viscosity ofsynchronization part

Viscosity ofasynchronism part

0

0

' sin0

0

" cos

0

0

' cosE 0

0

" sinE

'" E "' E

17

Page 18: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

For dynamic mechanics

Model I - Maxwell model 0i te

0 0 0 0i t i t i t

m m m m

d ti e e i e

dt E E

0 0 i t

m m

d t dt i e dtE

2 2

2 2 2 2*1 1

m mt E EE it

= m/Em

lnE

()

ln

E’

E”

tan

=1

k=2k=1 k=-1

k=0

18

Model II - Voigt-Kelvin model 0i te

Complex compliance 2 2 2 2

1 1** 1 1m m

D iE E E

1

m m

d ddt E dt

m mdEdt

Page 19: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

internal friction

tan

Tg Tf

tan

log

tan

19

Page 20: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

20

single

polymer

/0

tG t G e

/ iti

i

G t G e

Page 21: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

General Maxwell Model

/ iti

iE t E e

/

0

tE t f e d

For stress relaxation relaxation time spectrum ( )

H t f

Mw: III>II>>I

/ lntE t H e d

single

polymer

21

Page 22: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Viscosity & Relaxation Modulus

22

/ iti

iE t E e

i i iE/ iti iE t Ee

/ /

0 0 0i it t

i i i i i iE t dt Ee dt E e dt E

0 0 0i i ii i i

E t dt E t dt E t dt

0,T E T t dt

Page 23: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

General Voigt Model

For creep retardation time spectrum ( )

2 2

2 2 2 2*1 1

i i i i

i ii i

E EE i

/1 1 1 lntD t L e d

For dynamic mechanics

2 2 2 2

1*1 1

i

i ii i i i

D iE E

or

General Maxwell Model

General Voigt Model

For creep recovery /2 2 lntD t L e d

23

Page 24: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Viscosity & Modulus & Relaxation Time

24

'"

,,

ET

T"'

,,

ET

T

0,T E T t dt

1. oscillatory shear

2. static shear

/,, lntH TE T t e d

Modulus vs Relaxation Time

Viscosity vs Modulus

i= i/Ei i-th movement mode

/, iti

iE T t E T e

relaxation time spectrum

Viscoelasticity of Polymer

Solid Elasticity(short) Liquid Viscosity(long)= E = (d dt)

Page 25: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

5.2 Viscous Flow of Polymers

The rheological properties ( ) ofpolymers is extremely important forpolymer processing

StressStrain

Velocity

Rheology: The study of the deformation

and flow of matter.

25

Page 26: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Characteristic of polymer viscous flow

1.

ddt

nK

Bingham

Pseudoplastic

Dilatant

Newtonian

2.

26

Page 27: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Shear thinning ( )

27

Page 28: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Time-dependent shear stress and primary normal stressdifference after start-up of steady shearing

28

3.

Page 29: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Relaxation of shear stress and primary normal stressdifference after cessation of steady-state shearing

29

Page 30: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

3.

Consider a steady simple shear flow

Shear force Without

Shear force

Die-swell ( ) Extrudate swellobserved for a melt ofPS for various shearrates and temperatures.(Burke, J. J.; etc.Characterization ofMaterials in Research,Syracuse Univ. Press,1975.)

30

Page 31: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Polymer Processing

31

Page 32: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

32

Page 33: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Characterization of viscous flow

( )

a. ( )-shear viscosity s b. ( )-tensile viscosity t

c. ( )-bulk viscosity

for incompresible fluids b

velocity gradient2

dvdx

33

Page 34: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Melt viscosities of polymers

apparent viscosity

/advdh

differential viscosityd

dc

shear viscosity

tt

/ss s

dvdh c

a

complex viscosity ( )

'* "i

0 sin t

0

0

sin

sin / 2t

t

1-D2-D

34

extensional viscosity

Page 35: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

low molecular weight

35

Page 36: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Measurement of shear viscosityCone-plate viscometer ( )- an example

M

H

R

tanh r rhdv r

dh r

3

32

MR

323a

M Rbb

r

36

Page 37: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

As liquids: The flow curve of polymer melts

s

N1

N2p

d

entanglementdisentanglementorientation

turbulence

log s

log

N1

N2

0

0

t

p

00/

/

37

Page 38: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

0 dependent of M

10 ~

W cMM M

Critical molecular weight at theentanglement ( ) limit: Mc

Exp.

