+ All Categories
Home > Documents > Chapter 03 Random Variables Part A

Chapter 03 Random Variables Part A

Date post: 07-Apr-2018
Category:
Upload: yasir-ateeq
View: 222 times
Download: 0 times
Share this document with a friend
55
Definition of a Random Variable Random Variable [m-w.org] : a variable that is itself a function of the result of a statistical experiment in which each outcome has a definite probability of occurrence Copyright © Syed Ali Khayam 2009 3
Transcript
Page 1: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 1/55

Definition of a Random Variable

Random Variable [m-w.org]

: a variable that is itself a function of the result of a statistical

experiment in which each outcome has a definite

probability of occurrence

Copyright © Syed Ali Khayam 20093

Page 2: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 2/55

Definition of a Random Variable

A random variable is a mapping from an outcome s of a

random experiment to a real number

: X X S S → ⊂

domainrange

 

Copyright © Syed Ali Khayam 20094

Page 3: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 3/55

Definition of a Random Variable

:X S S →

head

an om

ExperimentSample Space Random

VariableX(s)

tail0 1 R

S  x 

Copyright © Syed Ali Khayam 20095

Page 4: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 4/55

Definition of a Random Variable

:X S S → ⊂

 X (s)

1 2 R3 4 5 6

Random

Sample Space, S 

Random Variable

S  x 

Copyright © Syed Ali Khayam 2009

Image courtesy of www.buzzle.com/

6

Page 5: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 5/55

Definition of a Random Variable

More than one outcomes can be mapped to the same real

number:X S S →

X(s)

Random

0 1

S  x 

xper menSample Space

Random Variable

Copyright © Syed Ali Khayam 2009

Image courtesy of www.buzzle.com/

7

Page 6: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 6/55

Types of Random Variables

Discrete random variables: have a countable (finite or infinite)image S x = {0, 1}

S x = {…, -3, -2, -1, 0, 1, 2, 3, …}

Continuous random variables: have an uncountable image S x = (0, 1]

S x = R

Mixed random variables: have an image which contains

continuous and discrete parts S x = {0} U (0, 1]

We will mostly focus on discrete and continuous random

var a es

Copyright © Syed Ali Khayam 20098

Page 7: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 7/55

screte an om ar a es

Copyright © Syed Ali Khayam 20099

Page 8: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 8/55

Probability Mass Function

The Probability Mass Function (pmf ) or the discrete probability

density function provides the probability of a particular point in

For a countable S X ={a0, a2, …, an}, the pmf is the set of 

probabilities

( ) { }Pr , 1,2, ,X k k p a X a k n  = = = …

 p X (ak )

S  X ={a0=0, a1=1, …, a5 =5},

Copyright © Syed Ali Khayam 2009

 X 

10

Page 9: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 9/55

Properties of a PMF

P1: ( )0 1X k p a ≤ ≤

P2: ( ) 1k X 

X k a S  p a ∈ =∑

 X k 

S  X ={a0=0, a1=1, …, a5 =5},

Copyright © Syed Ali Khayam 200911

Page 10: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 10/55

Cumulative Distribution Function (CDF) of Discrete

Random Variable

The Cumulative Distribution Function (CDF) for a discrete rv is

defined as:

( ) { } ( )PrX X 

x t F t X t p x  

≤= ≤ = ∑

 p X ( x )

mf 

F  X ( x )

CDF

 X 1 2 3 4 X 1 2 3 4

Copyright © Syed Ali Khayam 200912

Page 11: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 11/55

Cumulative Distribution Function (CDF) of Discrete

Random Variable

CDF can be used to find the probability of a range of values in a

rv’s image:

{ } { } { }( ( )

Pr Pr Pr

X X 

a X b X b X a  F b F a  

< ≤ = ≤ − ≤= −

 p X ( x ) F  X ( x )

pmf CDF

Copyright © Syed Ali Khayam 2009

 X 1 2 3 4 X 1 2 3 4

13

Page 12: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 12/55

Properties of a CDF

F1: ( )0 1X F x x ≤ ≤ ∀ − ∞ < < ∞

F2: ( )X X a a ⇒

 p X ( x )

pmf 

F  X ( x )

 X 1 2 3 4 X 1 2 3 4

Copyright © Syed Ali Khayam 200914

Page 13: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 13/55

Properties of a CDF

F3:( )lim 0x X F x →−∞ =

F4:

mx X  x →∞ =

( ) ( ) ( )1 1X i X i X i  F x F x p x  + += +

 p X ( x ) F  X ( x )

pmf CDF

Copyright © Syed Ali Khayam 2009

 X 1 2 3 4 X 1 2 3 4

15

Page 14: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 14/55

Expected Value of a Discrete Random

Variable The expected value, expectation or mean of a discrete rv is the

“average” value of the random variable

What is the average value of a random variable whose image is

S = 1 6 7 9 13 ?

