+ All Categories
Home > Documents > Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W...

Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W...

Date post: 26-May-2020
Category:
Upload: others
View: 12 times
Download: 0 times
Share this document with a friend
78
Chapter 7 – Internal Forces
Transcript
Page 1: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Page 2: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Chapter Objectives• To show how to use the method of sections for determining the internal loadings in a

member.

• To generalize this procedure by formulating equations that can be plotted so thatthey describe the internal shear and moment throughout a member.

Page 3: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

In our past discussions on trusses we have considered the internal forces in a straighttwo-force member.• These forces produced only “tension” or “compression” in the member.

• The internal forces in any other type of member will usually produce “shear” and“bending” as well.

This chapter is devoted to the analysis of the internal forces in “beams.”• Beams are long, straight prismatic members designed to support loads that are

applied perpendicular to the axis of the member and at various points along themember.

Page 4: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

7.1 Internal Loadings Developed in Structural MembersConsider the case of a straight two-force member.

Cut the member at C.• To maintain equilibrium an internal axial

force must exist.

Page 5: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Next consider the case of a multi-forcemember.• The internal forces in beam AB are not

limited to axial tension or compressionas in the case of straight two-forcemembers.

• The internal forces also include “shear”and “bending.”

Page 6: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

By the “method of sections” we can take a cut at anypoint along the length of the member to find theinternal resisting effects – axial force (P), shearforce (V), and bending moment (M).• If the entire beam is in equilibrium, then any

portion of the beam is in equilibrium.

• Equilibrium of the isolated portion of the beam isachieved by the internal resisting effects, where

P – axial force

V – shear force

M – bending moment

Page 7: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Various Types of Loading and SupportA “beam” is a structural member designed to support loads applied at various pointsalong the member.• In most cases, the loads are applied perpendicular to the axis of the beam and will

cause only shear and bending.

• However, axial forces may be present in the beam when the applied loads are notperpendicular to the axis of the beam.

Page 8: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Beams are usually long, straight, and symmetrical (prismatic) in cross section (such aswide flange sections, commonly called I-beams or W-sections).• Designing a beam consists essentially in selecting the cross section that will provide

the most effective resistance to bending, shear, and deflection produced by theapplied loads.

The design of a beam includes the following steps.1. Determine the shear forces and bending moments produced by the applied loads.

2. Select the best suited cross section.

Page 9: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

A beam may be subjected to various types of applied loads.

Concentrated loads Distributed loads* Both

*Distributed loads may be uniform, trapezoidal, or triangular.

Page 10: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

A beam may be supported in a number of ways.• The distance between the supports, L, is referred to as the “span.”

• The following beams are “statically determinate.”

Simply supported Overhanging Cantilever

Page 11: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

The following beams are “statically indeterminate.”

Continuous Propped cantilever Fixed-Fixed

Page 12: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Free-Body DiagramThe following steps are used to begin the analysis or design of a beam.• The entire beam is taken as a free-body diagram and the reactions are determined at

the supports.

• Then, to determine the internal forces at any point along the length of the beam, wecut the beam and draw the free-body diagram of that portion of the beam.

• Using the three equations of equilibrium we may determine the axial force (P), shearforce (V), and bending moment (M) at any point along the length of the beam.

∑ Fx = 0 yields the axial force (P)∑ Fy = 0 yields the shear force (V)∑ Mcut = 0 yields the bending moment (M)

Page 13: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Sign ConventionsThe following sign conventions are used for the internal effects.

Axial force

Shear force

Bending moment

Page 14: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Methods of analysisThree methods of analysis will be demonstrated.• Determining values for shear and bending moment at distinct points on a beam.

• Writing the equations for shear and bending moment.

• Drawing shear and bending moment diagrams by understanding the relationshipsbetween load, shear, and bending moment.

Page 15: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Example – Values of Shear and Moment at Specific Locations on a Beam

Given: The beam loaded as shown.