Theory1

0 ~ Rouse ModelM

38

3.3~3.40 ~

W cM M M

30 ~ Tube (Reptation) ModelM

Page 39: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

As Solids: Time vs. Frequency vs. Temp at Low Deformations

39

0 1~Ne

GM

0NG

0NG

Page 40: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

1.2.3.

2. -Vogel-Fuchler0exp /A B T T

Tf

1.

3.Brigid>Bflexible

4. -

404.

Page 41: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Viscosity & Modulus in Polymer Melts

41

log s

log

N1

N2

0

0

p

log log log logssViscosity

Modulus

1 3.30 0 orM M

Page 42: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Molecular Theory of Viscous Flow andViscoelasticity of Polymer – How to get

Rouse model

Rouse-chain:The chain is subdivided in N ‘Rouse-sequences’, eachsequence being sufficiently long so that Gaussian propertiesare ensured.Each Rouse sequence is substituted by a bead and a spring.The springs are the representatives of the elastic tensileforce, while the beads play the role of centers whereonfriction forces apply.

1

2 iN-1

N

Rouse-chain composed of N+1 beadsconnected by springs

When a bead is displaced from itsequilibrium position there are two types offorces acting on it: (1) those that resultfrom the viscous interaction with thesurrounding molecules, and (2) those thatrepresent the tendency of the molecularchains to return to a state of maximumentropy by Brownian diffusion movement.42

Page 43: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Potential of a Spring

0F R k R R2

012

U R k R R

Hook’s law

Boltzmann Factor~ exp / BU R k T

Partition Function~ exp /i B

iZ U R k T

Free Energy lnBF k T Z 43

Page 44: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

A Brief Review of Gaussian Model

3/ 2 20

2 2

33 exp exp2 2

nn

B

uA

b b k Trr

kk k

kk

3 / 2

0211

3 / 20

2

3 1exp2

3 exp2

nn n

nnn B

nn

B

ub k T

U

b k T

R r

r

rn

b b Gaussian Segment

20 12

32n B n nu k Tb

r R R

k

k

20 12

1

32

n

n B n nn

U k Tb

r R R

Rn

Rn-1

44

Page 45: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Rouse model

Consideration of the restoring force when a bead is displaced from its equilibriumposition leads to the expression

dx/dt: the time differential of the displacement of ith bead: the friction coefficient of a bead

l: the length of each link in a chainN: the number of the links in a macromolecule(for N submolecules there are 3N of these equations)

1 12 2

3 3 (2 )ii B Bi i i i

i

U RdR k T k T R R R fdt b R b

1

2 i N-1

N

For the Brownian motion of a harmonic oscillator21

2U R kR

dR U f F f kR fdt R

For the Brownian motion of the bead-spring model2 2

1 112i i i i iU R k R R R R

Langevin equation

45

f: Random force of Brownian Motion

Page 46: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Normal Coordinates of Rouse Model

46

d k fdtQ ZQ I

1 11 2 1 0

0 1 2 1...

