+ All Categories
Home > Documents > Chapter 12 Testing for Autocorrelation (EC220).Ppt

Chapter 12 Testing for Autocorrelation (EC220).Ppt

Date post: 02-Jun-2018
Category:
Upload: harsha-dutta
View: 221 times
Download: 0 times
Share this document with a friend

of 81

Transcript
  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    1/81

    Christopher Dougherty

    EC220 - Introduction to econometrics

    (chapter 12)

    Slideshow: testing for autocorrelation

    Original citation:

    Dougherty, C. (2012) EC220 - Introduction to econometrics (chapter 12). [Teaching Resource]

    2012 The Author

    This version available at: http://learningresources.lse.ac.uk/138/

    Available in LSE Learning Resources Online: May 2012

    This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows

    the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user

    credits the author and licenses their new creations under the identical terms.

    http://creativecommons.org/licenses/by-sa/3.0/

    http://learningresources.lse.ac.uk/

    http://learningresources.lse.ac.uk/138/http://creativecommons.org/licenses/by-sa/3.0/http://creativecommons.org/licenses/by-sa/3.0/http://creativecommons.org/licenses/by-sa/3.0/http://creativecommons.org/licenses/by-sa/3.0/http://learningresources.lse.ac.uk/138/
  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    2/81

    Simple autoregression of the residuals

    1

    TESTS FOR AUTOCORRELATION

    We will initially confine the discussion of the tests for autocorrelation to its most common

    form, the AR(1) process. If the disturbance term follows the AR(1) process, it is reasonable

    to hypothesize that, as an approximation, the residuals will conform to a similar process.

    1tt ee

    t1 tt uu

    error

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    3/81

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    4/81

    Simple autoregression of the residuals

    3

    TESTS FOR AUTOCORRELATION

    t1 tt uu

    Hence a regression of eton et1is sufficient, at least in large samples. Of course, there is

    the issue that, in this regression, et1is a lagged dependent variable, but that does not

    matter in large samples.

    1tt ee error

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    5/81

    4

    TESTS FOR AUTOCORRELATION

    This is illustrated with the simulation shown in the figure. The true model is as shown, with

    utbeing generated as an AR (1) process with = 0.7.

    Simple autoregression of the residuals

    0

    5

    -0.5 0 0.5 1

    T= 25

    T= 50

    T= 100

    T= 200

    0.7

    true value

    t17.0 tt

    uu

    1 tt ee

    tt utY 0.210

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    6/81

    0

    5

    -0.5 0 0.5 1

    T= 25

    T= 50

    T= 100

    T= 200

    0.7

    true value

    5

    TESTS FOR AUTOCORRELATION

    Simple autoregression of the residuals

    The values of the parameters in the model for Ytmake no difference to the distributions of

    the estimator of .

    t17.0 tt

    uu

    1 tt ee

    tt utY 0.210

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    7/81

    0

    5

    -0.5 0 0.5 1

    T= 25

    T= 50

    T= 100

    T= 200

    0.7

    true value

    6

    TESTS FOR AUTOCORRELATION

    Simple autoregression of the residuals

    As can be seen, when etis regressed on et1, the distribution of the estimator of is left

    skewed and heavily biased downwards for T= 25. The mean of the distribution is 0.47.

    T mean

    25 0.47

    50 0.59

    100 0.65

    200 0.68

    t17.0 tt

    uu

    1 tt ee

    tt utY 0.210

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    8/81

    0

    5

    -0.5 0 0.5 1

    T= 25

    T= 50

    T= 100

    T= 200

    0.7

    true value

    7

    TESTS FOR AUTOCORRELATION

    Simple autoregression of the residuals

    T mean

    25 0.47

    50 0.59

    100 0.65

    200 0.68

    t17.0 tt

    uu

    1 tt ee

    tt utY 0.210

    However, as the sample size increases, the downwards bias diminishes and it is clear that it

    is converging on 0.7 as the sample becomes large. Inference in finite samples will be

    approximate, given the autoregressive nature of the regression.

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    9/818

    TESTS FOR AUTOCORRELATION

    The simple estimator of the autocorrelation coefficient depends on Assumption C.7 part (2)

    being satisfied when the original model (the model for Yt) is fitted. Generally, one might

    expect this not to be the case.

    BreuschGodfrey test

    t

    k

    j

    jtjt uXY

    2

    1

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    10/819

    TESTS FOR AUTOCORRELATION

    If the original model contains a lagged dependent variable as a regressor, or violates

    Assumption C.7 part (2) in any other way, the estimates of the parameters will be

    inconsistent if the disturbance term is subject to autocorrelation.

    BreuschGodfrey test

    t

    k

    j

    jtjt uXY

    2

    1

    1

    2

    1

    t

    k

    j

    jtjt eXe

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    11/8110

    TESTS FOR AUTOCORRELATION

    As a repercussion, a simple regression of eton et1will produce an inconsistent estimate of

    . The solution is to include all of the explanatory variables in the original model in the

    residuals autoregression.

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    t

    k

    j

    jtjt uXY

    2

    1

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    12/8111

    TESTS FOR AUTOCORRELATION

    If the original model is the first equation where, say, one of the Xvariables is Yt1, then the

    residuals regression would be the second equation.

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    t

    k

    j

    jtjt uXY

    2

    1

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    13/8112

    TESTS FOR AUTOCORRELATION

    The idea is that, by including the Xvariables, one is controlling for the effects of any

    endogeneity on the residuals.

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    t

    k

    j

    jtjt uXY

    2

    1

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    14/8113

    TESTS FOR AUTOCORRELATION

    The underlying theory is complex and relates to maximum-likelihood estimation, as does

    the test statistic. The test is known as the BreuschGodfrey test.