Find: V and M @ x = 0+’, 2’, 4-’, 4+’,6’, 8-’, 8+’, 10’, and 12-’

Page 16: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

x = 0+’∑ Fy = 0 = 10 – V V = 10 k

∑ Mcut = 0 = - 10 (0) + M M = 0 k-ft

x = 2’∑ Fy = 0 = 10 – V V = 10 k

∑ Mcut = 0 = - 10 (2) + M M = 20.0 k-ft

Page 17: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

x = 4-’∑ Fy = 0 = 10 – V V = 10 k

∑ Mcut = 0 = - 10 (4) + M M = 40.0 k-ft

x = 4+’∑ Fy = 0 = 10 – 12 - V V = - 2 k

∑ Mcut = 0 = - 10 (4) + 12 (0) + MM = 40.0 k-ft

Page 18: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

x = 6’∑ Fy = 0 = 10 – 12 - V V = - 2 k

∑ Mcut = 0 = - 10 (6) + 12 (2) + MM = 60 – 24 = 36.0 k-ft

x = 8-’∑ Fy = 0 = 10 – 12 - V V = - 2 k

∑ Mcut = 0 = - 10 (8) + 12 (4) + MM = 80 – 48 = 32.0 k-ft

Page 19: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

x = 8+’∑ Fy = 0 = 10 – 12 – 6 - V

V = - 8 k

∑ Mcut = 0 = - 10 (8) + 12 (4) + 6 (0) + MM = 80 – 48 – 0 = 32.0 k-ft

x = 10’∑ Fy = 0 = 10 – 12 – 6 - V

V = - 8 k

∑ Mcut = 0 = - 10 (10) + 12 (6) + 6 (2) + MM = 100 – 72 – 12 = 16.0 k-ft

Page 20: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

x = 12-’∑ Fy = 0 = 10 – 12 – 6 - V

V = - 8 k

∑ Mcut = 0 = - 10 (12) + 12 (8) + 6 (4) + MM = 120 – 96 – 24 = 0 k-ft

Page 21: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

To simplify the calculations, use a free body diagram from the right side.

x = 10’∑ Fy = 0 = V + 8 V = - 8 k

∑ Mcut = 0 = - M + 8 (2) M = 16.0 k-ft

x = 12-’∑ Fy = 0 = V + 8 V = - 8 k

∑ Mcut = 0 = - M + 8 (0) M = 0 k-ft

Note: The moment is zero at the supports of simply supported beams.

Page 22: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Example – Values of Shear and Moment at Specific Locations on a Beam

Given: The beam loaded as shown.

Find: V and M @ x = 0+’, 3’, 6-’, 6+’,7.5’, and 9-’

Page 23: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

x = 0+’∑ Fy = 0 = 19 – V V = 19 k

∑ Mcut = 0 = - 19 (0) + M M = 0 k-ft

x = 3’∑ Fy = 0 = 19 – ½ (6) 3 – ½ (4.5) 3 – V

V = 19 – 9 – 6.75 = 3.25 k

∑ Mcut = 0 = - 19 (3) + ½ (6) 3 (2/3) 3 + ½ (4.5) 3 (1/3) 3 + MM = 57 – 18 – 6.75 = 32.25 k-ft

Page 24: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

x = 6-’∑ Fy = 0 = 19 – ½ (6) 6 - ½ (3) 6 – V

V = 19 – 18 – 9 = - 8.0 k

∑ Mcut = 0 = - 19 (6) + ½ (6) 6 (2/3) 6+ ½ (3) 6 (1/3) 6 + M

M = 114 – 72 – 18 = 24.0 k-ft

x = 6+’∑ Fy = 0 = V + 8 V = - 8.0 k

∑ Mcut = 0 = - M + 8 (3) M = 24.0 k-ft

Page 25: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

x = 7.5’∑ Fy = 0 = V + 8 V = - 8.0 k

∑ Mcut = 0 = - M + 8 (1.5) M = 12.0 k-ft

x = 9-’∑ Fy = 0 = V + 8 V = - 8.0 k

∑ Mcut = 0 = - M + 8 (0) M = 0 k-ft

Page 26: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

7.2 Shear and Moment Equations and DiagramsThe plot of values of shear force and bending moment against a distance “x” are graphscalled “shear and bending moment diagrams.”• Rather than pick points along a beam and approximate these diagrams by determining

values of shear and bending moment at a limited number of points, we can writeequations to define functions of shear and moment at any “x” along the beam.