0 1 2 11 1

Z Rouse-ZimmMatrix

11 2 1

21 2 3 2

1 1

1

0

2 0

0 2 0

0

i i i

nn

i

n

i

n

dR k R R fdt

dR k R R R fdt

k R R R

dR k R R fdt

tR f

1 12i i i ii k R R R

tfR

23 Bk Tk

b P156 of Chapt 1-2

1

n

R

RQ

Page 47: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

47

Applications of Gaussian Chain Model: Stretching of an Ideal Chain

3/22

2 2

3 3, exp2 2

g g

gg g

NN l N l

hh3/2

2

2 2

3 3, , exp2 2g g g g

g g

N N N NN l N l

hh h

2

2 2

3 3 3( , ) ln( ) ln2 2 2g B B B g

g g

S N k k k NN l N lhh

23( , ) Bg

g

G Nh

k TN l

hf h

2

2

3( , ) ( )2g B g

g

G N U TS k T G NN lhh

, , /g g gN N Nh h

lnS k h

=???

kf x

ln / 'S k

/' '/

Page 48: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

( )

48

X TQ1TZT

1dT k T T T Tfdt

Q Z Q I

2

3 Bk Tddt bX X

: T

Z :

1

2

...

n

0 expp pp

tX t X2

3pB p

bk T

24sin2ppN

2 2

1 23 B

N bk T

Terminal relaxation time2

23 4sin2

p

B

bpk TN

2

30 exp Bk Tt tb

X X

( )

X:

2 2

2 2

13 B

N bk T p 1 2

1p

2

42pN

Page 49: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

49

Page 50: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

50

3n 3n 3n,

C2H4

Page 51: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

51

The Zimm Model

,mm

nnmH m

ttUk

RfR

Rouse model

1 ˆ ˆ Zimm model8

nm

nm nmnm

Ir

I

Hr r

Oseen Tensor

Rouse Model Zimm Model

nmH m bead n bead

n m n mm

v r H r r F r

Page 52: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Oseen Tensor

5252

The Momentum Equation of Fluids – Navier-Stokes Equation

Stokes Approximation:2

0Pv F r

v

2

0i P F

ik k k

k

k v kk v

In Fourier Space:

2

1 ˆ ˆvk k kI kk F H k Fk

Doi, Edwards, The Theory of Polymer Dynamics, p89

2 0k kk v F

k

vk

kv

k

//kv

' ' 'dv r r H r r F r

3 2

1 1 1ˆ ˆ ˆˆ82

id er

k rH r k I kk I rrk

ˆ ˆT I kk

2

0

P Ptv F r v F r

v

22i ik k

Page 53: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Estimating The Longest Relaxation Times

53

f v Bk TDFriction coefficient Einstein Relation

1/22 1/20 6t Dtr r

Stokes Law 6 s hRR=l

206R D

2 2

0 6 6 B

R lD k T

Brownian Motion

Stokes-Einstein Relation6

B

s h

k TDR 6

Bh

s

k TRD

Rouse Model:

BR

R

k TD R N

2g

RR

RD

gR N l

Zimm Model:

Z s gRBZ

Z

k TD

2g

ZZ

RD

2g

B

NRk T

21 2

B

l Nk T

2Z g

B

Rk T

3s g

B

Rk T

33s

B

l Nk T

sl

31 2s

B

l Nk T

3s

B

lk T

Page 54: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Relaxation times of Rouse-Zimm Model

54

2 22

2

1,Rouse

3

2

pB

N b pk Tp

Rouse model

3 33

1,zimm

pB

N b pk Tp

Zimm model ingood or solvent

2 2

1,Rouse 2

2

3~

B

N bk T

M

Terminal relaxation time3 3

1,zimmB

N bk T

3 / 23 9 / 5

3/2~ M9/5~ M

or

relaxation time of different mode

or11/5~ Mor

Page 55: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Rouse-Zimm model

The first three normal modes of a chain

R-Z model is good for M < MC3

0.425 AN N aM

230(RZ)