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    t

    k

    j

    jtjt uXY

    2

    1

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    15/8114

    TESTS FOR AUTOCORRELATION

    Several asymptotically-equivalent versions of the test have been proposed. The most

    popular involves the computation of the lagrange multiplier statistic nR2when the residuals

    regression is fitted, nbeing the actual number of observations in the regression.

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    t

    k

    j

    jtjt uXY

    2

    1

    Test statistic: nR2, distributed as 2(1) when

    testing for first-order autocorrelation

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    16/81

    15

    TESTS FOR AUTOCORRELATION

    Asymptotically, under the null hypothesis of no autocorrelation, nR2is distributed as a chi-

    squared statistic with one degree of freedom.

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    t

    k

    j

    jtjt uXY

    2

    1

    Test statistic: nR2, distributed as 2(1) when

    testing for first-order autocorrelation

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    17/81

    16

    TESTS FOR AUTOCORRELATION

    A simple ttest on the coefficient of et1has also been proposed, again with asymptotic

    validity.

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    t

    k

    j

    jtjt uXY

    2

    1

    Alternatively, simple ttest on coefficient of et1

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    18/81

    17

    TESTS FOR AUTOCORRELATION

    The procedure can be extended to test for higher order autocorrelation. If AR(q)

    autocorrelation is suspected, the residuals regression includes qlagged residuals.

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    q

    s

    sts

    k

    j

    jtjt eXe

    12

    1

    t

    k

    j

    jtjt uXY

    2

    1

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    19/81

    18

    TESTS FOR AUTOCORRELATION

    For the lagrange multiplier version of the test, the test statistic remains nR2(with nsmaller

    than before, the inclusion of the additional lagged residuals leading to a further loss of

    initial observations).

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    q

    s

    sts

    k

    j

    jtjt eXe

    12

    1

    t

    k

    j

    jtjt uXY

    2

    1

    Test statistic: nR2, distributed as 2(q)

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    20/81

    19

    TESTS FOR AUTOCORRELATION

    Under the null hypothesis of no autocorrelation, nR2has a chi-squared distribution with q

    degrees of freedom.

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    q

    s

    sts

    k

    j

    jtjt eXe

    12

    1

    t

    k

    j

    jtjt uXY

    2

    1

    Test statistic: nR2, distributed as 2(q)

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    21/81

    20

    TESTS FOR AUTOCORRELATION

    The ttest version becomes an Ftest comparing RSSfor the residuals regression with RSS

    for the same specification without the residual terms. Again, the test is valid only

    asymptotically.

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    q

    s

    sts

    k

    j

    jtjt eXe

    12

    1

    t

    k

    j

    jtjt uXY

    2

    1

    Alternatively, Ftest on the lagged residuals

    H0: 1= ... = q= 0, H1: not H0

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    22/81

    21

    TESTS FOR AUTOCORRELATION

    The lagrange multiplier version of the test has been shown to be asymptotically valid for the

    case of MA(q) moving average autocorrelation.

    BreuschGodfrey test

    1

    2

    1

    t

    k

    j

    jtjt eXe

    q

    s

    sts

    k

    j

    jtjt eXe

    12

    1

    t

    k

    j

    jtjt uXY

    2

    1

    Test statistic: nR2, distributed as 2(q),

    valid also for MA(q) autocorrelation

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    23/81

    22

    TESTS FOR AUTOCORRELATION

    The first major test to be developed and popularised for the detection of autocorrelation

    was the DurbinWatson test for AR(1) autocorrelation based on the DurbinWatson d

    statistic calculated from the residuals using the expression shown.

    DurbinWatson test

    T

    t

    t

    T

    t

    tt

    e

    ee

    d

    1

    2

    2

    21 )(

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    24/81

    23

    It can be shown that in large samples dtends to 22, where is the parameter in the

    AR(1) relationship ut= ut1+ t.

    TESTS FOR AUTOCORRELATION

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    T

    t

    t

    T

    t

    tt

    e

    ee

    d

    1

    2

    2

    21 )(

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    25/81

    24

    If there is no autocorrelation, is 0 and dshould be distributed randomly around 2.

    TESTS FOR AUTOCORRELATION

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    2d

    22d

    T

    t

    t

    T

    t

    tt

    e

    ee

    d

    1

    2

    2

    2

    1 )(

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    26/81

    25

    If there is severe positive autocorrelation, will be near 1 and dwill be near 0.

    TESTS FOR AUTOCORRELATION

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    2d

    0d

    22d

    T

    t

    t

    T

    t

    tt

    e

    ee

    d

    1

    2

    2

    2

    1 )(

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    27/81

    26

    Likewise, if there is severe positive autocorrelation, will be near1 and dwill be near 4.

    TESTS FOR AUTOCORRELATION

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    2d

    0d

    4d

    22d

    T

    t

    t

    T

    t

    tt

    e

    ee

    d

    1

    2

    2

    2

    1 )(

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    28/81

    27

    Thus dbehaves as illustrated graphically above.

    TESTS FOR AUTOCORRELATION

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    2d

    0d

    4d

    22d

    2

    4

    0

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    29/81

    28

    To perform the DurbinWatson test, we define critical values of d. The null hypothesis is H0:

    = 0 (no autocorrelation). If dlies between these values, we do not reject the null

    hypothesis.

    TESTS FOR AUTOCORRELATION

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    2d

    0d

    4d

    22d

    2

    4

    0 dcrit

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    dcrit

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    30/81

    29

    The critical values, at any significance level, depend on the number of observations in the

    sample and the number of explanatory variables.

    TESTS FOR AUTOCORRELATION

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    2d

    0d

    4d

    22d

    2

    4

    0 dcrit

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    dcrit

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    31/81

    30

    Unfortunately, they also depend on the actual data for the explanatory variables in the

    sample, and thus vary from sample to sample.

    TESTS FOR AUTOCORRELATION

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    2d

    0d

    4d

    22d

    2

    4

    0 dcrit

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    dcrit

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    32/81

    31

    However Durbin and Watson determined upper and lower bounds, dUand dL, for the critical

    values, and these are presented in standard tables.