Page 27: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

The equations for shear and bending moment may be developed by the following steps.• First, determine the number of sets of equations needed to define shear force and

bending moment across the entire length of the beam.- The shear and bending moment equations will be discontinuous at points where a

distributed load begins or ends, and where concentrated forces or concentratedcouples are applied.

• Next, for each set of equations, draw the necessary free-body diagram.

Page 28: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

• Then, for each set of equations, write the equilibrium equations and solve for shearforce (V) and bending moment (M) in terms of position on the beam (i.e. “x”, where“x” is measured from the left end of the beam).- Use ∑Fy = 0 to develop the equations for shear force.

- Use ∑Mcut = 0 to develop the equations for the bending moment

Page 29: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Example – Shear and Moment Equations

Given: Beam loaded as shown.

Find: Write the V and M equations and draw theV and M diagrams.

Two sets of equations are required.

Page 30: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

First, solve for the reactions at the supports.∑ MB = 0 = - Ay L + P (L/2)

Ay = P/2

∑ MA = 0 = By L - P (L/2)By = P/2

Note: The beam is symmetrical and symmetricallyloaded; thus, the reactions are symmetrical as well.

Page 31: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

0 < x < L/2∑ Fy = 0 = P/2 – V

V = P/2

∑ Mcut = 0 = - (P/2) x + MM = Px/2

L/2 < x < L∑ Fy = 0 = P/2 – P – V

V = - P/2

∑ Mcut = 0 = - (P/2) x + P (x – L/2) + MM = Px/2 – Px + PL/2M = P/2 (L – x)

Page 32: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

0 < x < L/2V = P/2M = Px/2

L/2 < x < LV = - P/2M = P/2 (L – x)

The shear and moment diagrams forthe beam are shown at the right.

Page 33: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Example – Shear and Moment Equations

Given: Beam loaded as shown.

Find: Write the V and M equations and draw theV and M diagrams.

One set of equations is required.

Page 34: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

0 < x < L∑ Fy = 0 = wL/2 – wx - V

V = w (L/2 – x)

∑ Mcut = 0 = - (wL/2) x + wx (x/2) + MM = - wx2/2 + wLx/2M = (wx/2) (L – x)

Page 35: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

0 < x < LV = w (L/2 – x)

M = (wx/2) (L – x)

The shear and moment diagrams for thebeam are shown at the right.

Page 36: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Example – Shear and Moment Equations

Given: Beam loaded as shown.

Find: Write the V and M equations and draw the V andM diagrams.

Three sets of equations are required.

Page 37: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

First, solve for the reactions at the supports.• First, take moments about the roller support at the

right end of the beam to find the vertical reaction atthe pin support at the left end of the beam.

∑ MR = 0 = - 10 Ay + 10 (8) – 46 + ½ (3) 6 [2 + (2/3) 6]+ ½ (6) 6 [2 + (1/3) 6]

10 Ay = 80 – 46 + 9(6) + 18(4) = 160.0

Ay = 16.0 kips ↑

Note: The distributed load (a trapezoid) is treated as twotriangles.

Page 38: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

• Then, take moments about the pin support at theleft end of the beam to find the vertical reaction atthe roller support at the right end of the beam.

∑ ML = 0 = 10 By - 10 (2) – 46 - ½ (3) 6 [2 + (1/3) 6]- ½ (6) 6 [2 + (2/3)6]

10 By = 20 + 46 + 9(4) + 18(6) = 210.0

By = 21.0 kips ↑

Page 39: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

0’ < x < 2’∑ Fy = 0 = 16 - V

V = 16

∑ Mcut = 0 = - 16x + MM = 16x

Page 40: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

2’ < x < 8’Since the intensity of the distributed load varies, an equation is needed to define theintensity of the distributed load (p) as a function of position “x” along the beam.

Using the general equation of a line: p = m x + c• Determine the slope m.

m = (6 – 3)/(8 – 2) = ½ So, p = ½ x + c

• Next, determine the “y-intercept” value “c”.Known points on the line include:

when x = 2, p = 3 and when x = 8, p = 6.