230 exp

0.425 2.56 10

2.2 ~ 2.87 10AN

1

2

01/2

( ) exp( )

exp 2 /

2 2

m

Bp p

B R

RB

tG t nk T

c k T dp tpN

c k TtN

2 2

2 21

'( )1

mp

Bp p

G nk T

2 21

"( )1

mp

Bp p

G nk T

1

1,2, , .p p

p m

Relaxation time for the pth mode:For N >> 1

Stress relaxation modulus andcomplex modulus (Maxwell-element model):

55

Page 56: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Prediction of Viscoelasticity by Rouse-Zimm ModelRouse: Zimm:

2 2

2 21

'( )1

mp

Bp p

G nk T 2 21

"( )1

mp

Bp p

G nk T

1<<12 2 2

11

'( ) ~p

G p 11

"( ) ~p

G p

1>>12 2

12 20

1

1 1/1/

1 20

1/ 1/1

'( )1

11

~2 sin / 2

pG dp

p

xdxx

12 20

1

1/1/

1 20

1/ 1/1

"( )1

11

~2 cos / 2

pG dp

p

xdxx

1 1: '( ) "( )G G 1 terminal relaxation time3.

56

( =2 or 11/5) ( =3/2, solvents) or ( =9/5 , good solvents)

Page 57: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Dynamic Modulus of Polymer in Dilute Solution

57

Rouse ( =2) Zimm ( =3/2, solvents) Experiments

2'( ) ~G"( ) ~G

1<<1

1>>1 1/"( )G

1/'( )G1

5/9 or 2/3

1<<12'( )G1"( )G

Page 58: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

From Maxwell Model to General Maxwell Model orRouse-Zimm Model

58

lnE

()

ln

E’

k=2

k=1 k=-1E”

Linearsuperpose ofMultipleRelaxationTimeSpectrum

Single RelaxationTime

Maxwell Model Rouse-Zimm Model

MultipleRelaxation Time

Page 59: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Relaxation Modulus and Dynamic Modulus of Rouse Model

59

1

2

01/2

( ) exp( )

exp 2 /

2 2

m

Bp p

B R

RB

tG t nk T

c k T dp tpN

c k TtN

(t< R)

1/2

( ) exp /RB R

cG t k T tN t (t>> R)

2 2

0 0

2a xe dx a

aNote:

0 0

2

01

2

1

2

exp 2 /

2

36

RpB

R

pB

dtG t

c dt tpNk T

c pNk Tc Nb M (M<Mc)

Page 60: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

60

,

M<Mc

RouseModel

ZimmModel

G”~ 1

G’~ 2

G”~ 1

G’~ 2

0

0

' co sG 0

0

" sinG

Page 61: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Dynamics Modulus of Polymer Melts (M>Mc)

61

M

0 1~Ne

GM

Plateaumodulus

2

1/ 2

???G”

G’

Page 62: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Relaxation Modulus of Polymer Melts

62

M<Mc

M>Mc

Page 63: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Relaxation Modulus vs Dynamic Modulus in Melts

63

Page 64: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Tube & Reptation Model for Entanglement

64

Contour length of the primitive tube: Lpr

Length between entanglement: apr

Page 65: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Microscopic Dynamical Model of Polymers

Reptation modelReptation model:Decomposition of the tuberesulting from a reptationmotion of the primitivechain. The parts which areleft empty disappear.

2 20 pr prR Nb L a

Define the contour length of theprimitive path Lpr:

apr is the associated sequence length,which describes the stiffness of theprimitive path and is determined by thetopology of the entanglement network.