    2d

    0d

    4d

    2

    4

    0 dL

    dU

    dcrit

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    dcrit

    TESTS FOR AUTOCORRELATION

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    33/81

    32

    2d

    0d

    4d

    2

    4

    0dL d

    Ud

    crit

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    dcrit

    TESTS FOR AUTOCORRELATION

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    If dis less than dL, it must also be less than the critical value of dfor positive

    autocorrelation, and so we would reject the null hypothesis and conclude that there is

    positive autocorrelation.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    34/81

    33

    2d

    0d

    4d

    2

    4

    0dL d

    Ud

    crit

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    dcrit

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    If dis above than dU, it must also be above the critical value of d, and so we would not reject

    the null hypothesis. (Of course, if it were above 2, we should consider testing for negative

    autocorrelation instead.)

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    35/81

    34

    2d

    0d

    4d

    2

    4

    0dL d

    Ud

    crit

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    dcrit

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    If dlies between dLand dU, we cannot tell whether it is above or below the critical value and

    so the test is indeterminate.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    36/81

    35

    2d

    0d

    4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    Here are dLand dUfor 45 observations and two explanatory variables, at the 5% significance

    level.

    1.43 1.62(n = 45, k = 3, 5% level)

    2

    40 d

    L d

    U

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    37/81

    36

    2d

    0d

    4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    1.43 1.62(n = 45, k = 3, 5% level)

    2

    40 d

    L d

    U

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    There are similar bounds for the critical value in the case of negative autocorrelation. They

    are not given in the standard tables because negative autocorrelation is uncommon, but it

    is easy to calculate them because are they are located symmetrically to the right of 2.

    2.38 2.57

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    38/81

    37

    2d

    0d

    4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    1.43 1.62(n = 45, k = 3, 5% level)

    2

    40 d

    L d

    U

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    2.38 2.57

    So if d< 1.43, we reject the null hypothesis and conclude that there is positive

    autocorrelation.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    39/81

    38

    2d

    0d

    4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    1.43 1.62(n = 45, k = 3, 5% level)

    2

    40 d

    L d

    U

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    2.38 2.57

    If 1.43 < d< 1.62, the test is indeterminate and we do not come to any conclusion.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    40/81

    39

    2d

    0d

    4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    1.43 1.62(n = 45, k = 3, 5% level)

    2

    40 d

    L d

    U

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    2.38 2.57

    If 1.62 < d< 2.38, we do not reject the null hypothesis of no autocorrelation.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    41/81

    40

    2d

    0d

    4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    1.43 1.62(n = 45, k = 3, 5% level)

    2

    40 d

    L d

    U

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    2.38 2.57

    If 2.38 < d< 2.57, we do not come to any conclusion.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    42/81

    41

    2d

    0d

    4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    1.43 1.62(n = 45, k = 3, 5% level)

    2

    40 d

    L

    dU

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    2.38 2.57

    If d> 2.57, we conclude that there is significant negative autocorrelation.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    43/81

    42

    2d

    0d

    4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    2

    40

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    Here are the bounds for the critical values for the 1% test, again with 45 observations and

    two explanatory variables.

    dL

    dU

    1.24 1.42 2.58 2.76(n = 45, k = 3, 1% level)

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    44/81

    43

    2d

    0d

    4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    2

    40

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    dL

    dU

    1.24 1.42 2.58 2.76(n = 45, k = 3, 1% level)

    The Durbin-Watson test is valid only when all the explanatory variables are deterministic.

    This is in practice a serious limitation since usually interactions and dynamics in a system

    of equations cause Assumption C.7 part (2) to be violated.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    45/81

    44

    2d

    0d

    4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    2

    40

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    dL

    dU

    1.24 1.42 2.58 2.76(n = 45, k = 3, 1% level)

    In particular, if the lagged dependent variable is used as a regressor, the statistic is biased

    towards 2 and therefore will tend to under-reject the null hypothesis. It is also restricted to

    testing for AR(1) autocorrelation.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    46/81

    45

    2d

    0d4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    2

    40

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    dL

    dU

    1.24 1.42 2.58 2.76(n = 45, k = 3, 1% level)

    Despite these shortcomings, it remains a popular test and some major applications produce

    the dstatistic automatically as part of the standard regression output.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    47/81

    46

    2d

    0d4d

    DurbinWatson test

    In large samples

    No autocorrelation

    Severe positive autocorrelation

    Severe negative autocorrelation

    22d

    2

    40

    positive

    autocorrelation

    negative

    autocorrelation

    no

    autocorrelation

    dL

    dU

    1.24 1.42 2.58 2.76(n = 45, k = 3, 1% level)

    It does have the appeal of the test statistic being part of standard regression output.

    Further, it is appropriate for finite samples, subject to the zone of indeterminacy and the

    deterministic regressor requirement.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    48/81

    47

    Durbin proposed two tests for the case where the use of the lagged dependent variable as a

    regressor made the original DurbinWatson test inapplicable. One was a precursor to the

    Breusch

    Godrey test.

    Durbins htest

    2

    )1(1

    Yb

    ns

    n

    h

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    49/81

    48

    The other is the Durbin htest, appropriate for the detection of AR(1) autocorrelation.

    Durbins htest

    2

    )1(1

    Yb

    ns

    n

    h

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    50/81

    49

    The Durbin hstatistic is defined as shown, where is an estimate of in the AR(1)

    process, is an estimate of the variance of the coefficient of the lagged dependent

    variable, and nis the number of observations in the regression.

    Durbins htest

    2

    )1(1

    Yb

    ns

    n

    h

    2

    )1(Ybs

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    51/81

    50

    There are various ways in which one might estimate but, since this test is valid only for

    large samples, it does not matter which is used. The most convenient is to take advantage

    of the fact that dtends to 22in large samples. The estimator is then 10.5d.

