+ All Categories
Home > Documents > Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf ·...

Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf ·...

Date post: 30-Jul-2018
Category:
Upload: dangnhu
View: 246 times
Download: 1 times
Share this document with a friend
10
Chapter 13 129 Chapter 13 Chemical Kinetics Generally, the AP exam questions on kinetics are predictable. Students need to take data and determine the orders of reaction, write the rate law, solve for k, and write the proper units for k. Students should be able to choose from among proposed mechanisms, recognize intermediates and catalysts, and solve concentration-time equations. Students should be able to graph data and determine if a reaction is zero, first, or second order from graphing and determine an instantaneous rate from a graph. Animations for this chapter include activation energy, collision orientation, and catalysis. The media player section covers activation energy. Major Concepts to Know Common mistakes are to use balanced equation coefficients as orders and to answer problems using casual inspection instead of mathematics. Students who know how to do a problem will often not get credit in the free response if they use inspection because they explain too little or they may make too hasty of a conclusion. This is not to say a student can’t use inspection, but the student must use great care when asked to give his or her reasoning. For instance, the student sees both rate and concentration double and concludes that it is first order, but when explaining their answer no reference is made to holding two concentrations constant or what experiments were used (which can be implied by the math). In this case, no credit would be earned. Another common error is students forgetting that order is actually an exponent, so if they are asked by what factor the rate will change in a second order reaction where a concentration changes from 1 to 3, they often will say 3 2 = 6 times instead of 3 2 = 9 times. Another error is thinking a catalyst never takes part in a reaction, even in intermediate steps. Students need to review graphical-equation relationships of different order reactions. Students should know the slope = k in first order reactions when plotted as the ln of the concentration versus time, and slope = k in a second order reaction when plotted as reciprocal concentration versus time.
Transcript
Page 1: Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf · Chapter 13 129 Chapter 13 Chemical Kinetics Generally, the AP exam questions on

Chapter 13 129

Chapter 13 Chemical Kinetics

Generally, the AP exam questions on kinetics are predictable. Students need to take data and

determine the orders of reaction, write the rate law, solve for k, and write the proper units for k.

Students should be able to choose from among proposed mechanisms, recognize intermediates

and catalysts, and solve concentration-time equations. Students should be able to graph data and

determine if a reaction is zero, first, or second order from graphing and determine an

instantaneous rate from a graph. Animations for this chapter include activation energy, collision

orientation, and catalysis. The media player section covers activation energy.

Major Concepts to Know

• Common mistakes are to use balanced equation coefficients as orders and to answer

problems using casual inspection instead of mathematics. Students who know how to do a

problem will often not get credit in the free response if they use inspection because they

explain too little or they may make too hasty of a conclusion. This is not to say a student

can’t use inspection, but the student must use great care when asked to give his or her

reasoning. For instance, the student sees both rate and concentration double and concludes

that it is first order, but when explaining their answer no reference is made to holding two

concentrations constant or what experiments were used (which can be implied by the math).

In this case, no credit would be earned.

• Another common error is students forgetting that order is actually an exponent, so

if they are asked by what factor the rate will change in a second order reaction where a

concentration changes from 1 to 3, they often will say 3 2 = 6 times instead of

32 = 9 times. Another error is thinking a catalyst never takes part in a reaction, even in

intermediate steps.

• Students need to review graphical-equation relationships of different order reactions.

Students should know the slope = k in first order reactions when plotted as the ln of the

concentration versus time, and slope = k in a second order reaction when plotted as reciprocal

concentration versus time.

Page 2: Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf · Chapter 13 129 Chapter 13 Chemical Kinetics Generally, the AP exam questions on

Chapter 13 130

Integrated Rate Laws and Reaction Orders

• Students must be able to plot data to determine the order of a reaction, as in the following

example.

Graphical Determination of the Reaction Order

• Another commonly missed problem is one where the student is given the rate of loss of one

compound and then asked to solve for the rate of loss or gain of a different compound in the

Page 3: Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf · Chapter 13 129 Chapter 13 Chemical Kinetics Generally, the AP exam questions on

Chapter 13 131

equation. The student needs to use the ratio of the coefficients from the balanced equation to

determine the answer. This indicates students need practice in knowing when balanced

equation coefficients are important and when they are not.

• Students should practice working with half-lives for first order reactions. From data or a

graph, students should be able to determine a half-life. They should also be able to calculate

the concentration at any point in the reaction using the concentration-time equation. These

will both be used later in Chapter 23 as all nuclear reactions are

first order.

• Students often have trouble describing or calculating an instantaneous rate from a graph.

They need to describe taking the tangent through the point in question and solving for the

slope.

The Instantaneous Rates of Reaction

• Students need to create mind pictures of chemical reactions at the molecular level and thus

understand collision model theory and how it applies to chemical kinetics. One

Page 4: Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf · Chapter 13 129 Chapter 13 Chemical Kinetics Generally, the AP exam questions on

Chapter 13 132

misconception students have is that if molecules collide, they always react. Students fail to

realize that a reaction must have the right energy in the collision as well as the right

orientation of the molecules. Students should be able to use their understanding of collision

theory to answer qualitative questions about factors that influence chemical reaction rates.

• Students should understand all the features of potential energy reaction coordinate diagrams.

Students should be able to look at a diagram and determine the activation energy of both the

forward and the reverse reaction and H of both forward and reverse reactions. Although not

tested often, students should be able to use the Arrhenius equation to calculate activation

energy.

Potential Energy Profiles

• Students should be able to look at these graphs and determine if they are exothermic or

endothermic.