65

2 /pr prL Nb a

1/ 22 2 20n n B e prt k Tb aR R4

2pr

eB

ak Tb

entanglement time

2pr

d

LD

Curvilinear diffusion coefficient D:

B

P

k TD (Einstein relation)

P bN ( b: friction coefficient of bead)In order to get disentangled, chainhave to diffuse over a distance lpr,and this requires a time:

3~d b NTherefore,

Lpr

Relation of entanglement andreptation model

apr

disentanglement time

Page 66: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

6666

Time correlation function of End-to-end Vector

0 0

2

0t A C CD DB AC CD DB

CD a t

P P

3 4 22 2

2 2 2

1 3/ bd R

B

N b NbL Dk Ta a

20

exp / dt t p t

Doi, M., Edward, S. F., The Theory of Polymer Dynamics, Oxford, 1986, p.194

Page 67: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Comparison of relaxation times

67

40

2 ~eB

a Mk Tb

23

2

3 ~d RNb Ma

2 22

1,Rouse 2 ~3 B

N b Mk T

Page 68: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Effects of Entanglement on Relaxation ModulusDynamically ShearStep Shear

68

0

1/2

2

2

2

2

1~

e N

RB

e

B

e e

G t G

c k TN

cb k TacbN b M

Tg

0NG t G

1~

1/2

2 2R

BcG t k T

tN

Page 69: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Viscosity

69

0 0

2

01

2

1

2

exp 2 /

2

36

RpB

R

pB

dtG t

c dt tpNk T

c pNk Tc Nb M

Rouse Tube

0 02

0

3

=12

~

N d

dtG t

G

M

cM McM M

Note, ~ ~ Mwith 3.3 – 3.4for molecularweight higherthan Mc.

69

2 2

23RB

N bk T

23

2

3 ~d RNb Ma

Page 70: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Experiments & Simulations

Series of image of a fluorescent stained DNA chain embeddedin a concentrated solution of unstained chains. (Chu. S. etc.Science 1994, 264, 819.)

Initial conformation

Stretched

Reptationstarts

70

Page 71: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Normal stress difference and Elastic effects onviscous flow of polymers

11

21

22

33

F/A= s= 21

N1= 11- 22>0

N2= 22- 33<0

1122

33

Weissenberg effect

For polymer melts

F

For lowmolecularweight liquids

N1= 11- 22=0

N2= 22- 33=0

A

71

Page 72: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Rod-climbing

72

Page 73: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Extrudate swell

73

Page 74: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

tubeless siphon ( )

74

Page 75: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

toroidal eddy ( )

75

Page 76: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Instability in Processing

76

Page 77: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

77

Instability in Processing

Gross Melt Fracture

Page 78: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Sharkskin

78

Page 79: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Stick-slip

79

Page 80: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

GMF

80

Page 81: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Stick-Slip Transition

81

cSample is oriented

Page 82: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Stick-Slip Transition

82

1c

2 /sV b

Vs

b c

b

c enF 1/2B B

epr e e

k T k TFa N l

Lpr

apr

Page 83: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Flow instability and melt fracture

Shark skin

melt fracture

83

Page 84: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

5.3

Tg Tf

T

Terminal flow< ~ >~

Tm Tm

Linear and Cross-link

Semi-crystalline orcrystalline Tm<Tf

Crystalline Tm>Tf

84

Page 85: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

5.2

1.( )

( ) ( )

( - ) ( - )

2.

3.

85

Page 86: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Glass Transition as a Relaxation ProcessThermal history dependence of Tg

Temperature dependence of the specificvolume of PVA, measured during heating.Dilatometric ( ) results obtainedafter a quench to –20 C, followed by 0.02 or100 h of storage. (Kovacs, A. J. Fortschr.Hochpolym. Forsch. 1966, 3, 394)

86

liquid

Vcrystal

glass 2

glass 1

1: fast cooling2: slow cooling

supercooledliquid

TTmTg1Tg2

Page 87: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

4.

(1) -(2) -DSC(3)a. -b. -DMA

(4) -NMR,

Tg0 sin t

0 sin tTTg

tan

87

Page 88: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Polymer Melts and Glasses

88

The deepest and most interesting unsolved problem in solid statetheory is probably the theory of the nature of glass and the glasstransition. (Anderson, P.W. Science 1995, 267, 1615.)