Substituting the second condition into the equation p = ½ x + c:6 = ½ (8) + c c = 6 – 4 = 2 Thus, p = ½ x + 2

Page 41: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Now write the equations for shear and moment.

∑ Fy = 0 = 16 – 10 – ½ (3) (x – 2) – ½ (½ x + 2) (x – 2) - V

V = 16 – 10 – (3/2) (x – 2) – ½ (½ x + 2) (x – 2)= 6 – 3x/2 + 3 – ½ (x2/2 + x – 4)= 6 – 3x/2 + 3 - x2/4 - x/2 + 2

V = - x2/4 – 2x + 11 V = 0 k @ x = 3.75’

Page 42: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Now write the equations for shear and moment.∑ Mcut = 0 = - 16x + 10 (x – 2) + ½ (3) (x – 2) (2/3) (x – 2)

+ ½ (½ x + 2) (x – 2) (1/3) (x – 2) + M - 46

M = 16x - 10 (x – 2) - (x – 2)2

– (1/6) (½ x + 2) (x – 2)2 + 46

= 16x – 10x + 20 - (x2 – 4x + 4)– (1/6) (x3/2 – 6x + 8) + 46

= 6x + 20 – x2 + 4x – 4 – x3/12 + x – 1.33 + 46

M= – x3/12 – x2 + 11x + 60.67

M = 83.5 k-ft @ x = 3.75’

Page 43: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

8’ < x < 10’∑ Fy = 0 = V + 21

V = - 21 k

∑ Mcut = 0 = - M + 21 (10 – x)M = 21 (10 – x)

Page 44: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

0’ < x < 2’V = 16 M = 16x

2’ < x < 8’V = - x2/4 – 2x + 11M= – x3/12 – x2 + 11x + 60.67@ x = 3.75’, V = 0, M = 83.5 kip-ft

8’ < x < 10’V = - 21 k M = 21 (10 – x)

The shear and moment diagrams for the beamare shown at the right.

Page 45: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

7.3 Relations between Distributed Load, Shear, and MomentThe methods outlined so far for drawing shear and bending moment diagrams becomeincreasingly cumbersome the more complex the loading.• The construction of shear and bending moment diagrams, however, can become

greatly simplified by understanding the relationships that exist between thedistributed load, the shear force, and the bending moment.

Page 46: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Relation between the Distributed Load and ShearFrom the free body diagram:

∑ Fy = 0 = V – (V + ∆V) – w ∆x,where w = w (x) = constant for small ∆x

∆V = – w ∆x

∆V/∆x = - w(x), then letting ∆x → 0,by definition of a derivative,

dV/dx = - w(x)

Page 47: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

First equation: dV/dx = - w(x)

If we integrate this expression between two points,then

dV = - w(x) dx

∫ dV = - ∫12 w(x) dx

V2 – V1 = - w(x) dx

Page 48: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Interpretation of these first two expressions:

dV/dx = - w(x) The value of the slope on the shear diagram is equal to theheight of the load diagram at that point times minus one.

V2 – V1 = - ∫12 w(x) dx The change in shear between two points is equal to the area

under the load diagram times minus one.

Concentrated ForcesThese equations are not valid under a concentrated load.• The shear diagram is discontinuous at the point of a concentrated load.

Page 49: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Relation between the Shear and Bending MomentFrom the free body diagram:

∑ MR = 0 = - M – V ∆x + w (∆x)2/2 + M + ∆M

∆M = V ∆x – ½ w (∆x)2

∆M = V ∆xNote: When ∆x → 0, (∆x)2 ≈ 0

∆M/∆x = V, then letting ∆x → 0,by definition of a derivative,

dM/dx = V

Page 50: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Third equation: dM/dx = V

If we integrate this expression between two points,then

dM = V dx = V(x) dx

Note: Let V = V(x) since the shear may vary.

∫ dM = ∫ V(x) dx

M2 – M1 = ∫12 V(x) dx

Page 51: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Interpretation of these two expressions:

dM/dx = V(x) The value of the slope on the bending moment diagram isequal to the height of the shear diagram at that point.

Note: When shear is zero, the slope on the moment diagram is zero corresponding toa point of maximum bending moment.