    Durbins htest

    2

    )1(1

    Yb

    ns

    n

    h

    22d

    d5.01

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    52/81

    51

    The estimate of the variance of the coefficient of the lagged dependent variable is obtained

    by squaring its standard error.

    Durbins htest

    2

    )1(1

    Yb

    ns

    n

    h

    22d

    d5.01

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    53/81

    52

    Thus hcan be calculated from the usual regression results. In large samples, under the

    null hypothesis of no autocorrelation, his distributed as a normal variable with zero mean

    and unit variance.

    Durbins htest

    2

    )1(1

    Yb

    ns

    n

    h

    22d

    d5.01

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    54/81

    53

    An occasional problem with this test is that the hstatistic cannot be computed if n

    is greater than 1, which can happen if the sample size is not very large.

    Durbins htest

    2

    )1(1

    Yb

    ns

    n

    h

    22d

    d5.01

    2

    )1(Ybs

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    55/81

    54

    An even worse problem occurs when n is near to, but less than, 1. In such a situation

    the hstatistic could be enormous, without there being any problem of autocorrelation.

    Durbins htest

    2

    )1(1

    Yb

    ns

    n

    h

    22d

    d5.01

    2

    )1(Ybs

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    56/81

    55

    The output shown in the table gives the result of a logarithmic regression of expenditure on

    food on disposable personal income and the relative price of food.

    ============================================================

    Dependent Variable: LGFOOD

    Method: Least Squares

    Sample: 1959 2003

    Included observations: 45

    ============================================================

    Variable Coefficient Std. Error t-Statistic Prob.

    ============================================================

    C 2.236158 0.388193 5.760428 0.0000

    LGDPI 0.500184 0.008793 56.88557 0.0000

    LGPRFOOD -0.074681 0.072864 -1.024941 0.3113

    ============================================================

    R-squared 0.992009 Mean dependent var 6.021331Adjusted R-squared 0.991628 S.D. dependent var 0.222787

    S.E. of regression 0.020384 Akaike info criter-4.883747

    Sum squared resid 0.017452 Schwarz criterion -4.763303

    Log likelihood 112.8843 Hannan-Quinn crite-4.838846

    F-statistic 2606.860 Durbin-Watson stat 0.478540

    Prob(F-statistic) 0.000000

    ============================================================

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    57/81

    56

    The plot of the residuals is shown. All the tests indicate highly significant autocorrelation.

    -0.04

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003

    Residuals, static logarithmic regression for FOOD

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    58/81

    57

    ============================================================

    Dependent Variable: ELGFOOD

    Method: Least Squares

    Sample(adjusted): 1960 2003

    Included observations: 44 after adjusting endpoints

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================

    ELGFOOD(-1) 0.790169 0.106603 7.412228 0.0000

    ============================================================

    R-squared 0.560960 Mean dependent var 3.28E-05

    Adjusted R-squared 0.560960 S.D. dependent var 0.020145

    S.E. of regression 0.013348 Akaike info criter-5.772439Sum squared resid 0.007661 Schwarz criterion -5.731889

    Log likelihood 127.9936 Durbin-Watson stat 1.477337

    ============================================================

    ELGFOODin the regression above is the residual from the LGFOODregression. A simple

    regression of ELGFOODon ELGFOOD(1)yields a coefficient of 0.79 with standard error

    0.11.

    179.0 tt ee

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    59/81

    58

    ============================================================

    Dependent Variable: ELGFOOD

    Method: Least Squares

    Sample(adjusted): 1960 2003

    Included observations: 44 after adjusting endpoints

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================

    ELGFOOD(-1) 0.790169 0.106603 7.412228 0.0000

    ============================================================

    R-squared 0.560960 Mean dependent var 3.28E-05

    Adjusted R-squared 0.560960 S.D. dependent var 0.020145

    S.E. of regression 0.013348 Akaike info criter-5.772439Sum squared resid 0.007661 Schwarz criterion -5.731889

    Log likelihood 127.9936 Durbin-Watson stat 1.477337

    ============================================================

    179.0 tt ee

    Technical note for EViews users: EViews places the residuals from the most recentregression in a pseudo-variable called resid. residcannot be used directly. So the

    residuals were saved as ELGFOODusing the genrcommand:

    genr ELGFOOD = resid

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    60/81

    59

    Adding an intercept, LGDPIand LGPRFOODto the specification, the coefficient of the

    lagged residuals becomes 0.81 with standard error 0.11. R2is 0.5720, so nR2 is 25.17.

    ============================================================

    Dependent Variable: ELGFOOD

    Method: Least Squares

    Sample(adjusted): 1960 2003

    Included observations: 44 after adjusting endpoints

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================

    C 0.175732 0.265081 0.662936 0.5112

    LGDPI -7.36E-05 0.006180 -0.011917 0.9906

    LGPRFOOD -0.037373 0.049496 -0.755058 0.4546

    ELGFOOD(-1) 0.805744 0.110202 7.311504 0.0000

    ============================================================R-squared 0.572006 Mean dependent var 3.28E-05

    Adjusted R-squared 0.539907 S.D. dependent var 0.020145

    S.E. of regression 0.013664 Akaike info criter-5.661558

    Sum squared resid 0.007468 Schwarz criterion -5.499359

    Log likelihood 128.5543 F-statistic 17.81977

    Durbin-Watson stat 1.513911 Prob(F-statistic) 0.000000

    ============================================================

    181.0... tt ee 5720.02R

    17.255720.0442

    nR 83.101%1.0

    2

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    61/81

    60

    ============================================================

    Dependent Variable: ELGFOOD

    Method: Least Squares

    Sample(adjusted): 1960 2003

    Included observations: 44 after adjusting endpoints

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================

    C 0.175732 0.265081 0.662936 0.5112

    LGDPI -7.36E-05 0.006180 -0.011917 0.9906

    LGPRFOOD -0.037373 0.049496 -0.755058 0.4546

    ELGFOOD(-1) 0.805744 0.110202 7.311504 0.0000

    ============================================================R-squared 0.572006 Mean dependent var 3.28E-05