Copyright © Syed Ali Khayam 200916

Page 15: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 15/55

Expected Value of a Discrete Random

Variable What is the average value of the following random variable

whose image is S X ={1, 6, 7, 9, 13}?

If your answer is 7.2 then you assumed that all of the values in the

rv’s ima e have e ual wei hts

( )

1 1 1 1 1 1

1 6 7 9 13 1 6 7 9 13 7.25 5 5 5 5 5× + × + × + × + × = + + + + =

Copyright © Syed Ali Khayam 200917

Page 16: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 16/55

Expected Value of a Discrete Random

Variable Mathematically, the expected value of a discrete random

variable is:

{ } { }Prk X 

X k k a S 

X a X a  µ∈Ε = = =∑

,

In such cases, we say that the expected value does not exist

Copyright © Syed Ali Khayam 200919

Page 17: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 17/55

Variance of a Random Variable

Variance of a rv is a measure of “the amount of variation of a rv

around its mean”

Intuitively, which of the following discrete rvs has a higher

variance?

 X 

0.5E { X }=3.87

 X 

0.4E { X }=5.2

0.033

.

0.2

0.1

Copyright © Syed Ali Khayam 2009

1 6 7 9 13 X  1 6 7 9 13 X 

20

Page 18: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 18/55

Variance of a Random Variable

Intuitively, which of the following discrete rvs has a higher

variance?

q X ( x ) has a higher variance because it varies more around its mean

than p X ( x )

 p X ( x )

E X  =3.87

q X ( x )

E { X }=5.20.5

0.4

0.2

0.4

1 6 7 9 13

0.033

 X  1 6 7 9 13

0.1

 X 

Copyright © Syed Ali Khayam 200921

Page 19: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 19/55

Variance of a Random Variable

Mathematically, the variance of a discrete rv is defined as:

2var r

k X 

X k k 

a S 

a a σ 

= = − =

Copyright © Syed Ali Khayam 200922

Page 20: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 20/55

Variance of a Random Variable

 x x 

0.5

0.4

E { X }=3.87 0.4 E { X }=5.2

var { X }=15.36

0.033

0.2

0.1

var { X }=9.91

1 6 7 9 13 X  1 6 7 9 13 X 

{ } ( )2var 1 3.87 0.5X  = − × + { } ( )2

var 1 5.2 0.4X  = − × +

( ) ( )

( ) ( )

2 2

2 2

6 3.87 0.4 7 3.87 0.033

9 3.87 0.033 13 3.87 0.033

− × + − × +

− × + − ×

( ) ( )

( ) ( )

2 2

2 2

6 5.2 0.2 7 5.2 0.2

9 5.2 0.1 13 5.2 0.1

− × + − × +

− × + − ×

Copyright © Syed Ali Khayam 2009

.= .=

23

Page 21: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 21/55

Standard Deviation of a Random Variable

In many scenarios, we use the square root of the variance

called its standard deviation

{ }varX  X σ  =

Copyright © Syed Ali Khayam 200924

Page 22: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 22/55

Standard Deviation of a Random Variable

 p X ( x )

0.5E { X }=3.87

q X ( x )

0.4E { X }=5.2

0.4

0.2σ 

 X =3.14

σ  X =3.92

1 6 7 9 13

0.033

 X  1 6 7 9 13

.

 X 

{ }var 15.36 3.92X  X σ  = = ={ }var 9.91 3.14X  X σ  = = =

Copyright © Syed Ali Khayam 200925

Page 23: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 23/55

Discrete Uniform Random Variable

A discrete uniform rv, D, has a finite image and all the elements

of the image have equal probabilities

Pr{D=k }

1/n

What do you think are the expected value and standard

k x1 x2 x3 xn

deviation of this random variable?