M2 – M1 = ∫12 V(x) dx The change in bending moment between two points is equal

to the area under the shear diagram.

Concentrated CouplesThese equations are not valid under a concentrated couple.• The bending moment diagram is discontinuous at the point of a concentrated couple.

Page 52: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Example – Shear and Moment Diagrams

Given: The beam loaded as shown.

Find: Draw the shear and moment diagrams.

Page 53: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Draw the shear diagramBetween the left end and right end of the beam:• The area under the load diagram = + wL

∆V = - Area = - wL

V2 = V1 + ∆V = wL/2 – wL = - wL/2

Page 54: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Draw the moment diagramBetween the left end of the beam and mid-span:• The area under the shear diagram

= ½ (wL/2)(L/2) = wL2/8

∆M = Area = wL2/8

M2 = M1 + ∆M = 0 + wL2/8 = wL2/8

• At mid-span (i.e. x = L/2), V = 0, so dM/dx = 0.

Page 55: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Between mid-span and the right end of the beam:• The area under the shear diagram

= - ½ (wL/2)(L/2) = - wL2/8

∆M = Area = - wL2/8

M2 = M1 + ∆M = wL2/8 + (- wL2/8) = 0

In general, when V = 0 at a point, the slope on themoment diagram at that point is zero (i.e. ahorizontal tangent).

Page 56: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Example – Shear and Moment Diagrams

Given: The beam loaded as shown.

Find: Draw the shear and moment diagrams.

Page 57: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Draw the shear diagram

Page 58: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Draw the moment diagram

Page 59: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Example – Shear and Moment Diagrams

Given: The beam loaded as shown.

Find: Draw the shear and moment diagrams.

Page 60: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Draw the shear diagram

Page 61: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Draw the moment diagram

Page 62: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Example – Shear and Moment Diagrams

Given: The beam loaded as shown.

Find: Draw the shear and moment diagrams.

Page 63: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Solve for the reactions at the supports.• Take moments about point A to find the vertical reaction

at point D.

∑MA = 0 = - ½ (4) 12 [(2/3) 12] – 20 (15) – 120 + 18 Dy

18 Dy = 192 + 300 + 120 = 612.0Dy = 34.0 k ↑

• Take moments about point D to find the vertical reactionat point A.

∑MD = 0 = ½ (4) 12 [6 + (1/3) 12] + 20 (3) – 120 - 18 Ay

18 Ay = 240 + 60 - 120 = 180.0Ay = 10.0 k ↑

Page 64: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Draw the shear diagramBetween x = 0’ and x = 12’• The area under the load diagram

= + ½ (12) 4 = + 24

∆V = - Area = - 24

V2 = V1 + ∆V = 10 – 24 = - 14

Page 65: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Draw the moment diagramIn order to draw the first part of the moment diagram, the location for the point ofmaximum moment (i.e. V = 0 kips) needs to be determined so that the area under theshear diagram may be calculated.• Write an equation for shear between x = 0’ and x = 12’.

∑ Fy = 0 = 10 – ½ (x) (x/3) – VV = 10 – x2/6

Let V = 0, thus 0 = 10 – x2/6x2 = 60.0x = 7.75’

Page 66: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

• The change in moment from x = 0’ to x = 7.75’ isequal to the area under the shear diagram.

Δ M = (2/3) 10 (7.75’) = 51.7 kip-ft

From x = 7.75’ to x = 12’, the change in moment isequal to the area under the shear diagram.• The area under the portion shear diagram between

x = 7.75’ and x = 12’ cannot be calculated usingstandard formulas since there is no horizontaltangent at x = 7.75’ or at x = 12’.

Page 67: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

• Determine the value of moment at x = 12’ and plot this value onthe moment diagram.- Take a cut at x = 12’, draw the free body diagram, and write the

equilibrium equation to determine the value of moment.

∑ Mcut = 0 = MB – 10 (12) + ½ (12) 4 (1/3)(12)

MB = 120 – 96 = 24.0 kip-ft

- Then plot this value on the moment diagram.

Page 68: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

• The change in moment from x = 12’ to x = 15’ is equalto the area under the shear diagram.