    Adjusted R-squared 0.539907 S.D. dependent var 0.020145

    S.E. of regression 0.013664 Akaike info criter-5.661558

    Sum squared resid 0.007468 Schwarz criterion -5.499359

    Log likelihood 128.5543 F-statistic 17.81977

    Durbin-Watson stat 1.513911 Prob(F-statistic) 0.000000

    ============================================================

    181.0... tt ee 5720.02R

    17.255720.0442

    nR 83.101%1.0

    2

    (Note that here n= 44. There are 45 observations in the regression in Table 12.1, and one

    fewer in the residuals regression.) The critical value of chi-squared with one degree of

    freedom at the 0.1 percent level is 10.83.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    62/81

    61

    Technical note for EViews users: one can perform the test simply by following the LGFOODregression with the command auto(1). EViews allows itself to use residdirectly.

    ============================================================

    Breusch-Godfrey Serial Correlation LM Test:

    ============================================================

    F-statistic 54.78773 Probability 0.000000

    Obs*R-squared 25.73866 Probability 0.000000

    ============================================================

    Test Equation:

    Dependent Variable: RESID

    Method: Least Squares

    Presample missing value lagged residuals set to zero.

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================C 0.171665 0.258094 0.665124 0.5097

    LGDPI 9.50E-05 0.005822 0.016324 0.9871

    LGPRFOOD -0.036806 0.048504 -0.758819 0.4523

    RESID(-1) 0.805773 0.108861 7.401873 0.0000

    ============================================================

    R-squared 0.571970 Mean dependent var-1.85E-18

    Adjusted R-squared 0.540651 S.D. dependent var 0.019916

    S.E. of regression 0.013498 Akaike info criter-5.687865

    Sum squared resid 0.007470 Schwarz criterion -5.527273

    Log likelihood 131.9770 F-statistic 18.26258

    Durbin-Watson stat 1.514975 Prob(F-statistic) 0.000000

    ============================================================

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    63/81

    62

    The argument in the autocommand relates to the order of autocorrelation being tested. At

    the moment we are concerned only with first-order autocorrelation. This is why thecommand is auto(1).

    ============================================================

    Breusch-Godfrey Serial Correlation LM Test:

    ============================================================

    F-statistic 54.78773 Probability 0.000000

    Obs*R-squared 25.73866 Probability 0.000000

    ============================================================

    Test Equation:

    Dependent Variable: RESID

    Method: Least Squares

    Presample missing value lagged residuals set to zero.

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================C 0.171665 0.258094 0.665124 0.5097

    LGDPI 9.50E-05 0.005822 0.016324 0.9871

    LGPRFOOD -0.036806 0.048504 -0.758819 0.4523

    RESID(-1) 0.805773 0.108861 7.401873 0.0000

    ============================================================

    R-squared 0.571970 Mean dependent var-1.85E-18

    Adjusted R-squared 0.540651 S.D. dependent var 0.019916

    S.E. of regression 0.013498 Akaike info criter-5.687865

    Sum squared resid 0.007470 Schwarz criterion -5.527273

    Log likelihood 131.9770 F-statistic 18.26258

    Durbin-Watson stat 1.514975 Prob(F-statistic) 0.000000

    ============================================================

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    64/81

    63

    When we performed the test, resid(1), and hence ELGFOOD(1), were not defined for the

    first observation in the sample, so we had 44 observations from 1960 to 2003.

    ============================================================

    Breusch-Godfrey Serial Correlation LM Test:

    ============================================================

    F-statistic 54.78773 Probability 0.000000

    Obs*R-squared 25.73866 Probability 0.000000

    ============================================================

    Test Equation:

    Dependent Variable: RESID

    Method: Least Squares

    Presample missing value lagged residuals set to zero.

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================C 0.171665 0.258094 0.665124 0.5097

    LGDPI 9.50E-05 0.005822 0.016324 0.9871

    LGPRFOOD -0.036806 0.048504 -0.758819 0.4523

    RESID(-1) 0.805773 0.108861 7.401873 0.0000

    ============================================================

    R-squared 0.571970 Mean dependent var-1.85E-18

    Adjusted R-squared 0.540651 S.D. dependent var 0.019916

    S.E. of regression 0.013498 Akaike info criter-5.687865

    Sum squared resid 0.007470 Schwarz criterion -5.527273

    Log likelihood 131.9770 F-statistic 18.26258

    Durbin-Watson stat 1.514975 Prob(F-statistic) 0.000000

    ============================================================

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    65/81

    64

    EViews uses the first observation by assigning a value of zero to the first observation forresid(1). Hence the test results are very slightly different.

    ============================================================

    Breusch-Godfrey Serial Correlation LM Test:

    ============================================================

    F-statistic 54.78773 Probability 0.000000

    Obs*R-squared 25.73866 Probability 0.000000

    ============================================================

    Test Equation:

    Dependent Variable: RESID

    Method: Least Squares

    Presample missing value lagged residuals set to zero.

