+ All Categories
Home > Documents > Chapter 12 Fire and Explosion Hazards of Fine …...Chapter 12 Fire and Explosion Hazards of Fine...

Chapter 12 Fire and Explosion Hazards of Fine …...Chapter 12 Fire and Explosion Hazards of Fine...

Date post: 27-Apr-2020
Category:
Upload: others
View: 34 times
Download: 0 times
Share this document with a friend
5
C h a p t e r 1 2 F i r e a n d E x p l o s i o n H a z a r d s o f F i n e P o w d e r s 1 2 . 1 I n t r o d u c t i o n E x p l o s i o n - F l a m m a b l e g a s : f u e l c o n c e n t r a t i o n , l o c a l h e a t t r a n s f e r c o n d i t i o n s , o x y g e n c o n c e n t r a t i o n , i n i t i a l t e m p e r a t u r e - D u s t s : + p a r t i c l e s i z e d i s t r i b u t i o n , m o i s t u r e c o n t e n t * P o w d e r s - H i g h s u r f a c e a r e a / s m a l l s i z e ( s m a l l h e a t c a p a c i t y ) C o m b u s t i b l e p o w d e r s c a n b e e x p l o s i b l e e . g . a g r i c u l t u r a l / c h e m i c a l / c o a l / f o o d s t u f f s / m e t a l s / p h a r m a c e u t i c a l s / p l a s t i c s / w o o d w o r k i n g - O r g a n i c d u s t : h e a t i n g e m i s s i o n o f c o m b u s t i b l e g a s e s e x p l o s i o n - M e t a l s : p r o t e c t i v e o x i d e f i l m s b r e a k i n g b y s u d d e n h e a t i n g 1 2 . 2 C o m b u s t i o n F u n d a m e n t a l s ( 1 ) F l a m e s - F l a m m a b l e m a t e r i a l s + o x y g e n + i g n i t i o n s o u r c e - S t a t i o n a r y f l a m e v s . e x p l o s i o n f l a m e a c c o r d i n g t o t h e b e h a v i o r o f f l a m e f r o n t ( 2 ) E x p l o s i o n a n d D e t o n a t i o n - G e n e r a t i o n o f g a s e o u s c o m b u s t i o n p r o d u c t s r a p i d g a s e x p a n s i o n o r r a p i d p r e s s u r e i n c r e a s e - D e t o n a t i o n v s . d e f l a g r a t i o n D e t e r m i n e d b y f l a m e s p e e d ( < o r > s p e e d o f s o u n d ) w h i c h i s
Transcript

Chapter 12 Fire and Explosion Hazards of Fine

Powders

12.1 Introduction

Explosion

- Flammable gas: fuel concentration, local heat transfer conditions,

oxygen concentration, initial temperature

- Dusts: + particle size distribution, moisture content

* Powders - High surface area / small size (small heat capacity)

Combustible powders → can be explosible

e.g. agricultural/chemical/coal/foodstuffs/metals/

pharmaceuticals/plastics/woodworking

- Organic dust :

heating → emission of combustible gases → explosion

- Metals :

protective oxide films → breaking by sudden heating

12.2 Combustion Fundamentals

(1) Flames

- Flammable materials + oxygen + ignition source

- Stationary flame vs. explosion flame

according to the behavior of flame front

(2) Explosion and Detonation

- Generation of gaseous combustion products

→ rapid gas expansion or

→ rapid pressure increase

- Detonation vs.deflagration

Determined by flame speed (< or > speed of sound) which is

governed by heat of combustion

degree of turbulence

ignition energy

* Primary vs. secondary explosion

compression wave of small explosion → increase in resuspending

particles

∵ Compression wave precedes the flame.

(3) Ignition - Simple Analysis for Ignition

Energy balance for fuel-air mixture:

Q input+ (- ΔH )[Z exp (- ERT )]Cρm, fuel=

Heat input Heat generated

V [C ρm, fuelC p, fuel+(1-C)ρm airC p, air]

dTdt

+ hA (T-T s), J/s

heat accumulation heat dissipated

where C: volumetric concentration of fuel

ρ : molar density

V: volume of fuel-and-air mixture element

A: surface area of the element

* Figure 12.1

T B→ Ignition temperature

Explosion → "Runaway" reaction

Figure 12.2 Effect of heat input

Figure 12.3 Autoignition(spontaneous ignition)

(4) Flammability Limits

- Upper and lower flammability limit, C fL, C fU

in volume % fuel

- Minimum oxygen for combustion

For C 3H 8 C fL= 2.2% by volume,

MOC= C fL⋅[moles O 2

moles fuel ] Stoich = 2.2⋅5= 11% O 2 by volume

Worked Example 12.1

Worked Example 12.2

12.3 Combustion in Dust Clouds

(1) Fundamental to Specific to Dust Cloud Explosion

(- Δ H )[Z exp (- ERT ) ]Cρ m, fuel

(- ΔH )rV → (-ΔH )r''S⋅( surface fuelvolume fuel )= (-ΔH )r''S⋅6x

* Particle size : very important

- Dispersion

- Surface area for reaction

- Specific heat of reaction

- Heat up rate

(2) Characteristics of Dust Explosion

little data on powder properties

- Minimum dust concentration

- Minimum oxygen for combustion (MOC)

- Minimum ignition temperature

- Minimum ignition energy

- Maximum explosion pressure

- Maximum rate of pressure rise

( dpdt )maxV 1/3 = K ST

As close as possible to plant conditions

Table 12.1

Table 11.2 - Explosion class ( K ST)

(3) Apparatus for Determination of Dust Explosion Characteristics

- Ignition source

- Dust dispersion

- Vertical tube apparatus Figure 12.4

(max.dust concentration, min. energy for ignition, MOC)

- Sphere apparatus Figure 12.5

(max. explosion pressure and max. rate of pressure rise)

- Godbert-Greenwald furnace apparatus (min. ignition temperature)

12.4 Control of the Hazard

(1) Introduction

- Change the process to eliminate the dust

- Design the plant to withstand the pressure generated by any

explosion

- Remove the oxygen to below MOC

- Add moisture to the dust

- Add diluent powder to the dust

(2) Ignition Sources

Flames / Smouldering / hot surfaces / welding and cutting /

friction and impact / electric spark / spontaneous heating

(3) Venting

- Simple and inexpensive method

Figure 12.6

Worked Example 12.3

(4) Suppression

- Discharging a quantity of inert gas and inert powder into the vessel

* Suppression systems

Automatic venting/advance inerting/automatic shutdown

(5) Inerting

- N2 and CO2

- Oxygen concentration < MOC

(6) Minimize Dust Cloud Formation

- Use of dense phase conveying

- Use cyclone and filters instead of settling vessels

- Dot not allow the powder stream to fall freely through the air

(7) Containment


Recommended