Δ M = - 14 (3) = - 42

M2 = M1 + ∆M = 24 + (- 42) = - 18

Page 69: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

• The concentrated couple at point C causes themoment diagram to jump up by 120 kip-ft.- Since the applied moment is acting clockwise, the

internal resisting moment increases, thus thejump “up” on the moment diagram.

• The change in moment from x = 15’ to x = 18’ is equalto the area under the shear diagram.

Δ M = - 34 (3) = - 102

M2 = M1 + ∆M = 102 + (- 102) = 0

Page 70: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Example – Shear and Moment Diagrams

Given: The beam loaded as shown.

Find: Draw the shear and moment diagrams.

Page 71: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Draw the shear diagramBetween x = 0’ and x = 2’• The area under the load diagram = 0

∆V = 0

Between x = 2’ and x = 8’• The area under the load diagram

= + ½ (3 + 6) 6 = + 27∆V = - Area = - 27V2 = V1 + ∆V = 6 – 27 = - 21

Between x = 8’ and x = 10’• The area under the load diagram = 0

∆V = 0

Page 72: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

Draw the moment diagramBetween x = 0’ and x = 2’• The area under the shear diagram

= 16 (20 = + 32∆M = + 32M2 = M1 + ∆M = 0 + 32 = 32

Page 73: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

In order to draw the part of the moment diagram beyond x = 2’, the location for thepoint of maximum moment (i.e. V = 0 kips) needs to be determined.• Write an equation for shear for 2’ < x < 8’.

∑ Fy = 0 = 16 - 10 – ½ (3) (x - 2) - ½ (½ x + 2) (x - 2) - VV = 6 – 3/2 (x – 2) – ½ (½ x + 2) (x – 2)

= 6 – 3x/2 + 3 – ½ (x2/2 + x – 4)= 6 - 3x/2 + 3 – x2/4 - x/2 + 2

V = - x2/4 – 2x + 11

Page 74: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

The maximum moment occurs when V = 0.• Let V = 0; thus, 0 = - x2/4 – 2x + 11

• Using the quadratic equation, find “x” when V = 0.

x = - (- 2) ± [(- 2 )2 – 4 (- 1/4 ) (11)]1/2

2 (- 1/4)

x = - 11.75’ (Not reasonable: not within thelimits of 2’ < x < 8’.)

x = 3.75’

Page 75: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

• Find M @ x = 3.75’

∑ Mcut = 0 = - 16 (3.75) + 10 (1.75) – 46+ ½ (3) 1.75 (2/3) 1.75+ ½ (3.75/2 + 2) (1.75) (1.75/3) + M

M = 16 (3.75) – 10 (1.75) + 46– ½ (3) 1.75 (2/3) 1.75- ½ (3.875) 1.75 (1.75/3)

M = 60 – 17.5 + 46 – 3.06 – 1.98

M = 83.5 k-ft

Page 76: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

• Plot M @ x = 3.75’

M = 83.5 k-ft

Page 77: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

From x = 3.75’ to x = 8’, the change in moment is equal to thearea under the shear diagram.• The area under the portion shear diagram between x = 3.75’

and x = 8’ cannot be calculated using standard formulas sincethere is no horizontal tangent at x = 3.75’ or at x = 8’.

• Determine the value of moment at x = 8’ and plot this value onthe moment diagram.- Take a cut at x = 8’, draw the free body diagram, and write

the equilibrium equation to determine the value of moment.

∑ Mcut = 0 = M – 21 (2) M = 42 kip-ft

- Then plot this value on the moment diagram.

Page 78: Chapter 07 Internal Forces - Statics 4300:201 07 PP Internal Forces...&KDSWHU ²,QWHUQDO )RUFHV 1H[W FRQVLGHU WKH FDVH RI D PXOWL IRUFH PHPEHU 7KH LQWHUQDO IRUFHV LQ EHDP $% DUH QRW

Chapter 7 – Internal Forces

From x = 8’ to x = 10’, the change in momentis equal to the area under the sheardiagram.• The area under the shear diagram

= (- 21) 2 = - 42

∆M = - 42

M2 = M1 + ∆M = 42 + (- 42) = 0


Recommended