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================C 0.171665 0.258094 0.665124 0.5097

    LGDPI 9.50E-05 0.005822 0.016324 0.9871

    LGPRFOOD -0.036806 0.048504 -0.758819 0.4523

    RESID(-1) 0.805773 0.108861 7.401873 0.0000

    ============================================================

    R-squared 0.571970 Mean dependent var-1.85E-18

    Adjusted R-squared 0.540651 S.D. dependent var 0.019916

    S.E. of regression 0.013498 Akaike info criter-5.687865

    Sum squared resid 0.007470 Schwarz criterion -5.527273

    Log likelihood 131.9770 F-statistic 18.26258

    Durbin-Watson stat 1.514975 Prob(F-statistic) 0.000000

    ============================================================

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    66/81

    65

    ============================================================

    Dependent Variable: ELGFOOD

    Method: Least Squares

    Sample(adjusted): 1960 2003

    Included observations: 44 after adjusting endpoints

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================

    C 0.175732 0.265081 0.662936 0.5112

    LGDPI -7.36E-05 0.006180 -0.011917 0.9906

    LGPRFOOD -0.037373 0.049496 -0.755058 0.4546

    ELGFOOD(-1) 0.805744 0.110202 7.311504 0.0000

    ============================================================R-squared 0.572006 Mean dependent var 3.28E-05

    Adjusted R-squared 0.539907 S.D. dependent var 0.020145

    S.E. of regression 0.013664 Akaike info criter-5.661558

    Sum squared resid 0.007468 Schwarz criterion -5.499359

    Log likelihood 128.5543 F-statistic 17.81977

    Durbin-Watson stat 1.513911 Prob(F-statistic) 0.000000

    ============================================================

    We can also perform the test with a ttest on the coefficient of the lagged variable.

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    67/81

    66

    Here is the corresponding output using the autocommand built into EViews. The test is

    presented as an Fstatistic. Of course, when there is only one lagged residual, the F

    statistic is the square of the tstatistic.

    ============================================================

    Breusch-Godfrey Serial Correlation LM Test:

    ============================================================

    F-statistic 54.78773 Probability 0.000000

    Obs*R-squared 25.73866 Probability 0.000000

    ============================================================

    Test Equation:

    Dependent Variable: RESID

    Method: Least Squares

    Presample missing value lagged residuals set to zero.

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================C 0.171665 0.258094 0.665124 0.5097

    LGDPI 9.50E-05 0.005822 0.016324 0.9871

    LGPRFOOD -0.036806 0.048504 -0.758819 0.4523

    RESID(-1) 0.805773 0.108861 7.401873 0.0000

    ============================================================

    R-squared 0.571970 Mean dependent var-1.85E-18

    Adjusted R-squared 0.540651 S.D. dependent var 0.019916

    S.E. of regression 0.013498 Akaike info criter-5.687865

    Sum squared resid 0.007470 Schwarz criterion -5.527273

    Log likelihood 131.9770 F-statistic 18.26258

    Durbin-Watson stat 1.514975 Prob(F-statistic) 0.000000

    ============================================================

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    68/81

    67

    The DurbinWatson statistic is 0.48. dLis 1.24 for a 1 percent significance test (2

    explanatory variables, 45 observations).

    ============================================================

    Dependent Variable: LGFOOD

    Method: Least Squares

    Sample: 1959 2003

    Included observations: 45

    ============================================================

    Variable Coefficient Std. Error t-Statistic Prob.

    ============================================================

    C 2.236158 0.388193 5.760428 0.0000

    LGDPI 0.500184 0.008793 56.88557 0.0000

    LGPRFOOD -0.074681 0.072864 -1.024941 0.3113

    ============================================================

    R-squared 0.992009 Mean dependent var 6.021331Adjusted R-squared 0.991628 S.D. dependent var 0.222787

    S.E. of regression 0.020384 Akaike info criter-4.883747

    Sum squared resid 0.017452 Schwarz criterion -4.763303

    Log likelihood 112.8843 Hannan-Quinn crite-4.838846

    F-statistic 2606.860 Durbin-Watson stat 0.478540

    Prob(F-statistic) 0.000000

    ============================================================

    dL= 1.24 (1% level, 2 explanatory variables, 45 observations)

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    69/81

    68

    The BreuschGodfrey test for higher-order autocorrelation is a straightforward extension of

    the first-order test. If we are testing for order q, we add qlagged residuals to the right side

    of the residuals regression. We will perform the test for second-order autocorrelation.

    tttt uuu 2211

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    70/81

    69

    Here is the regression for ELGFOODwith two lagged residuals. The BreuschGodfrey test

    statistic is 25.89. With two lagged residuals, the test statistic has a chi-squared distribution

    with two degrees of freedom under the null hypothesis. It is significant at the 0.1 percent

    level

    ============================================================

    Dependent Variable: ELGFOOD

    Method: Least Squares

    Sample(adjusted): 1961 2003

    Included observations: 43 after adjusting endpoints

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================

    C 0.071220 0.277253 0.256879 0.7987

    LGDPI 0.000251 0.006491 0.038704 0.9693

    LGPRFOOD -0.015572 0.051617 -0.301695 0.7645

    ELGFOOD(-1) 1.009693 0.163240 6.185318 0.0000

    ELGFOOD(-2) -0.289159 0.171960 -1.681548 0.1009============================================================

    R-squared 0.602010 Mean dependent var 0.000149

    Adjusted R-squared 0.560117 S.D. dependent var 0.020368

    S.E. of regression 0.013509 Akaike info criter-5.661981

    Sum squared resid 0.006935 Schwarz criterion -5.457191

    Log likelihood 126.7326 F-statistic 14.36996

    Durbin-Watson stat 1.892212 Prob(F-statistic) 0.000000

    ============================================================

    89.256020.0432

    nR 82.132 %1.02

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    71/81

    70

    We will also perform an Ftest, comparing the RSSwith the RSSfor the same regression

    without the lagged residuals. We know the result, because one of the tstatistics is very

    high.