• As mentioned above, students should be able to identify a possible mechanism that fits a rate

law by noting the rate-determining step. They need to know how to write and combine

elementary step equations to exclude intermediates from the final expression. However, as of

yet, AP has not expected students to propose a mechanism for a reaction.

• Students should develop a good qualitative understanding of what a catalyst does in a

chemical reaction but will not be expected to answer quantitative questions. Enzyme

catalysis has not so far been the subject of an AP Chemistry question.

Page 5: Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf · Chapter 13 129 Chapter 13 Chemical Kinetics Generally, the AP exam questions on

Chapter 13 133

Vocabulary to Know

• Activated complex

• Activation energy

• Catalyst

• Elementary step

• Orders including zero order, first

order, and second order

• Half-life

• Intermediate

• Rate constant (k)

• Rate-determining step

• Rate law

• Reaction mechanism

• Reaction rate

Math Skills to Know

• Determine orders of a reaction

• Determine the rate law

• Solve for the rate constant k and its units

• Determine slope for finding k

• Make graphs to determine zero, first, and second order reactions

• Determine an instantaneous rate from a graph

• Compare rate of loss of A to rate of gain or loss of B using stoichiometry

• Determine how the rate constant changes with temperature using

ln (k1/k2) = Ea/R[(1/T2) – (1/T1)] and

ln (k1/k2) = Ea/R[(T1 – T2) / (T1T2)]

• From an energy diagram, determine activation energy and the energies released or absorbed

for exothermic and endothermic reactions

• Solve half life equations and concentration-time equations

Suggested Problems (* also electronic)

• Rate of a reaction: 1, 5, 6*–8*

• Rate law: 9–14, 15*, 16*, 17, 18*, 19, 20

• Relations between reactant concentration and time: 22, 24, 25*, 26*, 27*, 28–30

• Activation energy: 31, 33–35, 37*, 40*

Page 6: Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf · Chapter 13 129 Chapter 13 Chemical Kinetics Generally, the AP exam questions on

Chapter 13 134

• Reaction mechanisms: 44, 45, 47*, 48, 51*, 52, 54

• Catalysis: 55, 56

• Additional problems: 63, 64, 66, 70, 82, 86, 88*, 89, 94*,111*, 112

Suggested Demonstrations or Labs

• Melanie M. Cooper, “Project 15: What Affects the Rate of a Reaction?” Cooperative

Chemistry Lab Manual (New York, NY: McGraw-Hill, 2006).

• Jeffrey A. Paradis, “Determining the Rate Law: A Kinetics Study of the Iodination of

Acetone,” Hands on Chemistry Laboratory Manual (New York, NY: McGraw-Hill, 2006).

Page 7: Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf · Chapter 13 129 Chapter 13 Chemical Kinetics Generally, the AP exam questions on

Chapter 13 135

Questions

1. What is chemical kinetics?

2. What is a reaction rate?

3. Draw a rough sketch of what happens to the number of reactant molecules and product

molecules over time.

4. What is the difference between an average rate and an instantaneous rate?

a. How do you calculate an average rate?

b. How do you calculate an instantaneous rate?

5. What is the rate constant?

6. Is k affected by concentration? Explain why or why not.

7. What is the relationship between the loss of a reactant and the loss of another reactant or the

gain of a product?

8. What is the rate law?

a. What is the formula of the rate law?

Page 8: Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf · Chapter 13 129 Chapter 13 Chemical Kinetics Generally, the AP exam questions on

Chapter 13 136

b. What is a reaction order?

c. How are orders calculated?

d. Is the rate order related to the balanced equation coefficients? Why or

why not?

9. What is a first order reaction?

a. What are the units of k in a first order reaction?

b. What does the graph of concentration versus time look like in a first

order reaction?

c. What graph is needed to get a straight-line relationship?

d. What does the slope of the line in (c) above represent?

10. What is a half-life?

a. What is the equation to solve for a first order half-life?

11. What is the concentration-time equation for first order reactions?

12. What is a second order reaction?

a. What are the units of k in a second order reaction?

b. What is the equation to solve for the half-life of a second order reaction?

Page 9: Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf · Chapter 13 129 Chapter 13 Chemical Kinetics Generally, the AP exam questions on

Chapter 13 137

c. What is the concentration-time equation for second order reactions?

d. In a second order reaction, what is plotted to give the relationship of

slope = k?

13. What is a zero order reaction?

a. What is the rate law for zero order reactions?

b. What needs to be plotted on a graph in a zero order reaction?

c. What does the slope of the line on the graph equal?

14. How does temperature affect reaction rates?

15. Explain the collision theory of kinetics.

a. Do all collisions lead to a reaction? Why or why not?

16. What is activation energy?

a. What do molecules form when they collide? Give both names and explain.

b. What is the Arrhenius equation, and what does it allow you to solve for?

17. What is a reaction mechanism?

Page 10: Chapter 13 Chemical Kinetics - …glencoe.mheducation.com/.../instructor/690443/ChemIM_Ch13.pdf · Chapter 13 129 Chapter 13 Chemical Kinetics Generally, the AP exam questions on

Chapter 13 138

a. What are elementary steps?

b. What are intermediates?

c. How does the mechanism indicate the rate law?

d. What does the sum of the elementary steps add up to?

e. What is the rate-determining step?

18. What is a catalyst and how does it work?

a. How do catalysts affect the rate?

b. How is a catalyst recognized in the elementary steps?

c. Draw a rough sketch showing potential energy versus reaction progress for

the same exothermic reaction with and without a catalyst.

d. Draw a rough sketch showing potential energy versus reaction progress for

the same endothermic reaction with and without a catalyst.


Recommended