(liquid)

liquid

glasses

(glasses)

slowly cooledfast cooled

Tg fastslow Tg

G

T

The transition from melt to glass iscalled glass transition ( )

Tg: glass transition temperature ( ) 88

Page 89: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Why Glass Transition belongs to Segment Relaxation?

89

0NG

secondary eg

secondary g elenglength l hth engt

Page 90: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

90

Liquid vs Glass

Solid vs Glass

Page 91: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

5. - Free Volume Theory

Hole theory of liquid: the liquid consists of matter and holes. The larger volumeof liquid when compared to the crystal is represented by a number of holes of afixed volume. The holes represent a quantized free volume, which can beredistributed by movement or collapse in one place and creation in another.

The segmental motion of polymerchain requires more volume

Free volume: a concept useful in discussing transportproperties such as viscosity and diffusion in liquids.

91

Occupied volume: filled circles; free volume:hole

Page 92: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Free Volume Theory

The volume-temperature relationship for atypical amorphous polymer

The coefficient of thermal expansion(CTE, ) is constant for theoccupied volume for both temperaturebelow and above Tg

Assume that at the temperature below Tg,the free volume is constant; and the freevolume will increase with temperaturewhen temperature exceed Tg

0g f gg

dVV V V TdT

gr

gr TTdTdVVV

0f r f g gTg r g g

f gr g

dV dV dV dVV V V T V T T T TdT dT dT dT

dV dVV T TdT dT

ggrgf dT

dVVdT

dVV

11 )( ggfgT TTTTff

f TT g

g

Vf T T

V

fg g

g

Vf T T

V

Vg

0g

dVV TdT

Vr

Vf: free volume at T < Tg(Vf)T: free volume at T TgVr: total volume at T TgV0: occupied volume (determined by

van der Waals interaction + vibration)dV/dT): CTE of the glass- and rubber-state

92

(Vf)T

V0

Vf

Page 93: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Free Volume Theory (cont.)

T g f gf f T T

Relation of the molecular mobility to freevolume: Doolittle equation

fVBVA /exp 0

)()(

)()()(

00 TVTV

TVTVTV

f f

f

fT

( ) 1 1log( ) 2.303g T g

T BT f f

17.442.303 g

Bf

51.6g

f

f %5.2025.0gf

Kf /108.4 4

17.44( )(51.

)lo6

g( ) ( )

g

g g

T TTT T T

)(/)(lnln 0 TVTBVAT f

)(/)(lnln 0 gfgg TVTBVAT )()(

)()(

)()(ln 00

gf

g

fg TVTV

TVTVB

TT}

Normalized free volume:

WLF equation:

Nearlyequal to 1

2.303 / f

g

gg g

T TBTff T

( )log( )g

TT

93

Page 94: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Appendix: Doolittle equation & Einstein equation

fVBVA /exp 0

Doolittle equation

0fV V

01 / 1fA BV V A B

In solution and the volume fraction of suspensions0 0/ fV V V

For the solution of impenetrable spheres of radius R, Einstein derived theEffective viscosity of suspensions

0 1 2.5

Einstein equation

94

1xe x

In glass or melt 0fV V

fVBVA /exp 0

0 / fV V

Page 95: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Applications of WLF Eq.

95

1

2

lg lg sT

s s

C T Ta

C T T

Page 96: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Two principles for linear viscoelasticity(1) Time-Temperature Equivalence and Superposition

Time-temperature equivalence ( ) in its simplest form implies thatthe viscoelastic behavior at one temperature can be related to that atanother temperature by a change in the time-scale only.

1

1

/0

tTE t E e

1 2

2

2

/0

tTE t E e

lnaT

10 1ln ln / ln /TE E t t20 2ln ln / ln /TE E t t

+ln( 1/ 2)=lnaT

-ln( 1/ 2)=-lnaT

E(t)

ln(t)

T2T1

/0

E RTe

T1 T2 T3 …..