Copyright © Syed Ali Khayam 200926

Page 24: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 24/55

Bernoulli Random Variable

A Bernoulli Random Variable is defined on a single event A

This rv is based on an experiment called a Bernoulli trial

The experiment is performed and the event A either happens or does not

happen

Thus the sam le s ace of a Bernoulli rv is binar 

Sample Space

Bernoulli Random

VariableX sB 

A=head

 er n o ul  l  i   T  c 

 o

 Ac 

= Not head= tail

0 1 Ri   al  : T  o s  s 

i  n

Copyright © Syed Ali Khayam 2009

S  x 

 

27

Page 25: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 25/55

Bernoulli Random Variable

A Bernoulli Random Variable is defined on a single event A

This rv is based on a the experiment called a Bernoulli trial

The experiment is performed and the event A either happens or does not

happen

Thus the sample space of a Bernoulli rv is binary

Bernoulli Random

VariableX sP 

 A=Pak wins

R

k i   s  t   an c r i  

 pl   a y  s A  u

 Ac =Pak losses 0 1

Sample Space

k  e t   t   e am 

 s  t  r  al  i   a

Copyright © Syed Ali Khayam 2009

Image Courtesies of http://www.tribuneindia.com and

images.google.com

28

Page 26: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 26/55

Bernoulli Random Variable

A Bernoulli Random Variable is defined on a single event A

This rv is based on a the experiment called a Bernoulli trial

The experiment is performed and the event A either happens or does not

happen

Thus the sample space of a Bernoulli rv is binary

Bernoulli Random

Of course the Pr{A} = 0 for this

ex eriment

 A=Pak wins

VariableX(s)

P  ak i   s  t   a

 pl   a y 

 Ac =Pak losses0 1

R  c r i   c k  e t   t  

 A  u s  t  r  al  i  

Copyright © Syed Ali Khayam 2009

Sample Space

Image Courtesies of http://www.tribuneindia.com and

images.google.com

 am 

29

Page 27: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 27/55

Bernoulli Random Variable

Typical examples of Bernoulli rvs in communication:

Transmit a bit over a wireless channel

 

0−

> bit is received error-free 1 −> bit received is not received error-free => bit is received with errors

 

Outcomes:

0 −> packet is received

1 −> acket is not received => acket is lost en-route due to con estion

Copyright © Syed Ali Khayam 200930

Page 28: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 28/55

Bernoulli Random Variable

Sample space of a Bernoulli rv, I, is binary

Both outcomes are mapped to real numbers,

Traditionally: I( A) = 1 and I( Ac) = 0 are used to represent a Bernoulli rv’s

outcomes

The pmf of I is:

Pr{I = 1} = p

Pr{I = 0} = 1 −  p

Pr{I =k }

 p

1- p

Copyright © Syed Ali Khayam 2009

0 1

31

Page 29: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 29/55

Bernoulli Random Variable

Example:

Consider the experiment of a fair coin toss. What is the expected

value and the variance of this Bernoulli rv?

Pr{I =k }

0.5

I 0 1

Copyright © Syed Ali Khayam 200932

Page 30: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 30/55

Discrete Random Variables

Example:

Consider the experiment of a fair coin toss. What is the expected

va ue an e var ance o s ernou rv

Since the coin toss is fair: Pr{I = 1} = 0.5 and Pr{I = 0} = 0.5

. . .

var{I} = (1−0.5)2x(0.5) + (0−0.5)2x(0.5) = 0.25

Pr{I =k }

=

σ I =0.5

0.5

.

Copyright © Syed Ali Khayam 2009

0 1

33

Page 31: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 31/55

Bernoulli Random Variable

Example:

Consider a binary symmetric channel with probability of bit-error

0.1. What is the expected value and the variance of this Bernoulli

rv?

Pr{I =k }

0.9

I 0 1

Copyright © Syed Ali Khayam 200934

Page 32: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 32/55

Bernoulli Random Variable

Example:

Consider a binary symmetric channel with probability of bit-error 0.1. What is the

ex ected value and the variance of this Bernoulli rv?

The event of interest here is a bit-error:

=> Pr{I = 1} = 0.9 and Pr{I = 0} = 0.1

= . . = .

var{I} = (1−0.9)2x(0.9) + (0−0.9)2x(0.1) = 0.09

Note that the variance of this pmf is smaller than the variance of the coin tosspm

Pr{I =k }

0.9σ I =0.3

0.1

 µ I =0.9

Copyright © Syed Ali Khayam 2009

I 0 1

35

Page 33: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 33/55

Binomial Random Variable

Consider a collection of n independent Bernoulli trials

A Binomial Random Variable is the total number of occurrences

of an event A in this independent Bernoulli collection

Send n bits count the number of bits that are received with errors 

Send n packets, count the number of packets that are not lost

Copyright © Syed Ali Khayam 200936

Page 34: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 34/55

Binomial Random Variable

If I j ( A)=1 and I j ( Ac)=0, j =1,2,…,n, are used to represent the

outcomes of the Bernoulli trials then the Binomial Random

ar a e, , s

X I = ∑

So what is the ima e of ?