    ============================================================

    Dependent Variable: ELGFOOD

    Method: Least Squares

    Sample(adjusted): 1961 2003

    Included observations: 43 after adjusting endpoints

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================

    C 0.071220 0.277253 0.256879 0.7987

    LGDPI 0.000251 0.006491 0.038704 0.9693

    LGPRFOOD -0.015572 0.051617 -0.301695 0.7645

    ELGFOOD(-1) 1.009693 0.163240 6.185318 0.0000

    ELGFOOD(-2) -0.289159 0.171960 -1.681548 0.1009============================================================

    R-squared 0.602010 Mean dependent var 0.000149

    Adjusted R-squared 0.560117 S.D. dependent var 0.020368

    S.E. of regression 0.013509 Akaike info criter-5.661981

    Sum squared resid 0.006935 Schwarz criterion -5.457191

    Log likelihood 126.7326 F-statistic 14.36996

    Durbin-Watson stat 1.892212 Prob(F-statistic) 0.000000

    ============================================================

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    72/81

    71

    Here is the regression for ELGFOODwithout the lagged residuals. Note that the sample

    period has been adjusted to 1961 to 2003, to make RSScomparable with that for the

    previous regression.

    ============================================================

    Dependent Variable: ELGFOOD

    Method: Least Squares

    Sample: 1961 2003

    Included observations: 43

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================

    C 0.027475 0.412043 0.066680 0.9472

    LGDPI -0.001074 0.009986 -0.107528 0.9149

    LGPRFOOD -0.003948 0.076191 -0.051816 0.9589

    ============================================================

    R-squared 0.000298 Mean dependent var 0.000149Adjusted R-squared -0.049687 S.D. dependent var 0.020368

    S.E. of regression 0.020868 Akaike info criter-4.833974

    Sum squared resid 0.017419 Schwarz criterion -4.711100

    Log likelihood 106.9304 F-statistic 0.005965

    Durbin-Watson stat 0.476550 Prob(F-statistic) 0.994053

    ============================================================

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    73/81

    72

    The Fstatistic is 28.72. This is significant at the 1% level. The critical value for F(2,35) is

    8.47. That for F(2,38) must be slightly lower.

    ============================================================

    Dependent Variable: ELGFOOD

    Method: Least Squares

    Sample: 1961 2003

    Included observations: 43

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================

    C 0.027475 0.412043 0.066680 0.9472

    LGDPI -0.001074 0.009986 -0.107528 0.9149

    LGPRFOOD -0.003948 0.076191 -0.051816 0.9589

    ============================================================

    R-squared 0.000298 Mean dependent var 0.000149Adjusted R-squared -0.049687 S.D. dependent var 0.020368

    S.E. of regression 0.020868 Akaike info criter-4.833974

    Sum squared resid 0.017419 Schwarz criterion -4.711100

    Log likelihood 106.9304 F-statistic 0.005965

    Durbin-Watson stat 0.476550 Prob(F-statistic) 0.994053

    ============================================================

    72.2838/006935.0

    2/006935.0017419.038,2 F

    47.835,2crit,0.1% F

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    74/81

    73

    Here is the output using the auto(2)command in EViews. The conclusions for the two

    tests are the same.

    ============================================================

    Breusch-Godfrey Serial Correlation LM Test:

    ============================================================

    F-statistic 30.24142 Probability 0.000000

    Obs*R-squared 27.08649 Probability 0.000001

    ============================================================

    Test Equation:

    Dependent Variable: RESID

    Method: Least Squares

    Presample missing value lagged residuals set to zero.

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================C 0.053628 0.261016 0.205460 0.8383

    LGDPI 0.000920 0.005705 0.161312 0.8727

    LGPRFOOD -0.013011 0.049304 -0.263900 0.7932

    RESID(-1) 1.011261 0.159144 6.354360 0.0000

    RESID(-2) -0.290831 0.167642 -1.734833 0.0905

    ============================================================

    R-squared 0.601922 Mean dependent var-1.85E-18

    Adjusted R-squared 0.562114 S.D. dependent var 0.019916

    S.E. of regression 0.013179 Akaike info criter-5.715965

    Sum squared resid 0.006947 Schwarz criterion -5.515225

    Log likelihood 133.6092 F-statistic 15.12071

    Durbin-Watson stat 1.894290 Prob(F-statistic) 0.000000

    ============================================================

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    75/81

    74

    The table above gives the result of a parallel logarithmic regression with the addition of

    lagged expenditure on food as an explanatory variable. Again, there is strong evidence that

    the specification is subject to autocorrelation.

    ============================================================

    Dependent Variable: LGFOOD

    Method: Least Squares

    Sample (adjusted): 1960 2003

    Included observations: 44 after adjustments

    ============================================================

    Variable Coefficient Std. Error t-Statistic Prob.

    ============================================================

    C 0.985780 0.336094 2.933054 0.0055

    LGDPI 0.126657 0.056496 2.241872 0.0306

    LGPRFOOD -0.088073 0.051897 -1.697061 0.0975

    LGFOOD(-1) 0.732923 0.110178 6.652153 0.0000

    ============================================================R-squared 0.995879 Mean dependent var 6.030691

    Adjusted R-squared 0.995570 S.D. dependent var 0.216227

    S.E. of regression 0.014392 Akaike info criter-5.557847

    Sum squared resid 0.008285 Schwarz criterion -5.395648

    Log likelihood 126.2726 Hannan-Quinn crite-5.497696

    F-statistic 3222.264 Durbin-Watson stat 1.112437

    Prob(F-statistic) 0.000000

    ============================================================

    TESTS FOR AUTOCORRELATION

    0 04

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    76/81

    75

    Here is a plot of the residuals.

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999 2003

    Residuals, ADL(1,0) logarithmic regression for FOOD

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    77/81

    76

    A simple regression of the residuals on the lagged residuals yields a coefficient of 0.43 with

    standard error 0.14. We expect the estimate to be adversely affected by the presence of the

    lagged dependent variable in the regression for LGFOOD.