1 2 3 ….. 96

Page 97: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Synthesized master-curve ( )

Schematic creep plots atdifferent temperatures

Superpose

Master curve of creep from superposingplots of the left figure

97

Page 98: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Synthesized master-curve

1

2

lg lg sT

s s

C T Ta

C T T

In both the glass-transitionrange and terminal flowregion, the modes ofmotions vary greatly intheir spatial extensions,which begin with thelength of a Kuhn segmentand go up to the size of thewhole chain, and vary alsoin character, as theyinclude intramolecularmotions and diffusivemovements of the wholechain. Nevertheless, allmodes behave uniformly.

98

Page 99: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

(2) The Boltzmann Superposition PrincipleThe Boltzmann superposition principle ( )In 1876, Boltzmann proposed:

1. The creep is a function of the entire past loading historyof the specimen;

2. Each loading step makes an independent contribution tothe final deformation, so that the total deformation canbe obtained by the addition of all the contribution.

1 1 2 2 3 3( ) ( ) ( ) ( )t J t J t J t

( ) ( ) ( )t

t J t d t( )( ) ( )

tt J t d

1 1 2 2 3 3( ) ( ) ( ) ( )t G t G t G t ( )( ) ( )t

t G t d

Creep

Stress relaxation

990

G s ds0

( ) ( )dt G s dsdIn steady shear: t s

d d s

Page 100: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Viscosity & Relaxation Modulus

100

/ iti

iE t E e

i i iE/ iti iE t Ee

/ /

0 0 0i it t

i i i i i iE t dt Ee dt E e dt E

0 0 0i i ii i i

E t dt E t dt E t dt

0,T E T t dt

Page 101: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

mm

m

HTS

Tm vs. Tg

Chain rigidity: More rigidchain present higher Tg

2/1/ mg TT

3/2/ mg TT

For symmetrical backbone,

For asymmetrical backbone,

Molecular weight dependence Tg vs. Mn

Fox equation:n

gg MKTT )(

Tg vs. Tb

0g bT T

Heating rate dependence

T

slow

fast

ts<< 1 tf<<< 1T1

Tg1 Tg2

Tg1 ts ~ g1 tf < g1

T1

Tg2 tf ~ g2

/0

1/

E RT

fs

et v t t

v

t

0g bT T101

Page 102: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Effects of film thickness on Tg

Tsui, OKC, Macromolecules, 34, 5535 (2001)102

Page 103: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

103

Page 104: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Glass transition of polymer mixtures

104

Page 105: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Glass transition of polymer mixtures

Some polymer blends exhibit partial miscibility. They have a mutual, limitedsolubility indicated by a shift in the two Tg’s accompanying a change in thephase composition of the blend. More uncommon is the type of miscibilityindicated by the presence of only single Tg.

2

2

1

11ggg T

wTw

TFox-Flory equation:

Tg of compatible blend PPOand PS as a function of PPOcontent. (Bair, H. E. Polym.Eng. Sci. 1970, 10, 247.)

Plasticization of PVC: Tg asfunction of di(ethylhexyl)-phthalate content. (Wolf, D.Kunststoffe 1951, 41, 89.)

Partial miscible blend

DSC curves of 50 mass-% blends ofPS and poly( -methyl styrene) at aheating rate of 10 K/min. (Lau, S. F.;etc. Macromolecules 1982, 15, 1278.)

105

Miscible blend

Page 106: Chapt. 5 Amorphous State of Polymersfdjpkc.fudan.edu.cn/_upload/article/files/9f/32/f...Chapt. 5 Amorphous State of Polymers 5.1 Molecular motions of polymers ... 11 * *11 mm Di EEE

Effects of Tg on Morphology of Polymer Blends

Cheng SZD, Keller A, Ann Rev Mater Sci, 28, 533 (1998)Tanaka H, J Phys Condens Matter,

12, R207 (2000)106

Nucleation & Growth Spinodal Decomposition

???


Recommended