1 j =

Copyright © Syed Ali Khayam 200937

Page 35: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 35/55

Binomial Random Variable

If I j ( A)=1 and I j ( Ac)=0, j =1,2,…,n, are used to represent the

outcomes of the Bernoulli trials then the Binomial Random

, ,

 j X I = ∑

So what is the image of  X ?

1 j =

S X = {0, 1, 2, 3, …, n}

Copyright © Syed Ali Khayam 200938

Page 36: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 36/55

Binomial Random Variable

Pr{I j (A)=1} = p and Pr{I j (A)=0} = 1- p

Then a Binomial rv X is defined as:

X I =1 j =

An t e pm o a nom a rv s

n k k 

n −

r p pk = = −

Copyright © Syed Ali Khayam 200939

Page 37: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 37/55

Binomial Random Variable

The pmf of a Binomial rv X is:

n −

; , rn p p p

= = = −

s pm g ves e pro a y a exac y ou o a o a o n

Bernoulli trials were successes

Be very careful about the definition of a success

Copyright © Syed Ali Khayam 200940

Page 38: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 38/55

Binomial Random Variable

Pr{ X =k }

Copyright © Syed Ali Khayam 2009

Image courtesy of Wikipedia article on Binomial Distribution

41

Page 39: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 39/55

Binomial Random Variable

Example:

Consider a binary symmetric channel with probability of bit-error p.

n e pro a y a a pac e o n s s rece ve w one

or more errors?

Copyright © Syed Ali Khayam 200942

Page 40: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 40/55

Binomial Random Variable

Example:

Consider a binary symmetric channel with probability of bit-error p.

n e pro a y a a pac e o n s s rece ve w one

or more errors?

Pr{I j = 1} = 0.1 and Pr{I j = 0} = 0.9, j =1,2,…,n

Then the probability that a packet is received with errors is

( ) ( ) ( ) ( ){ }Pr 1 2 3X X X X n  = ∪ = ∪ = ∪ ∪ =…

Copyright © Syed Ali Khayam 200943

Page 41: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 41/55

Binomial Random Variable

Example:

Consider a binary symmetric channel with probability of bit-error p.

n e pro a y a a pac e o n s s rece ve w one

or more errors?

{ } ( ) ( ) ( ) ( ){ }

{ } { } { } { }

Pr pkt with errs Pr 1 2 3

Pr 1 Pr 2 Pr 3 Pr

X X X X n  

X X X X n  

= = ∪ = ∪ = ∪ ∪ =

= = + = + = + + =

( ) ( ) ( ) ( )1 2 31 2 3

1 1 1 11 2 3

n n n n nn n n n  n 

p p p p p p p pn 

− − − − = − + − + − + + −

( )1

1

n i i 

p pi −

= = − ∑

Copyright © Syed Ali Khayam 200944

Page 42: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 42/55

Binomial Random Variable

Example:

Consider a binary symmetric channel with probability of bit-error p.

n e pro a y a a pac e o n s s rece ve w one

or more errors?n 

n i n 

There is an easier way to compute the same probability by noting

1

r p w errsi 

p pi 

=

= −

that:

{ } { } { } { }Pr pkt with errs Pr 0 1 Pr 0 1 Pr 0X X X = > = − < = − =

( )00

1 10

n n  p p− = − −

Copyright © Syed Ali Khayam 2009

p= − −

45

Connection Between Bernoulli and Binomial

Page 43: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 43/55

Connection Between Bernoulli and Binomial

RVs

I ( A)=1, I ( A)=0n Bernoulli trials

 A

Pr{ A}

I

Pr{I =1}= p

X

{ } ( )Pr 1

n k k 

X k p pk −

= = −

Pr{I =0}=1- p

Bernoulli Trial Bernoulli RV Binomial RV

Copyright © Syed Ali Khayam 200946

d bl

Page 44: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 44/55

Geometric Random Variable

A Geometric Random Variable, M, is the number of Bernoulli

trials until the first occurrence of an event A

The experiment is stopped as soon as event A is observed

The image of a Geometric random variable is infinite but

countable

M = , , , …

Copyright © Syed Ali Khayam 200948

G i R d V i bl

Page 45: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 45/55

Geometric Random Variable

The pmf of a Geometric Random Variable, Z , is

1k −= = = −

Al   s o c al  

 g e o

OR

 e d 

 t  h  em

m e

 t  r i   c p

Depending on whether the success trial is included in the total

rZ p p p= = = − o d i  f  i   e d 

f  

count or not

Copyright © Syed Ali Khayam 200949

G t i R d V i bl

Page 46: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 46/55

Geometric Random Variable

Copyright © Syed Ali Khayam 200950

Image courtesy of Wikipedia article on Geometric Distribution

Connection between Geometric and Binomial

Page 47: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 47/55

Connection between Geometric and Binomial

RVs Can we find the probability of a Geometric random variable

using the Binomial random variable?

{ } ( )Pr 1k 

Z k p p= = − Geometric

{ } ( )Pr 1n k k 

n Z k p p

− = = −

Binomial

Copyright © Syed Ali Khayam 200951

Connection between Geometric and Binomial

Page 48: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 48/55

RVsCan we find the probability of a Geometric random variable using

the Binomial random variable?

11 k k k 

− −

{ } ( ) { }1

1 1

Pr 1 Prk 

X k p p Z k  −

= = − = =

Copyright © Syed Ali Khayam 200952

Connection between Geometric and Binomial

Page 49: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 49/55

RVs In k Bernoulli trials, there are k ways in which you can have 1

success and k -1 failures

Since the Binomial random variable counts successes andfailures it sums and considers all the k outcomes to ether

Copyright © Syed Ali Khayam 200953

Connection between Geometric and Binomial

Page 50: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 50/55

RVsFor k =4, a Binomial random variable X  jointly considers the

outcomes 0001, 0010, 0100, 1000

 

Pr{ X = 1} = Pr{0001} + Pr{0010} + Pr{0100} + Pr{1000}Since the underlying Bernoulli trials are independent:

Pr{ X = 1} = (k )Pr{one success in k trials}

,one of these outcomes, 0001

=> Pr{ Z = 1} = Pr{ X = 1} / k 

Copyright © Syed Ali Khayam 200954

Memoryless Property

Page 51: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 51/55

Memoryless Property

It can be shown that the Geometric rv satisfies the memoryless

property

The memoryless property is satisfied when:

{ } { }Pr PrZ j k Z k Z j  = + ≥ = =

This property is also called the Markov Property

Copyright © Syed Ali Khayam 200955

Memoryless Property

Page 52: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 52/55

Memoryless Property

The memoryless property is satisfied when:

{ } { }Pr PrZ j k Z k Z j  = + ≥ = =

For the Geometric rv, RHS of the above equation is:

r p p= = −

 property, we need to show that

Pr 1j 

Z k Z k  = = −

Copyright © Syed Ali Khayam 200956

Memoryless Property

Page 53: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 53/55

Memoryless Property

To prove that the Geometric rv satisfies the memoryless

property, we need to show that

Let’s expand the LHS using the definition of conditional

{ } ( )Pr 1j 

Z j k Z k p p= + ≥ = −

probability

{ }Pr Z j k Z k  

= + ≥∩{ }

{ }

Pr

Pr

Z k 

Z j k 

= +=

( )1 2

1

1 1 1

 j k 

k k k 

p p+

+ +

−=

− − − …

Copyright © Syed Ali Khayam 200957

Memoryless Property

Page 54: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 54/55

Memoryless Property

Continued from last page

 j k +−

( ) ( ) ( )( )

1 2Pr

1 1 1

1

k k k 

 j k 

Z j k Z j  p p p p p p

p p

+ +

+

= + ≥ =

− + − + − +−

( ) ( ) ( ) ( )( )

( )

0 1 21 1 1 1

1

 j k 

p p p p p p p

p p

+

=− − + − + − +

( )

( )

1

1

 j 

p

p p

= −

Summation over all possible values

of the Geometric pmf 

Copyright © Syed Ali Khayam 200958

Memoryless Property

Page 55: Chapter 03 Random Variables Part A

8/3/2019 Chapter 03 Random Variables Part A

http://slidepdf.com/reader/full/chapter-03-random-variables-part-a 55/55

Memoryless Property

It can also be shown that the Geometric rv is the only discrete

random variable that satisfies the memoryless property

Because of the memoryless property, the Geometric rv can bethought of as the number of failures between two successes

OR the inter-arrival time between successes

Copyright © Syed Ali Khayam 200959


Recommended