    ============================================================

    Dependent Variable: ELGFOOD

    Method: Least Squares

    Sample(adjusted): 1961 2003

    Included observations: 43 after adjusting endpoints

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================

    ELGFOOD(-1) 0.431010 0.143277 3.008226 0.0044

    ============================================================

    R-squared 0.176937 Mean dependent var 0.000276

    Adjusted R-squared 0.176937 S.D. dependent var 0.013922

    S.E. of regression 0.012630 Akaike info criter-5.882426Sum squared resid 0.006700 Schwarz criterion -5.841468

    Log likelihood 127.4722 Durbin-Watson stat 1.801390

    ============================================================

    143.0 tt ee

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    78/81

    77

    With an intercept, LGDPI, LGPRFOOD, and LGFOOD(1) added to the specification, the

    coefficient of the lagged residuals becomes 0.60 with standard error 0.17. R2is 0.2469, sonR2is 10.62, not quite significant at the 0.1 percent level. (Note that here n= 43.)

    ============================================================

    Dependent Variable: ELGFOOD

    Method: Least Squares

    Sample(adjusted): 1961 2003

    Included observations: 43 after adjusting endpoints

    ============================================================

    Variable CoefficientStd. Errort-Statistic Prob.

    ============================================================

    C 0.417342 0.317973 1.312507 0.1972

    LGDPI 0.108353 0.059784 1.812418 0.0778

    LGPRFOOD -0.005585 0.046434 -0.120279 0.9049

    LGFOOD(-1) -0.214252 0.116145 -1.844700 0.0729

    ELGFOOD(-1) 0.604346 0.172040 3.512826 0.0012============================================================

    R-squared 0.246863 Mean dependent var 0.000276

    Adjusted R-squared 0.167586 S.D. dependent var 0.013922

    S.E. of regression 0.012702 Akaike info criter-5.785165

    Sum squared resid 0.006131 Schwarz criterion -5.580375

    Log likelihood 129.3811 F-statistic 3.113911

    Durbin-Watson stat 1.867467 Prob(F-statistic) 0.026046

    ============================================================

    62.102469.0432

    nR 83.101 %1.02

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    79/81

    78

    The DurbinWatson statistic is 1.11. From this one obtains an estimate of as 10.5d=

    0.445. The standard error of the coefficient of the lagged dependent variable is 0.1102.

    Hence the hstatistic is as shown.

    ============================================================

    Dependent Variable: LGFOOD

    Method: Least Squares

    Sample (adjusted): 1960 2003

    Included observations: 44 after adjustments

    ============================================================

    Variable Coefficient Std. Error t-Statistic Prob.

    ============================================================

    C 0.985780 0.336094 2.933054 0.0055

    LGDPI 0.126657 0.056496 2.241872 0.0306

    LGPRFOOD -0.088073 0.051897 -1.697061 0.0975

    LGFOOD(-1) 0.732923 0.110178 6.652153 0.0000

    ============================================================R-squared 0.995879 Mean dependent var 6.030691

    Adjusted R-squared 0.995570 S.D. dependent var 0.216227

    S.E. of regression 0.014392 Akaike info criter-5.557847

    Sum squared resid 0.008285 Schwarz criterion -5.395648

    Log likelihood 126.2726 Hannan-Quinn crite-5.497696

    F-statistic 3222.264 Durbin-Watson stat 1.112437

    Prob(F-statistic) 0.000000

    ============================================================

    33.41102.0441

    44445.0

    1

    22)1(

    Ybns

    nh

    TESTS FOR AUTOCORRELATION

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    80/81

    79

    Under the null hypothesis of no autocorrelation, the hstatistic asymptotically has a

    standardized normal distribution, so this value is above the critical value at the 0.1 percent

    level, 3.29.

    ============================================================

    Dependent Variable: LGFOOD

    Method: Least Squares

    Sample (adjusted): 1960 2003

    Included observations: 44 after adjustments

    ============================================================

    Variable Coefficient Std. Error t-Statistic Prob.

    ============================================================

    C 0.985780 0.336094 2.933054 0.0055

    LGDPI 0.126657 0.056496 2.241872 0.0306

    LGPRFOOD -0.088073 0.051897 -1.697061 0.0975

    LGFOOD(-1) 0.732923 0.110178 6.652153 0.0000

    ============================================================R-squared 0.995879 Mean dependent var 6.030691

    Adjusted R-squared 0.995570 S.D. dependent var 0.216227

    S.E. of regression 0.014392 Akaike info criter-5.557847

    Sum squared resid 0.008285 Schwarz criterion -5.395648

    Log likelihood 126.2726 Hannan-Quinn crite-5.497696

    F-statistic 3222.264 Durbin-Watson stat 1.112437

    Prob(F-statistic) 0.000000

    ============================================================

    33.41102.0441

    44445.0

    1

    22)1(

    Ybns

    nh

  • 8/11/2019 Chapter 12 Testing for Autocorrelation (EC220).Ppt

    81/81

    Copyright Christopher Dougherty 2011.

    These slideshows may be downloaded by anyone, anywhere for personal use.

    Subject to respect for copyright and, where appropriate, attribution, they may beused as a resource for teaching an econometrics course. There is no need to

    refer to the author.

    The content of this slideshow comes from Section 12.2 of C. Dougherty,

    In troduct ion to Econom etr ics, fourth edition 2011, Oxford University Press.

    Additional (free) resources for both students and instructors may be

    downloaded from the OUP Online Resource Centrehttp://www.oup.com/uk/orc/bin/9780199567089/.

    Individuals studying econometrics on their own and who feel that they might

    benefit from participation in a formal course should consider the London School

    of Economics summer school course

    EC212 Introduction to Econometrics

    http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx

    or the University of London International Programmes distance learning course

    20 Elements of Econometrics

    www.londoninternational.ac.uk/lse.

    http://www.oup.com/uk/orc/bin/9780199567089/http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspxhttp://c/Documents%20and%20Settings/vacharop/Local%20Settings/Temporary%20Internet%20Files/www.londoninternational.ac.uk/lsehttp://c/Documents%20and%20Settings/vacharop/Local%20Settings/Temporary%20Internet%20Files/www.londoninternational.ac.uk/lsehttp://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspxhttp://www.oup.com/uk/orc/bin/9780199567089/

Recommended